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Abstract

Real eigenvectors of real matrix is extended to fuzzy eigenvectors. The structure of fuzzy eigenspaces and relationships

between real eigenspaces and fuzzy eigenspaces of real matrix are studied. Using fuzzy eigenvector, we give a sufficient

condition to existence of solution of fuzzy linear systems.
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1. Introduction

The real eigenvalues and eigenvectors of real matrix play a center role in mathematics and engineering. So are the fuzzy

eigenvalues and eigenvectors. Fuzzy eigenvalues were first studied by Buckley (1990, p187-197) to analyze input-output

of systems. Massa et al (2008, p63-85) determined both the fuzzy eigenvalues and eigenvectors of a finite element model

defined with fuzzy parameters in their work. In Alevizos’ work(2007, p704-721), fuzzy eigenvalue problem was converted

to an ordinary one in order to study correspondence of fuzzy data. To produce a fuzzy eigenvector weight estimate, Wang

and Chin (2006, p1257-1275) used the ordinary eigenvector through the solution of a linear programming model in their

paper.

Fuzzy linear system (FLS for short) is an important fuzzy modal. The existence of solution of FLS is different from its

real counterpart. As to FLS Ax̃ = ỹ, where A is a real matrix and x̃, ỹ are fuzzy vectors, whether there exist solutions

depends on the choice of ỹ, even if A is invertible (Frideman, 2006, p1257-1275). However, there is no study on how to

choose an appropriate ỹ such that there are solutions to Ax̃ = ỹ. This work originates from this problem. For a real linear

system Ax = y, where A is real matrix and x, y are real vectors, it is obvious that if y ∈ Vλ1
+ Vλ2

+ · · · + Vλm , where λi is a

nonzero eigenvalue and Vλi is an eigenspace of A then there exist solutions to Ax = y. We will prove this result holds for

FLS. In other words, we give a sufficient condition of existence of solutions to FLS by using fuzzy eigenspaces.

The structure of this paper is organized as follows. In Section 2, we introduce some definitions, results on fuzzy vector

space and the embedding approach proposed by Friedman et al (Frideman, 2006, p1257-1275) that is used to transform

a fuzzy linear system into an equivalent crisp function linear system. Fuzzy eigenvectors of real matrix is concerned in

Section 3 followed by the structure of fuzzy eigenspaces in Section 4. Relationship between the fuzzy eigenvectors and

real ones is discussed in Section 5. As an application of fuzzy eigenvectors, a sufficient condition to existence of solution

of fuzzy linear system is given in Section 6, and the concluding remarks are related in Section 7.

2. Preliminaries

In this section we recall the basic notations of fuzzy number arithmetic, real eigenvectors of real matrix and fuzzy linear

system.

Definition 1. (Ma, 2000, p55-58) A fuzzy number is a fuzzy set ũ : R → I = [0, 1] which satisfies

• ũ is upper semicontinuous.

• ũ(x) = 0 outside some interval [c, d].

• There are two real numbers a, b : c ≤ a ≤ b ≤ d for which

– ũ(x) is monotonic increasing on [c, a].

– ũ(x) is monotonic decreasing on [b, d].

– ũ(x) = 1, a ≤ x ≤ b.

Any real interval number [a, b] can be regarded as a fuzzy number with membership function χ[a,b]. So is any real number

a with membership function χ{a}. The membership of fuzzy number zero 0̂ is defined by χ{0}. The set of all the fuzzy

numbers is denoted by E. The set of all real numbers R is actually a proper subset of E. An equivalent parametric

definition is given in (Wu,1991,p33-38) as: A fuzzy number ũ is an ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which

satisfy the following requirements:
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• u(r) is a bounded left continuous non-decreasing function over [0,1].

• u(r) is a bounded left continuous non-increasing function over [0,1].

• u(r) ≤ u(r), 0 ≤ r ≤ 1.

Sets {x ∈ R|ũ(x) > 0} and {x ∈ R|ũ(x) = 1} are called the support and kernel of fuzzy number ũ, denoted by suppũ and

ker ũ, respectively. It follows from Definition 1 that ker ũ ⊂ suppũ and hence ker ũ is compact. The middle point of ker ũ
is called the center of ũ. The addition and scalar multiplication of fuzzy numbers in E are defined as usual (Frideman,

2006, p1257-1275).

A n-dimensional fuzzy vector is a column vector that is composed of n fuzzy numbers. In particular, each entry of zero

fuzzy vector 0̂ is the fuzzy number zero 0̂. Denote En the family of all n-dimensional fuzzy number vectors. Define the

addition and scalar multiplication of fuzzy vectors as those of real vector except the usual addition and multiplication of

entries replaced by addition and scalar multiplication for fuzzy numbers, respectively.

Denote Fn[0, 1] the family of all the vector-valued functions mapping from [0, 1] into Rn.

Definition 2. For a real matrix A, if there exist a real number λ and a non-zero real vector x ∈ Rn satisfy

Ax = λx, (1)

then we call λ the real eigenvalue (associated with real eigenvectors) of A, x the real eigenvector of A corresponding to λ.

If there exist a real number λ and a non-zero fuzzy vector x̃ ∈ En satisfy (1), then we call λ the real eigenvalue associated

with fuzzy eigenvectors of matrix A, x̃ the fuzzy eigenvector of A corresponding to λ.

A real matrix maybe have complex eigenvalues and associated complex eigenvectors. We will only handle real eigenvalues

and fuzzy eigenvectors of a real matrix in this work.

Eq.(1) as a dual fuzzy linear system (Frideman, 2006, p1257-1275) can be represented in the form of following functional

linear system: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λxi =

n∑
j=1

ai jx j,

λxi =
n∑

j=1
ai jx j, i = 1, ..., n.

(2)

where xi = (xi(r), xi(r)).

The functional linear system (2) can be rewritten in red-black partitioned vector-matrix form as follows:(
λIn 0

0 λIn

) (
X
−X

)
=

(
S 1 S 2

S 2 S 1

) (
X
−X

)
, if λ ≥ 0, (3)

or (
0 −λIn

−λIn 0

) (
X
−X

)
=

(
S 1 S 2

S 2 S 1

) (
X
−X

)
, if λ < 0 (4)

where X = (x1, ..., xn,−x1, ...,−xn)T = (XT ,−X
T

)T and the entries of matrix S =
(

S 1 S 2

S 2 S 1

)
are defined as follows:

ai j ≥ 0 ⇒ si j = si+n, j+n = ai j,

ai j < 0 ⇒ si+n, j = si, j+n = −ai j

and any si j which is not determined is zero such that A = S 1 − S 2.

The n × n matrix S 1 contains the nonnegative entries of A while S 2 is made of the absolute values of negative entries of

A and A = S 1 − S 2, S 1 + S 2 = |A| = (|ai j|)n×n. Throughout this paper, |M|m×n denotes the nonnegative matrix (|mi j|)m×n,
where M = (mi j)m×n.

3. Fuzzy eigenvectors of real matrix

3.1 Eigenvalues associated with fuzzy eigenvectors of real matrix

Theorem 1. A real number λ and a non-zero fuzzy vector x̃ satisfy (1) only if λ is one of eigenvalues of matrix A or one

of the positive eigenvalues of |A| or one of the opposite numbers of positive eigenvalues of |A|.
Proof: When λ is one of eigenvalues of A, it is obvious that the result holds. Next we suppose that det(λIn − A) � 0.

The real number λ and non-zero fuzzy vector x̃ = (x̃1, · · · , x̃n)T satisfy (1) only if λ and non-zero functional vector

X = (x1, · · · , xn,−x1, · · · ,−xn)T ∈ F2n[0, 1] satisfy (3) or (4).
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If λ > 0, the system of linear equations (3) in F2n[0, 1] has non-zero solutions only if det(λI2n − S ) = 0. A simple

calculation shows that det(λI2n − S ) = det(λIn − A) det(λIn − |A|). Then λ is a positive eigenvalue of |A|.
If λ = 0 is an eigenvalue of |A| but not of A, then Ax = 0̂ has only trivial solution due to Lemma 2.

If λ < 0, the system of linear equations (4) in F2n[0, 1] has non-zero solutions only if

det

( −S 1 −λIn − S 2

−λIn − S 2 −S 1

)
= 0.

Same calculation gives det
( −S 1 −λIn−S 2−λIn−S 2 −S 1

)
= det(−λIn − |A|) det(λIn − A). Hence λ is one of the opposite number of

positive eigenvalues of |A|.
It is strange to find that the positive eigenvalues of |A| or their opposite numbers may also be or not be the real eigenvalues

associated with fuzzy eigenvectors of A. The below examples show that these cases actually happen. For matrix
(

1 2
1 −2

)
,

3 is not its eigenvalue associated with real eigenvectors. However, it is easy to check that
(

1 2
1 −2

)
ũ = ±3ũ with ũ =(

(0.5r−0.5 0.5−0.5r)
(0.5r−0.5 0.5−0.5r)

)
. This means that ũ is a fuzzy eigenvector corresponding to the eigenvalue ±3 of this matrix.

For another real matrix A =
( −5 2

1 4

)
, λ1,2 =

−1±√89
2

are two eigenvalues of A and 3, 6 are those of |A|. It is not hard to prove

that Ax̃ = ±6x̃ has nontrivial solution in En and Ax̃ = ±3x̃ has not.

3.2 Structure of fuzzy eigenvectors

Theorem 2. If there exist a real number λ and a non-zero fuzzy vector x̃ satisfy (1) and λ is one of the positive eigenvalues

of |A| or its opposite number but not eigenvalue of A then x̃ is a symmetric fuzzy number with 0 being its center.

Proof: If λ > 0 and det(λIn − A) � 0, det(λIn − |A|) = 0 then (3) is equivalent to{
S 1X − λX − S 2X = 0

S 2X − S 1X + λX = 0
(5)

Thus (A−λIn)(X+X) = 0, (|A| −λIn)(X−X) = 0. So, X = −X. Because x̃ ∈ En, X(r) is monotonously increasing on [0, 1]

and X(r) ≤ X(r) for all r ∈ [0, 1]. It follows that each entry of x̃ is a symmetric fuzzy number with 0 being its center.

If λ < 0 and det(λIn − A) � 0, det(λIn − |A|) = 0 then (4) is equivalent to{
S 1X − λX − S 2X = 0

S 2X − S 1X + λX = 0
(6)

The result follows similar argument as the preceding case λ > 0.

Theorem 3. If there exist a real number λ and a non-zero fuzzy vector x̃ satisfy (1) and λ is one of eigenvalues of A but

not of |A| then x̃ ∈ Rn.

Proof: If λ ≥ 0 and det(λIn − A)0, det(λIn − |A|) � 0 then it follows from (5) that (|A| − λIn)(X − X) = 0. Thus, X = X.

That is X(r) = X(r) for all r ∈ [0, 1]. However, X(r) and X(r) are monotonously increasing and decreasing on [0, 1],

respectively. It follows that X(r) = X(r) = X(1) ∈ Rn, i.e. x ∈ Rn.

If λ < 0 and det(λIn − A) = 0, det(−λIn − |A|) � 0 then it follows from (6) that (|A| − λIn)(X − X) = 0. Thus, X = X. The

result follows similar argument as the above case.

Examples in subsection 3.1 explore that when λ is not an eigenvalue of A but one of the positive eigenvalues of |A| or their

opposite numbers, then it maybe satisfy (1) or not. We have to choose those who make Eq.(1) holds.

Theorem 4. If λ > 0 is an eigenvalue of |A| but not of A, then there exist a nonzero fuzzy vector x̃ satisfy Eq.(1) if and

only if (|A| − λI)α = 0 has nontrivial nonnegative solution in Rn.

If λ < 0 is the opposite number of an eigenvalue of |A| but not an eigenvalue of A, then there exist a nonzero fuzzy vector

x̃ satisfy Eq.(1) if and only if (|A| + λI)α = 0 has nontrivial nonnegative solution in Rn.

Proof: If λ > 0 and det(λIn − A) � 0, det(λIn − |A|) = 0 then Eq.(1) is equivalent to the following linear system holds{
X = −X

(|A| − λIn)X = 0

and X(r) is monotonously increasing on [0, 1], moreover, X(r) ≤ X(r) for all r ∈ [0, 1]. It follows from Theorem 3

in (Tian, 2008, p161-165) that if fuzzy linear system Ax̃ = ỹ has a non-triangular fuzzy number solution then it must

have a triangular fuzzy number solution, where x̃, ỹ ∈ En and A is a crisp real matrix. According to Theorem 2, let
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X(r) = −α + αr, where α ∈ Rn. It follows that when λ > 0, there exist a nontrivial x̃ ∈ En such that Eq.(1) holds if and

only if (|A| − λI)α = 0 has nontrivial nonnegative solution in Rn.

If λ < 0 and det(λIn − A) � 0, det(−λIn − |A|) = 0 then Eq.(1) is equivalent to{
X = −X

(|A| + λIn)X = 0

and X(r), X(r) satisfy the same conditions as the above case. Using the similar argument as case λ > 0 yields the

conclusion.

4. The structure of fuzzy eigenspaces

Denote VF
λ and VR

λ the families of all fuzzy and real eigenvectors of matrix A corresponding to eigenvalue λ, and call them

fuzzy and real eigenspaces of matrix A, respectively.

The next theorem shows that fuzzy eigenspace as a subspace of En is closed under addition and scalar multiplication.

Theorem 5. VF
λ is closed under addition and scalar multiplication.

Proof: Let ũ, ṽ ∈ VF
λ , then Aũ = λũ and Aṽ = λṽ with ũ, ṽ ∈ En. The i-th entry of A(ũ + ṽ) satisfies [A(ũ + ṽ)]i =∑n

j=1 ai j(ũ j+ṽ j) =
∑n

j=1(ai jũ j+ai jṽ j) =
∑n

j=1 ai jũ j+
∑n

j=1 ai jṽ j = (Aũ)i+(Aṽ)i. Hence A(ũ+ṽ) = Aũ+Aṽ = λũ+λṽ = λ(ũ+ṽ).

Let k ∈ R, then the i-th entry of A(kũ) satisfies

[A(kũ)]i =

n∑
j=1

ai j(kũ j) =

n∑
j=1

(kai j)ũ j = k
n∑

j=1

ai jũ j = k(Aũ)i.

Hence A(kũ) = kAũ = kλũ = λ(kũ).

The following theorem tells us the fuzzy eigenspace is natural extension of the real eigenspace of a real matrix.

Theorem 6. Linear space VR
λ is a subset of VF

λ .

Proof: Take arbitrary x ∈ VR
λ . Then x = (x1, · · · , xn)T ∈ Rn and Ax = λx. Construct fuzzy vector x̃ = (x̃1, · · · , x̃n)T in

which x̃i = (xi(r), xi(r)) with xi(r) = xi(r) = xi, for all r ∈ [0, 1].

Let S =
(

S 1 S 2

S 2 S 1

)
and X = (x1, · · · , xn,−x1, · · · ,−xn)T = (xT ,−xT )T . So

S X =
(

S 1 S 2

S 2 S 1

) (
x
−x

)
=

(
Ax
−Ax

)
=

(
λx
−λx

)
= λ

(
x
−x

)
= λX.

Hence x̃ is a fuzzy eigenvector of A corresponding to λ, i.e. x̃ ∈ VF
λ . However, since the i-th entry of x̃ is actually real

number xi, x̃ = x and then VR
λ ⊂ VF

λ .

The intersection of two fuzzy eigenspaces of a real matrix corresponding to two different eigenvalues is zero space as

below theorem shows.

Theorem 7. If λ1 and λ2 are two different eigenvalues of A, then VF
λ1
∩ VF

λ2
= {0}.

Proof: Let ũ ∈ VF
λ1
∩ VF

λ2
, then Aũ = λiũ, i = 1, 2, i.e. S U = λiU or

(
S 1 S 2

S 2 S 1

) ( U(r)

−U(r)

)
= λi

( ũ(r)

−ũ(r)

)
. This means that

(λ1 − λ2)
( U(r)

−U(r)

)
= 0. So U(r) = U(r) = 0 for all r ∈ [0, 1] since λ1 � λ2.

Theorem 8. If λ = 0 is an eigenvalue of A and A has no column which consists of zeros except the i-th one, then VF
0 is

the family of all fuzzy vectors (u1, ..., ũi, ..., un)T , where ũi ∈ E and (u1, ..., ui−1, ui+1, ..., un)T is the real solution vector of

Bx = 0̂ where B is the matrix obtained by deleting the i-th column from A.

Proof: Let ũ = (ũ1, · · · , ũn)T be an arbitrary fuzzy vector in VF
0 , then ũ ∈ En and Aũ = 0ũ. The k-th entry of Aũ satisfies

[Aũ]k =
∑n

j=1 ak jũk =
∑n

j=1,k�i ak jũ j + 0ũi = 0. Hence ũi ∈ E and (u1, ..., ui−1, ui+1, ..., un)T is the real solution vector of

Bx = 0̂ from Lemma 2, where B is a matrix obtained by deleting the i-th column from A.

Corollary 1. Assume that the i1-th,...,ik-th columns of A are zero vectors and others not zeros. Denote the matrix

obtained by deleting the i1-th,...,ik-th columns from A by B, the solution of fuzzy linear system Bx = 0̂ by v = (uα)T ,
α ∈ {1, ..., n}\{i1, ..., ik}. Then λ = 0 is an eigenvalue of A and VF

0 = {(u1, ..., ũi1 , ..., ũik , ..., un)T } with ũi j ∈ E, j = 1, ..., k.

5. Relationship between the fuzzy eigenvectors and real eigenvectors

A fuzzy number can be defuzzified to a real one by letting its center be the model. Applied similar argument to fuzzy

vector, fuzzy vector can be defuzzified to a real one. The next two theorems answer whether a real vector obtained by

defuzzified fuzzy eigenvector corresponding to λ is still a real eigenvector corresponding to λ.
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Theorem 9. If λ is a positive eigenvalue of |A| but not eigenvalue of A, then real vectors defuzzified from those in VF
λ are

all real zero vectors.

Proof: Let ũ = (ũ1, · · · , ũn)T be an arbitrary fuzzy vector in VF
λ . Defuzzify ũ to uc = (uc

1
, · · · , uc

n)T , where uc
i is the center

of the i-th entry of ũ. Then uc ∈ Rn and Auc = λuc, hence (λI − A)uc = 0. Therefore, uc = 0 since λI − A is invertible.

Theorem 10. Let λ be an eigenvalue of A. If real vectors defuzzified from those in VF
λ are not zeros, then they are all real

eigenvectors of A corresponding to λ.

Proof: The proof is similar to that of Theorem 9 except that λ is an eigenvalue of A.

The following deals with the case in which 0 is an eigenvalue associated with fuzzy eigenvectors of A.

Lemma 2. The homogenous fuzzy linear system Ax̃ = 0̂ has only real solution vectors if A has no column which consists

of zeros (Tian,2008,p161-165).

Corollary 2. If λ = 0 is an eigenvalue associated with fuzzy eigenvectors of real matrix A and A has no column which

consists of zeros, then the fuzzy eigenvectors corresponding to λ = 0 are all real vectors, in other words, VR
0 = VF

0 .

This corollary shows that real eigenvectors corresponding to eigenvalue 0 of A cannot be fuzzified when A has no column

which consists of zeros.

6. An application of fuzzy eigenvector

When the coefficients matrix A is invertible, the linear system Ax = y, y ∈ Rn has one and only one solution x∗ in Rn.

However, wether its fuzzy counterpart Ax̃ = ỹ, ỹ ∈ En has solution in En will depend on the right hand side ỹ even though

A is invertible (Frideman, 2006, p1257-1275).

Suppose that λ1, λ2, · · · , λm are the real eigenvalues of nonsingular matrix A and Vλ1
, · · · ,Vλm are their corresponding

eigenspaces of A. Denote
⊕

Vλi = Vλ1
+ · · · + Vλm ⊂ Rn. It is obvious that x∗ =

∑m
i=1

ki
λi

ui is the solution in Rn of Ax = y
when y =

∑m
i=1 kiui ∈

⊕
Vλi . We will prove this result is valid for fuzzy linear system Ax̃ = ỹ, ỹ ∈ En, i.e. we give a

sufficient condition to existence of strong solution of fuzzy linear system.

Denote
⊕
λ∈Λ VF

λ (A) the collection of all linear combinations of those fuzzy vectors in VF
λ , where Λ = {λ1, ..., λm} is

composed of all eigenvalues associated with fuzzy eigenvectors of real matrix A.

Theorem 12.
⊕
λ∈Λ VF

λ (A) as a subspace of En is closed under addition and scalar multiplication.

Proof: Let ũ, ṽ ∈ ⊕
λ∈Λ VF

λ (A) and q ∈ R, then there exists real weights ki, li, i ∈ {1, ...,m} such that ũ =
∑m

i=1 kiũi, ṽ =∑m
i=1 liũ

′
i where ũi, ũ

′
i ∈ VF

λi
. Consider Theorem 5 and let ũ

′′
i = kiũi + liũ

′
i then ũ

′′
i , (qki)ũi ∈ VF

λi
. Hence ũ + ṽ =

∑m
i=1 kiũi +∑m

i=1 liũ
′
i =

∑m
i=1(kiũi + liũ

′
i) =

∑m
i=1 ũ

′′
i ∈

⊕
λ∈Λ VF

λ (A) and qũ = q
∑m

i=1 kiũi =
∑m

i=1(qki)ũi ∈
⊕
λ∈Λ VF

λ (A).

Theorem 13. If A is invertible and ỹ ∈ ⊕
λ∈Λ VF

λ (A), then fuzzy linear system Ax̃ = ỹ, ỹ ∈ En has a solution vector.

Proof: If ỹ ∈ ⊕
λ∈Λ VF

λ (A) then there exist weights ki and ũi ∈ VF
λi
, i ∈ {1, ...,m} such that ỹ =

∑m
i=1 kiũi. Let x∗ =

∑m
i=1

ki
λi

ũi

then x∗ ∈ En and

Ax∗ = A
m∑

i=1

ki

λi
ũi =

m∑
i=1

ki

λi
Aũi =

m∑
i=1

ki

λi
λiũi =

m∑
i=1

kiũi = ỹ.

This means that x∗ is a solution vector of Ax̃ = ỹ.

Corollary 3. Fuzzy linear system Ax̃ = ỹ has solution vector if ỹ =
∑m

i=1 kiũi ∈
⊕
λ∈Λ VF

λ (A), where k j = 0 when λ j = 0.

7. Conclusion

In this work, we investigate fuzzy eigenvectors, fuzzy eigenspaces of real matrix and the relationships between real

eigenspace and fuzzy eigenspace. As an application of fuzzy eigenvector, we use fuzzy eigenvector to give a sufficient

condition to existence of solution vector of fuzzy linear system Ax̃ = ỹ, where A is a crisp square matrix, x̃ and ỹ are fuzzy

vectors.
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