Journal of Mathematics Research; Vol. 9, No. 4; August 2017
ISSN 1916-9795  E-ISSN 1916-9809
Published by Canadian Center of Science and Education

On Theory of logarithmic Poisson Cohomology

Joseph Dongho!, Alphonse Mbah! & Shuntah Roland Yotcha'
! Department of Mathematics and Computer Science University of Maroua, Cameroon

Correspondence: Joseph Dongho, Department of Mathematics and Computer Science University of Maroua, Cameroon.
E-mail: joseph.dongho@fs.univ-maroua.cm

Received: May 30, 2017  Accepted: June 14,2017  Online Published: July 25, 2017
doi:10.5539/jmr.vOn4p209 URL: https://doi.org/10.5539/jmr.vOn4p209

Abstract

We define the notion of logarithmic Poisson structure along a non zero ideal 7 of an associative, commutative algebra
A and prove that each logarithmic Poisson structure induce a skew symmetric 2-form and a Lie-Rinehart structure on
the A-module Qg(log7) of logarithmic Kéhler differential. This Lie-Rinehart structure define a representation of the
underline Lie algebra. Applying the machinery of Chevaley-Eilenberg and Palais, we define the notion of logarithmic
Poisson cohomology which is a measure obstructions of Linear representation of the underline Lie algebra for which the
grown ring act by multiplication.

Keywords: Poisson structure, Logarithmic Poisson structure, Logarithmic Poisson cohomology, Logarithmic form, Log-
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1. Introduction

The first Poisson bracket on the algebra of smooth functions on R>";

aof dg  df Og
{f.8) = Z(a_na_a_qla_p,) (1)

was defined by S.D. Poisson in 1809. This bracket plays a fundamental role in the analytical mechanics. One century
later that A. Lichnerowicz in (Lichnerowicz, A. (1977)) and A. Weinstein in (Weinstein, A. (1983)) extended it in a large
theory now known as the Poisson Geometry. It has been remarked by A. Weinstein that the theory can be traced back to
S. Lie in (Lie, S. (1888)). The Poisson bracket (1) is derived from a symplectic structure on R?" and it appears as one of
the main ingredients of symplectic geometry.

The basic properties of the bracket (1) are that it yields the structure of a Lie algebra on the space of functions and it has
a natural compatibility with the usual associative product of functions.

These facts are of algebraic nature and it is natural to define an abstract notion of a Poisson algebra.

Following A. Vinogradov and I. Krasil’shchik in (Vinogradov, A. M., & Krasil’shchik, I. S. (1981)), J. Braconnier in
(Braconnier, J. (1977)) has developed the algebraic version of Poisson geometry.

One of the most important notion related to the Poisson geometry is Poisson cohomology which was introduced by A.
Lichnerowicz in (Lichnerowicz, A. (1977)) and in algebraic setting by I. Krasil’shchik in (Krasil’shchik, I. (1988)). Unlike
the De Rham cohomology, Poisson cohomology spaces are almost irrelevant to the topology of the manifold and moreover
they have bad functorial properties. They are very large and their actual computation is both more complicated and less
significant than in the case of the De Rham cohomology. However they are very interesting because they allow us to
describe various results concerning Poisson structures in particular one important result about the geometric quantization
of the manifold. Algebraic aspects of this theory were developed by J. Huebschmann in (Huebschmann, J. (2013)) and in
the geometrical setting by I. Vaisman in (Vaisman, I. (1991).).

This paper deals with Poisson algebras but Poisson algebras of another kind. More precisely we study the logarithmic
Poisson structures. If the Poisson structures draw their origins from symplectic structures, logarithmic Poisson structure
are inspired by log symplectic structures which are based on the theory of logarithmic differential forms. The logarithmic
differential forms was introduced by P. Deligne in (Deligne, P. (2006)) who defined them in the case of a normal crossings
divisor of a given complex manifold. But the theory of logarithmic differential forms along a divisor without necessarily
normal crossings was introduced by K. Saito in (Saito, K. (1980)). Explicitly if 7 is an ideal in a commutative algebra
A over a commutative ring R a derivation D of A is called logarithmic along I if D(Z) c 7. We denote by Der#(log I)
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the A-module of derivations of A logarithmic along 7. A Poisson structure {.,.} on A is called logarithmic ? along T if

for all a € A we have {a,.} € Derz(logI). In addition suppose that 7 is generated by {uy,...,u,} C A and let Q5 be

d du

the A-module of Kihler differential. The A-module Q#(log I') generated by {ﬁ, e —p} U Q4 is called the module of
up up

Kihler differentials logarithmic along 7.

J. Huebschmann’s program of algebraic construction of the Poisson cohomology can be summarized as follows:

Let A be a commutative algebra over a commutative ring R. A Lie-Rinehart algebra on A is an A-module which is an
R-Lie algebra acting on A with suitable compatibly conditions. J. Huebschmann observes that each Poisson structure
{.,.} gives rise to a structure of Lie-Rinehart algebra in the sense of G. Rinehart in (Rinehart, G. S. (1963)) on the A-
module Q4 in natural fashion. But it was proved in (Palais, R. (1961)) that any Lie-Rinehart algebra L on A gives rise
to a complex Altz(L, A) of alternating forms which generalizes the usual De Rham complex of manifold and the usual
complex computing Chevalley-Eilenberg in (Chevalley, C., & Eilenberg, S. (1948)) Lie algebra cohomology. Moreover
extending earlier work of Hochshild Kostant and Rosenberg in (Hochschild, G., Kostant, B., & Rosenberg, A. (2009)). G.
Rinehart has shown that when L is projective as an A-module the homology of the complex Alt4(L, A) may be identified
with Extz( a L)(ﬂ, A) over a suitably defined universal algebra U(A, L) of differential operators. But the latter defines a
Lie algebra cohomology H*(L, A) of L. So, since Q4 is free A-module, it is projective. Therefore the homology of the
complex Altz(Qz, A) computing the cohomology of the underlying Lie algebra of the Poisson algebra (A, {.,.}). Then
the Poisson cohomology of (A, {., .}) is the homology of Alt#(Q#, A).

It follows from the definition of logarithmic Poisson structure that the image of Hamiltonian map of logarithmic principal
Poisson structure is sub-module of Der#(log I). Inspired by this fact we introduce the notion of logarithmic Lie-Rinehart
structure. A Lie-Rinehart algebra L on A is said to be logarithmic along an ideal 7 of A if it acts by logarithmic derivations
on A.

If 7 is an ideal of an associative commutative algebra A over a field of characteristic zero, denoted by DerK/(Bg T) the
submodule of Derg(log I') constituted by v € Derg(log I') such that v(u) € uA, we prove the following:

e Derg(log ) = {6 € Derx(log I) : 6(u) € uA,Yu € I}.
¢ : Derg(logl) — Qg(logD)’
) - K

s d 1.
is an homomorphism of A-modules. Where 6 : N -o(d(u)).
u u

e For each logarithmic Poisson structure {—, -} : AQ® A — A, there exist a unique A-module homomorphism
H : Qg(A) — Derg(log I) such that H o d = ad.

e Let {—, —} be a logarithmic Poisson structure along 7. The map [—,—] : (x,y) = [x,y] = —(w(x,¥)) + L) -
L) (x) is a Lie algebra structure on Qg (log T).
2. On the Lie-Rinehart Algebra of Logarithmic Principal Differential Form
2.1 Logarithmic Derivation and Logarithmic Formal Differential.

In this section, we recall the notion of logarithmic derivation along a non zero ideal of an associative, commutative and
unitary algebra A.

2.1.1 Module of Logarithmic Derivations

Let & be a field of characteristic zero and A a k-algebra. Dery(A) the A-module of derivations on A, 7 a non zero ideal
of A and d 4,k the universal derivation associated to the A-module of Kihler differentials Q(A).

Definition 2.1. A k-derivation logarithmic along I is an element d of Der(A) such that d(I) C 1.

The set of k-derivations logarithmic along 7 is denoted by Derk(log 1).
It follows from the definition and the fact that A is commutative, that Derg(log 1) is sub A-module of Derg(A)

The map o5 : ¢ — ¥ o dgy is an A-module isomorphism from Qg (A)" to Derg(A), where Qx(A)" denote the dual of
Qg (A).
Indeed, for all € Qg(A)" and a, b € A,

2The statement the Poisson structure is logarithmic along T also expresses as I is a Poisson ideal of A. For example any smooth Poisson manifolds
is logarithmic along the ideal of the smooth functions which vanish on a given symplectic leaf
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Ta()(ab) = y(ad(b) + bd(a)) = aca(b) + bo a(a).

Then o 4(¥) € Derg(A). On the other hand, The map ¢ : d — d, where d is the unique A-module homomorphism from
Qx(A) to A such that d o d = d. Where ¢ denote the inverse of 0 4.

we have the following proposition.

Proposition 2.2. o4 : Derg(A) = Qg(A)Y

In what follow, we will designate ¢ the inverse of o 4.

2.1.2 Module of Formals Logarithmic Differentials

In this subsection we define the module of logarithmic Kéhler differential.

Let 3 := I* U {14}. We denote 3™ 'Qx(A) the localized of Qx(A). Since Qx(A) is generated by d(a) and a € A,
(@ Jaeaues- We denote Qg (log I) the A-submodule of I71'Qk(A) generated by

u

I71Qk(A) is generated by {

d
A 0o

Definition 2.3. Qg (log 1) is called A-module of logarithmic formals differentials or module of logarithmic Kdhler dif-
ferential along I .

W) _ 4y = 0. then the subset Qx () U{

u

d(u)

As A-module, Qg (log I) is not free in general. Indeed, for all u € 3, u — hues
u

is not free.
Follow the K. Saito in (Saito, K. (1980)), when Qg (log 7) is free A-module, [ is called a "free ideal"

It is proved in (12) that for all A-module M, each § € Derg(A, M) induce a homomorphism of A-modules § : Qg (A) —
M;suchthat 5o0d = 6. If M = A and 6(u) € uA for all u € I, then 6(d(u)) € uA. In this case, we consider the
s d 1~ - 1~ s
homomorphism ¢ : M — —o(d(u)). Since 8(d(u)) € uA, —5(d(u)) € A. Therefore, 5 € Qx(log I)". Let us denote
u u u

DerK/(Bg T) the submodule of Derk(log I) constituted by v € Derg(log 1) such that v(u) € uA. The above construction
induce an homomorphism

¢ : Derg(log) — Qg(log 1)
5 - o '
We have prove the following lemma.

Lemma 2.4. Let Derg(log ) = {6 € Derx(log I) : 6(u) € uA,Yu € I}.
¢ : Derg(logl) — Qg(log D)’
5 - )

is an homomorphism of A-modules.

3. Logarithmic Poisson Structures
In this section, we introduce the notion of logarithmic Poisson structure and give some of it properties.
3.1 Definition and First Properties

Firstly, we recall that a Poisson structure on an algebra A is a skew-symmetric K-bilinear map on A that satisfy the
Leibnitz role and Jacobi identity.

Definition 3.1. A logarithmic Poisson structure along a non zero ideal I of A is a skew-symmetric k-bilinear map
{— -} : AR A — Athat is bi-derivative, satisfy the Jacobi identity and such that {a,u} € uA forallae A, ue 1.

It follows from this definition that the image of associated adjoint map

ad : A — Derg(A) is a submodule of Derg(log 7). Indeed, for all a € A, ad(a) := {a, -} and for all ut, {a,u} e uAC 1.
Then ad(a)() c I and ad(A). This end the proof of the following proposition.

Proposition 3.2. Let {—,-} : A® A — A be a logarithmic Poisson structure along I. Then For all a € A, ad(a) €
Derg(log 7).
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We deduce the following corollaries.

Corollary 3.3. Let {—, -} : A® A — A be a logarithmic Poisson structure along I. ad : A — Derg(logT) is
homomorphism of Lie algebras and a derivation with values in the A-module Derg(log I).

From the universal property of Qg(A), we deduce

Corollary 3.4. For each logarithmic Poisson structure {—,—} : A® A — A, there exist a unique A-module homomor-

phism H : Qg(A) — Derg(log I) such that H o d = ad.

Proof. Since adeDery (A, Derk(log 1)), from universal property of (Q(A), d), there exist H € Hom#(Qg(A), Derg(A))
such that H od = ad.

Forall x € Qg(A), x= X1, xid(a;).

Then H(x) = Y1, x;:H(d(a)) = Y1, x;Hod(a;) = )}, xiad(a;) € Derg(log I'). Therefore, H(Qg(A)) C Derg(logI). O

3.2 Logarithmic Poisson 2-form.

Proposition 3.5. Each logarithmic Poisson structure along I induce an A-module homomorphism H from Qg (log I) to
Derg(log 1), defined by

A = LH(dW))

Proof.
Forall u € 7, H(@) = 1H(d(w)) = 1{u,~} € Derx(log I), since for all a € A, there exist b € A such that {u,a} = ub.
We extended A on Qg (log 7) by linearity. ]

It follows from this proposition and definition of {—, —} that FI(‘%) € DerK/(Bg 7). Then, from lemma 2.4 $ o H is a
homomorphism from Qg (log 7) to Qx(log 7)*. We have the following lemma.

Lemma 3.6. Each logarithmic Poisson structure induce a homomorphism of A-modules

D :Qlogl) — Qg(logl)’
w —  @oHw)

We deduce that
Proposition 3.7. Each logarithmic Poisson structure along I induce a 2-form wg on Qk(log I).
Proof. For all x,y € Qg(log 1), wy := [®(x)]y O

The following proposition will be very useful after, since it shows that wy € Alt(Qg(log I), A).

Proposition 3.8. wy is skew-symmetric.

d a;
Proof. Let x € Qg(log 1), x = 31 x; (a ) + X1 Xid(a;) We have,
)4 Xi . _ n R _
[P(D](x) = [;a—[so o Hod(a;)+ lei[()D o H o d](a)](x)
i p+
Pxi . - pdyk(aj) n
= SXpoAodi@) L x—t + 3 xdl+
14 j=1 a; j=p+1
noo rdak(aj) n
+ YxlgoHodl@)Lx—L+ 3 xda)]
p+l j=1 J i,j=p+1
PoXixj, -
= X —¢lH od(a;)]od(aj)+
i,j=14id;
L o
+ X ——¢lHod(a)]od(ap+
i,j=p+1 4j
nooXiXj, o -
+ X —@¢[Hod(a)]oda)+
i,j=p+1 Qj
+ 2 xix;¢lH od(a)] od(a))
i,j=p+1
P XiX;j n XiXj
= X —Hasa;}+ 2 —{ai;aj}
i,j=14i4; 1<i<p,p+1<j<n Qi
n XiX; n
+ )y —Aaiaj}+ Y xixfaia;}=0
1<j<p,p+l<isn 4j i,j=p+1
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]

Definition 3.9. w is called Poisson 2-form logarithmic along I.

Since Qg (A) C Qk(log I), the restriction <D1QNU : Qi (A) = Qg (A)Y induce a skew-symmetric 2-form
wo(d(w), d(v)) [D(d(m))(d(v))
= Q(H(du))d()
@o. @ol(d@)](d(¥)) = {u, v}. Indeed, = [¢({u, =HId(v))
= ad(u)[d(v)]
= {u,v}

We remark that @y is equal to the 2-form mr(; defined in (Huebschmann, J. (2013)) for an arbitrary Poisson structure {—, —}
on A. By a simple computation, we have

Theorem 3.10. For all u,v € I* and a,b € A we have the following:

1. wo(a@,b@) = @{M, v}
u v uy

2. cuo(ad(u),b@) = @{u, v}
v v

3. wo(ad(u), bd(v)) = abf{u, v}

From this theorem, it follow that the restriction of wy on Qg(A) X Qi (A) is equal to @yg.
4. Complex of Logarithmic Differential Form

In this section, we recall the notion of Lie-Rinehart algebra thanks to him we can define the complex of logarithmic
differentials forms.

4.1 Lie-Rinehart Algebra and Logarithmic Lie-Rinehart Algebra

We conserve the above notations that, a Lie algebra on £ is a pair (g; [—, —]), where g is a k-module and [-,—] : g®g — g
k-bilinear skew symmetric map satisfy the Jacobi identity. A Lie-Rinehart algebra is a pair (g, p) where g is an A-module
and a k-Lie algebra, and p : g :— Derg(A) is a morphism of A-modules and k-Lie algebras, such that

[g,ag'] = [(p()(@)]g" +alg, '] (2)

forall g, g’ € gand all @ € A, see Rinehart (1963). We can observe that the Lie-Rinehart algebra is the algebraic analogue
of a Lie algebroide, it is also known as a Lie pseudo-algebra or a Lie-Cartant pair.

When g is a subset of Derg(A) and p : g :— Derg(A) is the inclusion map, the pair (g, p) is a Lie-Rinehart algebra if
and only if g is closed under the A-module and k-Lie algebra structures of Derg(A). We will be mainly interested in
Lie-Rinehart algebras of this type. An example of this type of Lie-Rinehart algebra is (Derg(log Z),i). Which will be
referred to Lie-Rinehart structure the map p : g — Derg(A) such that (g, p) is Lie-Rinehart. Since Derg(log I') is subset
of Derg(A) closed under the A-module and k-Lie algebra structures of Derg(A), it is possible for a giving Lie-Rinehart
algebra (g, p) to verify p(g) C Derx(log I). in this case, we obtain a particular type of Li-Rinehart algebra. More generally,
if 7 is an ideal of A, we have the following definition.

Definition 4.1. A logarithmic Lie-Rinehart algebra along I or shortly log-Lie-Rinehart algebra, is a pair (g, p), where
p : g = Derg(log I) is a morphism of A-modules and k-Lie algebras, satisfying (2).

It is clear that each log-Lie-Rinehart algebra is a Lie-Rinehart algebra.

In general we can replace in the definition of Lie-Rinehart structure Derg(A) by the A-module of first order differentials
operators on some A-module M; see (Dongho, J.(2012)).

If g is a Lie algebra with zero torsion, then each morphism of A-modules p : ¢ — Derg(log I) satisfy (2) is a Lie algebra
homomorphism. Indeed, (o[x, y] - [p(x), p()D(a).z = plx, y](@).z = [p(x), p(M](a@).z =

= plx, yl(a).z — p()[p(y)(@)].z + p()p(x)(a)].z

= [[x, yl, az] — allx, y], z] — [x, p(¥)(@).z] + pY)(@)[x, 2] + [y, p(x)(@)z] — p(x)(@)[y, z]

= [[x, yl, azl=allx, yl, 21 =[x, [y, azll + [x, aly, z2]1+ [y, alx, zl1 = aly, [x, 211 + [y, [x, az]] = [y, alx, 2]] = [x, aly, z]1 + alx, [y, z]]

= —(laz, [x,y1] + [x, [y, azl] + [y, [x, azlD—a ([[x, y], 2] + [[y, 2], x] + [[2, x], y]) = O forall z € g; then (p[x, y]-[p(x), p()])(a)
= 0 for all a € A. Therefore, p[x,y] = [p(x), o(y)]. This end the proof of the following proposition

213



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

Proposition 4.2. Let g be a Lie algebra such that Ann(g) = 0, the module of annulation of §. Then each morphism of
A-modules, p : ¢ — Derg(log I) satisfying (2) is a logarithmic Lie-Rinehart structure.

Let (g, p) be a Lie-Rinehart algebra with associated Lie-bracket [, —]. p : g = Derg(A) defines a representation of g by
derivation on A, in the case of log-Lie-Rinehart algebra, we have the representation by logarithmic derivation. Using the
machinery of Chevalley-Eilenberg and Palais, we define a differential complex (Alt*(g, A), d,), where

+1 . ~
(dp )15 ees lpi1) = I?Z DM Uy os Ly ooy Ly )+
G o &)
Z -(—I)H‘]f([li, .Xj], ll, cens li, cees lj, cens lp+1)

1<i<j<j
The associated cohomology is denoted by H*(Alt(g, A), A). This generalized the De Rham cohomology when A is the
algebra of smooth functions on a smooth manifold. Indeed, the De Rham cohomology correspond to the case g =

Derg(A). Similarly, the case where g = Derx(log D), the Ox-module of vector field logarithmic along a reduced divisor
D of a complex manifolds X, give the logarithmic of De Rham cohomology.

We can also think about the notion of logarithmic-Lie-Rinehart-Closed, which is homologue of notion of Lie-Rinehart-
Poisson defined in (Huebschmann, J. (2013)). A logarithmic-Lie-Rinehart-closed structure on a logarithmic Lie-Rinehart
algebra (g, p, ) is a skew symmetric 2-form u : gxg — A such that d,(u) = 0. We remark that a logarithmic-Lie-Rinehart-
closed structure is just a 2-cocycle of (Alf*(g, A),d,). We referring to Log-Lie-Rinehart-Closed (Log LRC) algebra a
quadruplet (g, p, 7, u) where p is a logarithmic-Lie-Rinehart-Closed structure on (g, 0, 7). A Log-LRC (g, p, I, ) is said
to be symplectic if the map g — ¢*; x — i is an isomorphism.

One of the much important Lie-Rinehart-Closed-Symplectic algebra is the algebra Oy of holomorphic map on a logarith-
mic complex manifold of complex dimension 2n (X, D) with Lie-Rinehart-Closed structure a closed 2-form w logarithmic
along a reduced divisor D of X such that w" # 0 € H*'(X, Qi”[D]). In the field of symplectic geometry, such structure are
called log symplectic structure and the underline complex manifold is called log symplectic manifold.

5. Logarithmic Poisson Cohomology
5.1 Logarithmic Lie Derivative

It is well known that, see (Braconnier, J. (1977)), the map d : A — Qg (A) is k-derivation with values in the A-module
Qg (A). Since Qg (A) is an A-submodule of Qx(log ), d : A — Qk(log 7) is element of Der (A, Qg (log 1)).

We denote A 4[Qx(log )] = @ NalQx(log I)] the exterior A-algebra of the A-module Qk(log 7). d prolonged to a
neN
derivation of degree +1, we also defined d;

d: \[Qxlog D] - /\[Qk(log I)] @)
A A

such that (A /ﬂ[\Q x(log )], d) become a differential complex.
Let 6 € Derk(logZ), for all p > 1, the map
os 1 [Qx(og D]P  — Na[Qk(log I)]

(X15-00s Xp) — i(—l)i‘l[gb(é)](xi)xl AXpo AXi AU A Xp

is A-multilineal alternate. We denote

is : /\[Qx(log ] — /\ [Qx(log 1)] (5)
A A

the unique morphism such that
P .

is(X1 ANX2 Ao AXp) = Z(—l)’_1[¢(6)](xi)x1 AXpe NXi A A Xp
i=1

forall p > 1.

The map is is a derivation of degree -1.

Therefore, isod +dois : \4[Qx(log I)] = AalQx(log )] is a derivation of degree zero. We denote L5 = isod +dois;
to be the logarithmic Lie derivation with respect to 6.

L5 have the following properties.

Proposition 5.1. Forall x € Qg(logI),a e A
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a) Ls(ax) = 8(a)x + aLs(x)
b) Las(x) = aLs(x) + 5(x)d(a)
¢) Ls(d)(a)) = d(5(a))

Proof. This is straightforward and left to the reader. O

With those properties, we can describe L5 on the generators of Qg (log 7).

1 1
Firstly, we shall mark that for all % € IIQk(A), .55(2) = ;Lg(x) - @)—C Indeed, for all x € Qg(A),a € T*, Ls(x) =

a a
1 5
L3(a>) = aLs®) + 6@ Then £5(5) = 2 £:00 = 2% This end the proof of the following lemma
a a a a a a a

1 s
Lemma 5.2. For all 2 € 371Qk(A), 5 € Derg(log I), Lé(g) =~ L9 - %2

Immediately, we deduce the following corollary

Corollary 5.3. foralla € T*, 6§ € Derg(log I) La(@) = d(¥)
Proof. .
d 1 o(a)d
LD = e - 2249
1 8(a) d(a)

= —d(6(a) - ——
a a a

Since § € Der@g T), there exist ¢ € A* such that §(a) = ac.

Therefore,
dé;a) _ d(c)+@
| @) @ d@
a a a
d 0 o(a) d o6(a) d
o

]

We have shown in subsection 3.2 that each logarithmic Poisson structure induce a map H : Qg(log 1) — DerK/(-IBg 7).

d
So, we can compute L d(a) ((T)). The following corollary give compute it.
H(—)

Corollary 5.4. For all logarithmic Poisson structure along I,
db), 1 x
.EH(d(a))(T) = d(E{a, b)) foralla,b € T

_d 1 1
Proof. H(%) = ;H od(a) = Z{a, —-}=19
then
d(b) d(b)
L (—) = L,—
ﬁ(dfla)) b ")
(D)
= £5%)

1
d(—1a.bh)
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The following proposition explicite £ on generators of Qg (log 7).

Proposition 5.5. Foralla € A,u,ve I

d 1
1. L dw) s (V) )= ad( (i, v)) + — . Vjd(@
u
2L dw) (bdﬂ“((v)) L, b}@ + 2 vid(ay + bad((u, v
H(a u uy uy
u
3L 4w <adﬂ”((”)) P a4 Sy +abd<i{v u))
H(bT) A% u uy

) = abd(i{u, v} + ﬁ{u, vid(a) + i{u, v}d(b)
uy uy uy

4. diw@?™® d(u) dﬂ/\l}((v)

Proof. Leta,b e A,u,veI*

1. We have:

d
L d(u)( (V))

u

d®v) d(u) )]( d(v) )

=al d(u) (—) [H(— d(a)

d
ol gup A4 1 —Hod( (i@

[—]

d —~ 4
=aL gy D+ 2t - @
H—]
u

= ad(—{u,v}) + l{u, vid(a)
uv

llV{

2. From proposition 5.1 we deduce that;

d d d d
£ g0 @" D =tAE 0™ £ gy A
1[7]d() [T]
= “{u, b} =2 bd(—{ v))
u Vv
therefore,

d d d
£ oaw 0% W) mar g 6™+ H(ﬂ{ “)aca
Ha H—1]

Z{u b}@ + —{u v}d(a)abd(i{u W)

3. Changing the role of # and v, we obtain:

dﬂ/K(M)) _ ]z{v,a}M + i{v, uld(b) + abd(i{v, u})
" 0w uy

L 4w @

H(b—)
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4. Since wy(x,y) := [@(x)]y for all x,y € Qg(log 1)
w(a d(u“) b@) = @{u, v} and then
dw(a@, b@)
u v
ab

= d[—{u,v}]
uv

= abd[i{u, v}l + d(ab).(i{u, v})
uy uy

= abd[i{u, v}l + bd(a).(i{u, v+ ad(b).(i{u, v})
uy uy uv

From this proposition, we deduce the following corollary

Corollary 5.6. Letac A,u,ve I*
d d d d b d
~dana®™® 5T 4 L dw (U c ey @) = 2T 4 210 8 s apa

\4

u

Proof. This is obvious from proposition 5.1 O

Corollary 5.7. —dwo(ad(u), bd(v)) + LgaawybdV) — Lapaw (ad(v)) = alu, b}d(v) + bla, vid(w) + abd({u, v})
Proof. This coming from those equalities:

E.1 dlwo(ad(u), bd(v))] = afu, v}d(b) + b{u,v}d(a) + abd[{u, v}].
E.2 Lgwiw) (bd(v)) = abd[{u,v}] + a{u, b}d(v) + blu, vid(a)

E3 Lawawy(adw)) = abd[{v,u}] + b{v, a}d(u) + alv, u}d(b)

‘We also have:

Corollary 5.8. —dw(aﬁ bd(v)) + L ), (bd(v)) = Lezipag (@ ()) Z{ b}d(v) + bla, v}Q+ bd( {u, v}
H(a

u

Proof. Foralla,b € A,u,v e I* we have:
d[wo(a@, bd(v))] = d[%{u, v}l = [l{u, vild(ab) + abd[l{u, v}l = Z{u, vid(b) + g{u, vid(a) + abd[%{u, v}]

al d(u) (bd(v)) + H[Q](bd(v))d(a)

£ g bd)
Hla 1

u

= dbL g @O + A0 + 2w @

H(—)
u
= abd(l{u v} + Z{u bld(v) + Z{u vid(a)

Lioan(@™) = bLH(d(v»(aQHH(d)(v)(a im)
- b[aLH@(V»(%HH(d( )a )%H 21y, ubd(b)
= badC v, + bl a) 2+ Ly, oy
It follow that; —dwo(a@,bd(v)nzm d(u))(bd(v))—Lg[,,d(,,)](ad(—vv)) = g{u,b}d(v)+b{a,v}d( L d( (w v}) q

u
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Theorem 5.9. Let {—,—} be a logarithmic Poisson structure along I. The map [—, -] : (x,y) = [x,y] = —d(w(x,y)) +
L) — Ly (x) is a Lie structure on Qg (log I).

We need the following lemmas to prove the above theorem.

Lemma 5.10. Let {—, -} be a Poisson structure on I. There exist an unique {—,—} on the quotient field F s of A; also

... a 1 a
denoted {—, —} and satisfying {5’ c} = E{a, cl— ﬁ{b’ c}

Lemma 5.11. [—, —] is k-bilinear and skew symmetric.
Proof. 1t is straightforward computation. O

It is remaining the Jacobian identity to end the proof of the theorem. In this goal, we state the above lemma.

Lemma 5.12. Leta,be A ,u,ve I*

[ du d dv b d 1
1 1aZ b2 = Y & 2w 4 abd(—1{u, v)
| u A% u A% A% u uy

2. ad—u,bdv = g{u,b}dv + bla, v}d—u + abd(l{u,v})
| u | u u u

3. ladu, bdv] = a{u, b}dv + b{a, v}du + abd({u, v})

[ dv] d b 1
4. |adu, b—v = afu, b}—u + —{a,v}du + abd(—{u, v})
I V| u v v

Since Qg (A) is A-submodule of Qg (log 1) we can consider the restriction of [—, —] on Qg (A). On the other hand, as a
Poisson structure in the general meaning, {—, —} induce on Qg(A) a Lie structure. In Theorem 3.8 of (Huebschmann, J.
(2013)) it is prove that this bracket is defined by [adu, bdv] = alu, b}dv + b{a, vidu + abd({u, v}) which is equal to relation
3) of 5.12. We can then conclud that the two brackets coincide on Qg (A).

In the particular case where a = b = 1, we obtain the following.

Corollary 5.13. Forallu,ve I*

P Ead TR
u Vv uv
1
2 fau, 2] = act v
\%
3. d—u,dv]zd(l{u,v})
| u u

4. [du,dv] = d({u, v})

d
The following lemma prove the Theorem on the subset of Qg(log J) generated by element of the form 7“, ul.
Lemma 5.14. Forall u,v,w € I*, on a:
[ e R

b 9
u \4 w 1% w u w u 4

Proof. Letu,v,w as in the lemma.

we have show in 5.13 that d_u’ @} = d(i{u, v}); and [du, @] = d(l{u, v}).
u v uy u 1%
1 11
Then H@ ad d—w} - [d(—{u, W, d—w} = A vy
u A% w uy w w uv

Applying lemma [5.10], we obtain:
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1 1 11 1
—{—{u,vhwh = —(—H{u. v} w} - == {u, vH{uv,w})
wuy W, uy u?y !
= —{u,vhwh - ——{u, vHu, w} = ——{u, vi{v, w}
uv wu wuy
In the same manner, we have
1 1 1 1
—(—fvwhul = —{v.whu} - —= v, wHv,u} - —{v,wiw,u}
blt Vliv miw wu w 1v
—f—twu}v} = —flwulv} - ——{w ulfw,v} = ——{w, ul{u, v} Therefore, the Jacobian identity of {—, —} im-
1\; uw uvww w wu?y
p
du dv| d dv d d dw d d 1 1 1 1
H—“, —V},—W +[ “, —W},—”}+H—W,—”],—V] = ——{{ut, v}, W= {ut, vty Wi (t, v}, Wit —— (v, ), )~
u' v| w v wl| u woul| v uvw wu?y wuy uvw
—{v,wHv, u} - v, whw, u} + —{{w, u}, v} - ;{w ul{w, v} — {w,uf{u,v} =0 o
wuy? w2uv uvw w2uy wuy
we have also the following.
Lemma 5.15. Forall u,v,w € I*
[ 2] ] o] ]
u’ v v u ul| v
Proof. Letu,v,we I*.
1 1
H@, @] ,dw] - [d(—{u, v}>,dw] - d({—{u, v},w})
u v uy uy
1 1 1
yet _{M, V},W = — {{Ma V}, W} - _2{u7 V}{V7 W} - _2{1/!, V}{I/t, W}
uy uy uv vu
1 1 1
then Hd—u, @} ,dW] = d(— {u, vi, wh — —{u, vHv, w} — —{u, vHu, w})
u’' v uy uy v
similarly,
1 1(1
[5G 55] = f)
v u A% u u )4
1(1 1 1
yet - —{V, W}?” =—\|- {{V,W}, I/t} - _2{v9 W}{V, M} = — {{V’ W}9 M} - _2{V7 W}{V, M}
u v ul\v % uy uy
1 1
then H@,dw ,d—u = d(— {{tv,w}, u} - —z{v,w}{v,u})
v u uy uy
and then,
1 1(1
o 1o ] )
ul| v u v v \u
yet ! {l{w,u},V} -1 {w, u},v} - %{w,u}{u,v}
v lu vu vu
then J J . .
Hdw, —”} : —”] = d(— {w, 1), v} — — w, uu, v}).
ul| v vu vu
consequently, Jacobian identity implies,
[ TS 2 n
u’' v v u ul| v

Similarly, we prove that

du

E4 H— dv|,dw| +

v 2| [l 2 || <o

Using those lemmas, we can prove the following proposition that is a part of Theorem 5.9.

du, duy dus
Proposition 5.16. Let w; = al — +bidvi, wy = az— + bydv, and w3 = a3— + b3dvy be elements of Qx(log I) then,
up u3

[[wi, w2], w3] + [[w2, W3], w1] + [[w%wl] wy] =
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Proof. From the above lemmas, we have

dul st2 aq duz ar dul
[a]—,az— = —{u,a}— + —{a;, ur}— + ajard {uy,uy}] and then
o u up uj us up uj up, up
du1 du2 du3 ap du2 du3 ay du1 du3
a—,a—|,a3— | = | —{u, @2} —, 03— | + | —{a1, up}—,a3— | +
uj up us uj up us up uj us
du3
alazd( {Ml,uz}),%—
up, U . us
ap du2 du3 ai du3 as aj duz
—{u, a}—,a3— | = —{uy, ;o {uz, a3}— + —{—{uy, ar}, uz}—
| U1 2%) us | ujup us us uj up
ajas 1
+—{u1,a2}d(—{u2,u3}
U Ususz
aj du1 du3 ay du3 as dp dl/tl
—la, w)—,a3— | = ——{a, wl{u, a3}— + —{—{a, o}, uz}—+
| U2 uj us | ujup us us up uj
aras 1
{alﬂ/lz}d(_{“lauS})
us usuy
1 du3 as
aaxd( {1, w2}), a3—| = —{aja, uz}d(——{uy, uz})+
ui, us us Uy

1 du 1 1
aranf—{ur, ), as)— + alaza3d(—{—{ul, us}, us)
uuy us

us uiuy
therefore,
du, du, du
E] : Ha]—,az— ,a3—3 + O=
uj up us
ai du3 as ag duz ajas 1 ay du3
—{u, axl{uo, as}— + —{—{uy, o}, uz}— + ——{uy, ar}d | ——{uo, us} | + ——A{ai, uo}{u, az}— +
ujup us us uj u uj Urus Uiy us
as dp dlzl] aras 1 as 1 1 du3
—{—{a;, o}, uz}— + —{a, wpld | ——{u, us} | + —{a1az, us}d(——{us, us}) + ayar{——{ur, uz}, az}— +
uz up uj us usu us upuy uyuy us
1 2 dul ay dp du3 ardy 1
alazasd(—{ {1, uo}, uz}| + {uz, asl{uz, a1} — + —{—{uz, az}, u1}— + {uz, a3}d {uz, ur}| +
us uiuy Uus up up up us up uzuq
as du1 ay as duz asag [25] 1
——A{az, usl{uo, ar}— + —{—{az, w3}, u1}— + —{az, uz}d {uz, ur1} ) + —{acaz, ur}d(——{uz, us}) +
Usus ui up us us us uruy ui Urus
1 dl/tl as st2 ap as du1
maz{——{uy, u3}, a1}— + aoazard | —{——{uz, uz}, ur} | + ——{uz, a }{uy, ax}— + —{—{uz, a1}, up}— +
Upu3 uj Uy urus usuy up Uy us uj

asan 1
—uz,a1}d
us Uiy

a, du, ap a dus  ayaz 1
{Ml,uz}) + ——la3, uiHusz, ax}— + —{—{az, ui}, wo}— + ——{az, uy }d | ——{usz, ur} | +
usig 2%) U up us uj Urus

a 1 1 du 1 1
ZAazar, up)d(— {uz, ur)) + aza {—{uz, ur}, ay)— + aSQlazd(_{_{MSs ur}, Mz})
125 uszug usuy up uz Uzl

To simplify this expression, we need the following properties of Lie’s brackets

Lemma 5.17. With the same hypothesis we have.:

1 1 1 1 1 1
1. d(—{ {ur, up}, uz} + —{ {up, uz}, ur} + —{ {uz,u1},u2}) =0
us ujuy Uy uxu3 Uy uszuy
a; da dus  aiar dus
2. —{—uw,az},ui}— = {{us, as}, u}— +
uyp up us Uy us
aj dus ajay dus
—{ar, i {uz, a3} — — ——{uz, azf{uo, uy}—
Uiy 172} uu; us
az duy aza; dus
3. —{—{un,a},m}— = —{ur, a2}, uz}— +
us u 175) uius Uus
as du, aza du,
—{ar, usHur, ax}— — ——{ur, ax{ur, uz}—
Usuy U uzuy up
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az as duy  azap duy
4. —{—{ai,wmp}, uz}— = {ar1, u2}, uz}— +
us up Ui usuy ui
as du1 azas du1
—{ar, uxfaz, us}— — ——=Har, up{uz, uz}—
172377} Ui uzu; uj
ay as du2 apas du2
5. —{—a, wztu}— = —{az, uzt, w1 }— +
U us Mé uyus Uz d
ai us a|as up
—Aaz, usHaz, u}— — —{az, usHuz, ur}—
Uiusz ujus up
apy das du1 aras du1
6. —{—{uz,a1},ux}— = —{{usz, a1}, up}— +
uy usz u;i Uurus 23] J
a up azas ui
—— a3, wHuz, ar}— — —{uz, a Huz, uo}—
Uru3 Ui usu; uj
ay dap du3 azag du3
7. —{—las,m},uo}— = {{as, 1}, uo}— +
Uy uy us uruy us
ap dus  aa dus
—H{az, i far, up}— — ——=Haz, s {uy, uo}—
uxuy us Ul us
1 du2 asag du2
8. azaf {us,m}, ar}— = —{{, uz, ur}ar}— -
uzuy d up usuy dM2
asa Uy aza uz
5{us, wHus, ar}— — —{us, ur Huy, an}—
Uiy 125 uzuy up
1 duy aras duy
9. wms{——Aw, w3}, a1}— = —{{,wo, w3}, a1} — —
Uuruz J u Uuruz J ui
aras Uy aas uy
Slua, usfus, ar}— — —{uo, usHuo, ar}—
Uz 231 usuy 231
dus aja, dus
10. ajas{——/{ur, uz}, a3}— = —{{u1, u2}, az}— -
uyuy us uyuy us
ajay du3 ajap du3
—{ur, woHup, a3} — — —{ur, woHuy, az}—
upuy u3 uru; us

Proof. Let ay; ay; as; uy; up; uz as in the lemma.

1 1 1 1 1 1 1 1
Lo d(—{——{ur, uo}, us}+—{——{uz, uz}, ur}+—{——{uz, m }, ur}) = d| Hur, ua}, uz}= 5 {ur, uaun, uz}—
Uz upup Uy uxus Uy usuy Upusus uzu U5
1 1 1 1 1
——{ur, up{ur, uz} + {uz, uz}, ur} - s{ua, usHuo, ur} = ———{uo, usHuz, ur} + {us, w1}, uz} -
uzu U Ui us usu Uy uzU Uy ujpus
{uz, us un, uz} — ———{uz, ur Hus, un}]
uzu Uy uzuius

This equal to zero since {—, —} satisfies the Jacobian identity.

2. Applying Lemma [5.10], we obtain:

ay dp du3
—{—{uz, a3}, u1}—
up up us
a, duy ajan dus
= —{ar{uz, a3}, m}— — —{uz, asHup, 1} —
upup us upuy us
ajay du3 a) du3 ajay du3
= —{{u, a3}, u1}— + —{up, azHas, u; }— — —z{uz,a3}{u2,u1}— In the same manner, we prove the rest.
uyu us Ui Uz uju; us
Therefore, from Jacobian identity and relation E; we have:
du1 stz du3
a—,ap— |, a3— |+ O=0 |
up usz

We need the following
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Lemma 5.18. With the same hypothesis, we have:

du du a du arb 1
1. Haz—z,a3—3},b1dvl 2y, asMus, by vy + by {2z ashv 2 + 2 l{uz,ag}d<—{u;,vl})+
u us u3 us u3 up | us
a
2_{ay, uslua, by }dvy + by { 2ag, uz), v }— + blm {(12,03}d(—{M2,V]}) + araz{——, bi}dvy +
uszuy 1 us up up Urus
bi{azasz, vi}d(——{ua, us}) + axazbd({——{uz, u3}, vi})
Uurus Uz u3
dus d d 1
2. Ha3— b dvl},azﬂ] = By b a) =2 + 2B (g bihugddvy + B2 (g by d(—{v1, ) +
us 125 us up u Uus u3 125
du a U 1 1 U
—1{613,1)1}{”3,612}—2 + —2{171{613,\/1},”2}—3 + biaz{as, vi}d(——{us, uz}) + 613171{—{'43,\/1},612}—2 +
usz up up usz uszuy us up
a 1 1
ZAashy, ur}d(—{uz, vi}) + azazbyd(—{—{us, vi}, ur})
up u3 uz us
du du b du du, 1
3. Hbldvl,az—z] a3—3] = 21 aoMun, ash == + By (v, ash us} =2 + bras vy, ashd(— {ua, us}) +
up 4 us uz us us | up | Urus J
aj u az a ara u
by, v, a3} — + {2 {by, un), uskdvy + —{bl,uz}c«—{vl,us}) + biay(—{vi,m), a3} — +
1753 us us up us us u us

a 1 1 1
ZAbrag, us)d(—{v1, w}) + azazbhyd(—{—{v1, uz}, uz})
U us up

u3
Proof. 1t follow from lemma 5.10 and above properties of [—, —].

From Lemma 5.10 we have:

a b 1
bi{={uz, a3}y vi} = —{uz, asfaz, vi} + braol—fua, as}, v}
b @ lb)lza bia -
—uy, astaz,vi} + ——(ua, ash,vi} — =5 {2, a3Huz, v1}
us U uy
a» azb,
—{bi{asz, v}, uz} = —{{as,vi},u} + —{Cl%,Vl}{bl,Mz}
2 bra bias
bia{—{vi,m),ash = ——{{vi,uh a3} — = (v, urHuz, as)

uy Uup u3

Applying Leibniz rule on the right hand side of the above equations, we obtain:

a 1 aa 1 ab 1
Zashy, up)d(—{us,n})) = = *{bl,uz}d(—{us,vl}w—1{a3,u2}d(—{m,v1}>
up us up us 12} us

1 1
bilaiaz, vi}d(——{uz, uz}) + bras{asz, vi}d(—)Nus, up} + bras{vy, ax}d(——{uz, uz}) =
175375} Ur U3 Upus

= bia{asz, vi}d(——{uz, uz}) + biazd(——{uz, u3})—
Uz Uz

—byax{as,vi}d( {ua, u3}) — bras{az, vi}d( {ua, us})
uxus uxus
=0
The same,
b 1 b bia
b2 ar w3}, v1) = 2az, usHaz, v} + brasl—{az s}, vi} = —az, usHaz, v} + 2= {{ay, us},
us us us us u3
azb
Bibiviankus) = B2 vy arhus) + 2y, by, us)
us us us

1 azb asb
asbi{—{uz,vi}, a2} = ——{{us, vi}, a2} — =+ {uz, vi }{u3, a2}
us usz 1,{3
then
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a a
b= {az, uz), vi} + ={by{vi, az), us} + azby{—{us, v}, a2} =
us us us
a3b1
= i (Haz, uz}, vi} + ({vi, a0}, us} + {{uz, vi},a2)) = 0
the same b b b
a a a a
bl{ {M2,6l3} i)+ —(bi{as, vi} ) + bras{—{vi, o), ash = ——{{vi,ua), az) + ——{{as, vi} uo} + ——{{uz, a3}, v} =
[7%) Uy [25) Uus u
This end the prove of the following corollary
d duy
Corollary 5.19. H 222 OB ] brdv, |+ O=0
us us
Using the same methods, we prove that
[ 4 d
1. [alﬂ,bzdvz],a3£]+ U=0
| uy us
[ d
2. |Ibrdvi, brdva], a3 22 |+ O=0
] u3
[ d
3. |[brdvy, brdva],an 22 |+ O= 0
L u
we can end now the prove of proposition 5.16.
Indeed
[[wlswj] ,w3][;r [[w2,623] ,wi] + [[w3,w1[]1 , W3] J ; ;
= Ha]ﬂ,azﬂ},@ﬂ bldVl,ClZﬂ} 613&} + Halﬂ bzdvz},azﬂ [bldul,bza'vz],613ﬂ +
up up usz up usz up us | us
[ d d ] d d [ d
dlﬂ,azﬂ ,badus | + [[b1dvy, badva ], badvs] + dlﬂ,bdvz] ,a3£] + bldVI,a2£] ,badvs | +
uj 2%) uy us | up
d d d d d d [ d d
azﬂ,%ﬂ} ,alﬂ bzdvz,asﬂ] ,alﬂ + [17261'1/2,b3d\/3],611ﬂ + [azﬁ,bﬂ%],alﬂ +
u us3 up u3 u u | 1 u u
d d d dus d
azﬂ b3dV3:| ,a]ﬂ + azﬂ az3— :| b dV] [[bdez,b?,dV?,] ,b]dvl] + [azﬂ,bg,dv:;] ,bldvl +
L U2 up | 175} u3 U
du, d d d dus d
bdez,ag—} bidvy| + c@ﬂ,al%} ,agﬂ [b3dV3,a1d ] azﬂ} + [a3— bldvl} azﬁ +
1l U us3 ! u U | us U
d d dus
[b3dv3, bidvi], az% + a3£,a|‘%],b2d\/2 + [[b3dvs, bidvi], bydvs] + a3u—,b1d\’1],b2d\/2} +
2 u3 3
[b3dV3,Ll1—] bdez]

Regrouping properly the terms we prove the Jacobian identity.

More generally, we have [[u)i, (Uj] s wk] + O=0. (taking i = 1; j = 2; k = 3 in Proposition 5.16).

With all those results we can complete the prove of theorem 5.9

du;
Proof. Letw; = Za,— +bidvi;w; =

i=1 u;
[ @i

P
|-

2“1 +b idvis wy = Zak— + bydvy in Qg (log 7). We have:
uj

du; du
a,—+bdv,,aj +bdvj ,ak—+bkdvk =
j U

u; u;

e zzz[

i=li=1i

d du; duy,

et} + bidvi,a;— + b dv,} ,ak— + bkdvk] Then, from Proposition [5.16], we have
U; uj U

d du;j

A + bidv;,a;—

u; u;

2

duy
+bdv,},ak +bkdvk]+0 0
i k=1
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5.2 Lie-Rinehart Structure on Qg(log I)
We will in this subsection put the Lie-Rinehart structure on Qg (log 7) when A is a log-Poisson algebra.
Of course, we recall that the log-Poisson structure on A induce a 2-form wy on Qg (log 1)

Let x € Qk(log 7) be a fixed element of Qg(log 7). The map p,,,(x) : A — A defined by p,,(x)(a) = wo(x,d(a)) is a
k-derivation of A. Precisely, p,, is an element of DerK/(lBg 7). Indeed, for all a € A,

i du; n .
Puwy(X)(@) = Z XiPun(—~)a) + leipwo(dvo
i=1 Ui +
)4 Xi n i
= Y Su,al+ X xi{via).
i=1U; p+1
P n — —
Then p,,(x) = > — Al Hui, =)+ S xilvi, ) € Derg(log I). The map p,, : Qx(logZ) — Derx(logZ);x : x > py,(x). is
i=1U; p+l

A-linear. Indeed
[Pw,(@x)l(b) = wolax, db)
= awy(x, db)
= [apu, (0)](b)
From above properties

du d
w(a== ®db) = ~(u b} and pwo(a “)(b) = =l b} = = (ad@)(b) then puy(a=) = ={u, ).
SO

1
pwo[a dv] P (—{u, b}— + —{a, v}—du + abd(—{u,v})
% u \% v u uy

d b d 1
= L by (5) + s VIpun () + abp, (d(— i, v}))
Ma A% bv u uv
= —{u,b{{v,—} + —{a,vi{u, -} + ab{{—{u, v}, -}
uyv vV, uy

uv
b b
v, =) = (v )
In other hand,
d d b
pm(a—“)(pwo(b—v)) = L, 2,
u 1% u 1%
= b -+ L, L)
a%) Y ab
= Ltubir )+ D - v, )
uyv uy uv
d d b
pwo(b—v>(pwo<a—“>) = 2w -y
v u \2]
= §{v,a}{u, -+ 7{\’, ;{M, -}
b b
= Talu, )+ 2 =) = g, uhu, )
uy Vv
b b b b b
Then [puy (020, pun (6201 = = (t, bhw, =1+ 22, 11, =)=, ), =)+, =)= o, e, =+, ),
uy uy uy uv uy vu

From Jacobian identity, we have {u, {v, —}} — {v, {, —=}} + {—, {u, v} = 0; and then [pwo(a ) pwo(b—)] uv{u, bY{v,-} -
ab
uv?
Therefore, p,,, [ad —] = [pwn(a ) pwn(b ” )]

b b b
i) - — 1y, a}{u )+ v, ubu, —} + i) =) = v, ).
uy VM uy uv

d
In the same manner we have, p, [a—, bdv) [pwo(a ) Puw,(bdv)] and p,,,[adu, bdv] = [pw,(adu), pu,(bdv)]. We can
u

state the following proposition

224



http://jmr.ccsenet.org Journal of Mathematics Research

Vol. 9, No. 4; 2017

Proposition 5.20. Let (A;{—, -}, 1) be a log-Poisson algebra.
The map py, : X = Ppw,(x) is an homomorphism of Lie algebra.

We will show now that p,,, satisfy the Leibniz rule; of course, giving u,v € I;a € A we have:

v
d
= by a2, 2
u 1% u v

du; du;
More generally, for w; = ai—u+bidv[ andw; = ajﬂerjdvj ,feA onQg(logl), [w[,fwj] = puy(W)(@w;+f [wi, wj].
U

Uu; j

Indeed,

du,- d
[wi,fwj][aiT,f '—] + [Clz fb dV/ + [b; anfaj_]

a; l a; d
= %, fa + L (s u) +fa,a,d< s ) + i, )y
1
d j ]du- f 0
fb ahVJ +fCl d( uta })+b Vz»faj u_ + {bH uj}dvl
J

fbi ajd( {v,,uj}) + b; {v,,fb }dvi+ fbib;,v;ldv; + fb iDj d({v,,vj})

a; du; aa; du; fa du;
S A P ) G+ faiasd ot
u; u; u; u; u; u;
fai b d 1
—{u;, bj}dv; + {u,,f}dvi + fbila;,vi}— +fa ibj d( {ul,vj})+
i U; X ) Uu;
d
biflvi,a;}— +fb vi,bj}dvi + bibi{vi, fldv; + fbi{b;, v} dvi + fbibid({vi,v;})
du aj du; 1 a;

—f( ul’aj — + {atauj} +aa]d( {unu]}) {uzv }dvj
i uj uj u; u] u;
bj{ai,vj} +a;b; d( {u,,vj})b {vi,bj}dv; + {b,,uj}dv, + b; ajd( {v,,uj})+
b-{vi,b }dv, +b; {b,,v]}dvi +bibjd({vi,v;})
- f( u,,a, ot {a,,u,}d” +aa,d(—) Yt by, + b lag v}
uj uj u; uit;” u; X u;
ab; d( {ul, vibbi{vi,bj}dv; + {bl, u;}dv; + b; a]d( {v,, u;}) + bi{v;, bjldv;+
bj{b;, v]}dvi +bib;d({vi, vj}))+
a; b duj
" —{u;, —} + u—{u,, Ydv; + biaj{vi, =} + b{vi, —}dv; | (f) (aJ-T +bjdv;)
J
= flw;, ‘Uj] + (pwo(wl)(f))wj

Therefore,

[wi, fw;] = flwi, w;] + (Pw(WH(w;.

Theorem 5.21. If (A,{—, -}, 1) is a logarithmic Poisson-algebra, then (Qx(log1),pw,, [—,

Rinehart algebra and wy is a Log Lie Rinehart Cohomology structure.

-1 is a logarithmic Lie-

This theorem says that each log Poisson algebra induce on Qg(log 7) a logarithmic Lie-Rinehart structure. We are
interested to know if the inverse is true. In other words, giving a skew symmetric 2-forme w such that d,(w) = 0 and a

Lie structure [—, —] on Qg (log 1), does it exist on A a logarithmic Poisson structure along 1?

Since Qg (log J) have a Lie-Rinehart structure, then apply the usual technic of Palais and Rinehart we construct a chain
complex and deduce the notion of logarithmic Poisson cohomology. Of course, Let Alt4(Qg(log I, M)) be the set of
all multilinear skew symmetric map on Qg(log J) with value in the A-module of Lie-Rinehart M, Alt4(Qg(log I), M)
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is commutative graded k-algebra for the product “shifte”defined by: a A B(x;, ..., Xpsrg) = ZEcpt(@(Xo(1ys oer Xo(p)) ®

BX(pe1)s s Xo(prq))) Where u - M @ M — M is Qg(log I)—"paire; (a morphism of Qg(log J)-modules). Equipped
with Cartan-Chevalley-Eilenberg differential d,,, associated to the representation py,

P )
dpwo (Nao, ...ap) = ;)(—1)’pw0(a,-)f(a/o, o, ) +
Z(—l)”jf([a,-, C&'j], Q0,5 .ees G’A,', cees dj, cees ap)

J
We denoted Hl*og_Pm.mn (A,{—,—}; M) the associated cohomology. Follow G. Rinehart in (Rinehart, G. S. (1963)),
H]*Og_Poimn (A, {=, =}y M) = Ext,actog )(A, M) if Qg(log T); is a projective A-module.

Definition 5.22. H* (A, {—,—}; M); is called logarithmic Poisson cohomology with value in M

log —Poisson

dp,,, (Wo)(@o, @1, @2) = Puy(@)wo(@1, @2) — Pu,(@1)wo(@y, @2) + Puy(@)w(@o, @1) — W(lay, a1, @2) + ([, a2], 1) -
w([ay, 2], ap.) = 0 For all ag, a1, > € Alt(Qk(log 1), A).

. . du du du
Indeed, it suffice to prove it on generator of Qg (log ). For all ¢ = —O, @) = —1, ap = —2, we have
u [Z3] Uus
dp,,, (Wo)(@o, a1, @2)
1 1 1 1
= —{uy, {ur, u}t — —{uy, {uo, up}t + —{ua, {uo, ur}}
upy ujus ui uouy us uouq
-— {uo, w1}, uo} + —{ {uo, u}, ur} — —{ {u1, uz}, uo}
Uus il()ul up uouy Uuo ufuz
= {uo, {ur, u2}} - 5 {un, uoHuto, un} — ——— {un, un Huo, ur}—
Uouiuy uou U UoUa Uy
1
{ur, {uo, ua}} + ———=A{uo, upHuy, uo} + ———Auo, upHuy, uz}+
Uruo UpU Uy usU1 U
1
{uz, {uo, w1 }} — 5 {uo, ur Huz, uo} — 5 {uo, wr Muz, ui }+
Uouiu UpU Uy UpUoU;
1
Huo, w1}, uo} + —=—{uo, ur Huo, u} + {uo, ua}, ur}—
Upuol] UrugUy Uiy
1
5— {uo, urHuo, ur} — 5 {uo, uoHu, ur} - {ur, ua}, uot+
M]LtOle Lt]LloMz Uou1y
s—{ur, usHur, uo} + 5 {ur, uoHua, un}
uou U UpUyUy
. . . duo du1
It follows from Jacobian identity of {—, —} that dpmo (wo)ag, ay,ar) =0.Forayg = —,ap = —, @ = duy,
120] uj
dp,, (Wo)(@o, @1, @)
1 1 1 1
= —{uo, —{ur, un}} — —{ur, —{uo, uz}} + {uo, {ug, ur}}
Mol Ui Mi Z0) Uply
= {uo, {ur, ua}y — —{ur, usHuo, ur} — {ur, {uo, ur}}+
UoUy Uouy Uiig
1
— {uo, unHur, uo} + ——{un, {uo, ur}y — —={uo, us Huo, ur}—-
Uty UplUg Uouy
1 1
——{uo, Kz, uot — ——{{uo, ur}, uz} + —={uo, ur Huy, ua}+
Uyl UpUuy Uouy
5— {uo, ur Huo, uz} + ——{{uo, uz}, ur} — ——=Auo, ur Huo, ur}—
Uyl 1ZARZ00) Uiy
1
—{{ur, ua} uo} + —{ur, ualfur, uo}
Upuy uouy

=0

du

In the same manner, we prove that dpwo(wo)(ao,al,az) = 0 for ay = —0;a1 = duj,ay = dup and oy = dugy,a; =
Uo

duy, @y = duy. This end the proof of the following theorem.

Theorem 5.23. Let {—, —} be log Poisson structure. The associated 2-form wy is a co cycle of H; A {—, -} A

log —Poisson
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We denote [wy- -] the cohomology class of wg

Definition 5.24. [wo(- -] is called logarithmic Poisson class of (A, {—, -}; T).

6. Prequantization of Logarithmic Poisson Algebra

In the context of geometric quantization the term Prequantization refer to a certain type of representation of Poisson
algebra.

6.1 Extension of Lie-Rinehart Algebra and Logarithmic Connection

Let A be an algebra and L, L', L a Lie-Rinehart algebra. An extension L” of L along L’ is a short exact sequences of
Lie-Rinehart algebras.

0 7 S I 7 0 (6)
For each extension of type (1), there is a linear map w : L”” — L such that g o w = id. w is A-modules homomorphism
when L” is projectif. Extension (1) is split if w is homomorphism of Lie-Rinehart algebras. Each extension of type (1)
induce two maps

a: L’ — Endg(L)
x> ax:ye [w),y]

Q: /2\L” — L
(xy) P o), )] - o(x,y])
such that

oy oy] —apx,y] = [w(x,y), -] (7
D (@wny) — ollxyl,2) =0 @®)
cycler{x,x,z}

Note that Q(x, y) = [w(x), w(y)] — w([x,y]) look like Maurer-Cartan formula

1
p=do+ E[w, wlc )
for curvature of principal bundles of differential geometry. Where
(@)X, s Xp) = D (=1 01X, X1, Ko v Ky o Xy . Xp) (10)
i<j

and
[, —lg : Aley(L”, L) ® Alty(L”, L) — Alt,(L", L)

1 .
(., ¥) > WZsa[so(Xm), s Xo(p)s W (K1) ooes Xor(p))]
g o

[, —]¢ is a Generalization of Gerstenhaber structure extending the Lie structure [—, —];» on L”

Expression (8) look like Bianchi identity d“(Q) = 0 where d“(¢) = d(¢) + J(cp) and

d(@)(Xo, ..., X)) = fo (~Diax,(@(Xo, cor Xis s X))
We note that d“ o Id_‘”go = [w, ¢]g; therefore, it is not a differential. If we change the linear section w by w’ = w + b where
b: L” — L’ is linear map, then
ay = ax + [b(X), - v an
and
Q-Q=d“b+ %[b,b]g (12)

Thus, each Lie-Rinehart algebra extension induce a 2-form Q.

Recall that a Lie-Rinehart algebra L’ is Abelian, is an A-module with trivial bracket. It is well know that if in extension
(1), L’ is Abelian, then adjoint representation of L on L’ induce an action of L” on L’. In this case, d“ is it cohomology
operator. We denote H%(Alt,(L”, L)) to be its second cohomologie "group". Huebschmann in (Huebschmann, J. (2013))
Prove the following Theorem:
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Theorem 6.1. (Huebschmann, J. (2013))[Théoréeme 2.6] Let L' and L’ be two Lie-Rinehart algebras, with L' abelian,
and let o : L” — End(L") be the Lie-Rinehart module structure of L” on L'. Then the correspondence which associate
for each isomorphism class of extension of type (1) a 2-cocycle Q € Alta(L”, L") is a bijection between set of congruence
classes of extension of L' by L” with split module extension and H*(Altu(L, L)).

Since Q satisfies the Maurer-Cartan formula for connections, there exist a relation between associated connection and
linear connection. We referring to (Huebschmann, J. (2013)) for the prove. We recall that giving a Lie-Rinehart L and a
A-module M, an L-connection is a k-linear map V : L — End(M) satisfy the following conditions:

V(aa)(m) = a(V(a))(m) (13)
V(a)(am) = aV(m) + (pr(@))(@)m (14)
when L = Derg(logI), V is called logarithmic connection along 7.

Let L be a Lie-Rinehart logarithmic along 7, M an A-module an V an L-connection. Denote

V : M — Hom(L; M) the adjoint morphism of V;

Vo(m) := Vm)(@) = (V)(@)(m 15)
From equation 13, image of V live in H omy (L, M) and then, from 14, we have

Valam) = ((pr)(@)m + a¥q(m) (16)

Each morphism A : M — Homu(L, M) satisfying 16 induce on M an L-connection. V : L — End(M). Giving an
L-connection V : L — End(M), V induce on Alts(L, M) the following operator,

i=p i~

@ f)ag,...p) = g}(—l)’V(l,f(ao,.--,di,...,ap)+ an
Z(_l)l+jf([al5 a]]$ aO’ cres dh s d\ja seey ap)
i<j

forall f € Alt(L, M) ~ ~
Voo (f(@1)) = Vo, (f(@0)) = f(lao, a1]
(V(ao)(f(@1)) = (V(a1)(f(@0))) — f([o, a1 ])

(d” f)(ao, 1)

We denote f = V(m), and we obtain

@ Vm)(ao, @) = Vo, (f@) = Vo, (f(@0) ~ fllao, 1]

d" o d¥(m)(ao, ar) (V(ao)(f (@) = (V(aD(f(@))) = f([ao, a1])
(V(ao)(V(im)(a) = (V(a)(V(m)(ao))) = V(m)([@o, a1])
(V(ao))(V(a1)(m) — (V(a)(V(ao)(m))) = V([ao, a1])(m)
(V(@o)(V(a1)) = (V(a1)(V(ao))) = V([ao, a1]1)(m)

= ([V(@), V(e)] = V([ao, a11))(m)

It follow that d¥ o 4V is a morphism from M to Alti (L, M)
We put Q(ag, @) = ([V(aop), V(a1)] — V([@, @1]) and we have:

Q: L®L — End(M). More precisely, image by Q live in Ends (M) it is the logarithmic tensor see (Dongho, J., & Yotcha,
S. R. (2016))

In (Huebschmann, J. (2013)), Huebschmann have prove that for a giving A-module M, on a Lie-Rinehart algebra L, M
have L-connection if and only if M is L-normal an associate extension is split in the category of A-modules. On the
other hand, he prove that each projective A-module relatively free M have L-connection. We denote Pic(A) the group of
isomorphism classes of projective modules He prove the following Theorem.

Theorem 6.2. (Huebschmann, J. (2013)) The map

C: Pic(A) — HX(Alty(L,A))
M = [Qu]

is an A-modules homomorphism.
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The Theorem state that for all Lie-Rinehart algebra L, in particular for L = (Qg(log 1), p,,, [—, —]), we have the following
morphism of modules
C: Pic(A) — H*(Alty(Qg(logl),A))

M e [Qy] (18)

But from Theorem 5.23, [wy] € H*(Alty(Qx(log T), A)) it is possible that it live in ImC.

6.2 Linear Representation of Logarithmic Poisson Algebra

Let (A,{—,—}; 7) be a Logarithmic Poisson algebra. We should link the Poisson class of (A, {—, —}; 1), to the represen-
tation of the underline Lie algebra and this according to Dirac principe of quantization. We shall construct a k-linear
representation for which k act by scalar multiplication. In ((Huebschmann, J. (2013))), follow Markenzie, Huebschmann,
prove that for all A-module M with L-connection, there exist an Lie-Rinehart algebra DO(A, V) having L as extension
along End,(M). In other words, the following short exact sequence split in the category of A-modules.

0 —— Ends(M) —— DO(A,V) —— L ——0 (19)

where DO(AV) = Enda(M) @ L. It is well know that each rank one module M, Ends (M) is isomorphic to A. The for all
rank one projective module, 19, become

0——A——A®L——L——0 (20)

in particular for L = Qg (log 1) the proposition 4.2 in ((Huebschmann, J. (2013))) prove the commutativity of the following
diagram.

0 K A Ham{,} 0

L]

0 —— A —— Qg(log ) — Qg(logl) — 0

Definition 6.3. (A, {,}) is prequantizable if there exist a projective rank 1 module M with QKr(B-g/I )-connection with
curvature wy.

It follow from Theorem 6.2 that

Proposition 6.4. A logarithmic Poisson structure; {—,—}, along I on A is prequantizable if and only if [wg] € ImC.
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