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Abstract

In this paper, we determine the Minimum Hellinger Distance estimator of a stationary GARCH process. We construct
an estimator of the parameters based on the minimum Hellinger distance method. Under conditions which ensure the ¢-
mixing of the GARCH process, we establish the almost sure convergence and the asymptotic normality of the estimator.
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1. Introduction

General Autoregressive conditionally heteroscedastic (GARCH) models were pioneered by Engle(1982) and Boller-
slev(1986), and have ever since been widely used to analyze financial time series. Parameters of GARCH models are
usually estimated by the quasi-maximum likelihood estimator (QMLE) (Berkes, Horvéth, & Kokoszka, 2003) and (Francq
& Zakoian, 2004). The QML estimator is well-known for its efficiency asymptotic properties under regular conditions,
however it has very bad robustess properties.

In this paper we estimate the parameters of GARCH process using the minimum Hellinger distance (MHD) method, under
uniform mixing (or ¢-mixing) condition.

The interest for this method of parametric estimation is that the minimum Hellinger distance estimation method gives
efficient and robust estimators (Beran, 1977). The minimum Hellinger distance estimators have been used in parameter
estimation for independent observations (Beran, 1977), for nonlinear time series models (Hili, 1995) and recently for
univariate long memory linear processes (Bitty & Hili, 2010), for nonlinear univariate and multivariate gaussian process
(N’dri & Hili, 2011, 2013), for parameter estimation of one-dimensional diffusion process (Apala & Hili, 2013).

The paper is organized as follows. In section 2 we give the definition and some properties of the GARCH model. Section
3 contains the definition of the estimator and some assumptions. Sections 4 and 5 are the main results of the paper. They
respectively establish the consistency and the asymptotic normality of the estimator ,,.. In section 6 we did some numerical
simulations. In section 7 we apply MHD method to a financial time series. In section 8§ we open problem.

2. Definition and Some Properties of GARCH Model
Definition 2.1. The process (X,),cz, is called a GARCH(p, q) if

X; =& \h, 2.1

where &; are i.i.d random variables, with E (&;) = 0, E(stz) =1 and

p q
h, = O'? =w+ Zaith_i + E Biht—i~
i=1 i=1
The a; and B; are nonnegative constants and w is a (strictly) positive constant.

T ) .
0= (W, ap, ..., ap, B, ---,,Bq) € ® c RP**! s the vector of the parameters of interest and 6y = (W, @1, -, @ogs Bots - Bop)”
the vector of the true values, where 7' denotes the transpose.
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Proposition 2.1 (Bollerslev, 1986, Theorem 1). If

p q

Z%*’Zﬁi <1,

i=1 i=1

then, The GARCH(p, q) process (X,),cz, defined in (1.2) admits a unique strictly stationary solution.

For the following properties see Davis & Mikosch (2008).

Proposition 2.2. If &, has a positive Lebesgue density on a neighborhood of 0, the strictly stationary GARCH process (X;)
defined in (2.1) is ¢-mixing, moreover, the mixing rate ¢y decays to 0 geometrically (¢; < Cp* with C > 0and 0 < p < 1).

3. Definition of the Estimator and Some Assumptions

Let Xj, ..., X, be an observed sequence of GARCH processes with the density belonging to a specified parametric family
{fo},, where @ is the parameter espace, a compact set of RP*2*1 Note that in our study the form of the density is not
explicit.

Let f, be a nonparametric estimator of the density fy defined as

1 ¥ x—X;
n = K , eR
ful) nbzl (50

where K (.) is a kernel function and (b,,) is a sequence of bandwidths.

The Minimum Hellinger Distance estimator 6, of 6 is the value in the parameter espace ® which minimizes the Hellinger
distance (denoted H;) between f, and fy defined by:

6 = argminH(f,: fy), where 3.1)
€l

2 3
Halfy: fo) = { f dx} .
R

To establish the asymptotic properties of the estimator 6,,, we need the following assumptions.

£ @)= £2(0)

Assumption Al

The GARCH( p,q) process is geometrically ¢-mixing.

Assumption A2

For each 6 € 0, the density f of X, is positive over all R and twice continuously differentiable.
Assumption A3

For each 6 € O, || £\, = sup | ;" (x)| < o0 i=0,1,2.

Assumption A4

We chose b, such that lim b, = 0, lim nb, = +co, lim ynb? = +oo and lim nib% = 0.

n—oo n—oo n—oo n—oo

Assumption AS

The continuous function K is symmetric positive, bounded function with compact support such that:

fK(u)du =1, qu(u)du =0and f |u|2 K(u)du < oo.
R R R

Assumption A6
For 0, 6, € ©, 6, # 6, implies that {x € R/ fy, (x) # fy, (x)} is a set of positive Lebesgue measure.
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4. Consistency of the Estimator 6,

Theorem 4.1 (Almost sure convergence). Suppose that assumptions (Al)-(A6) are satisfied. If 6 is in the interior of ©,
then, 8, — 6y a.s when n — +oo.

Proof of theorem 4.1.

Let F denote the set of all densities with respect to the Lebesgue measure on R.

Define the functional U: F — ©® as
U(g) = arg fglei@ngz(g, fo)

provided such minimum exists. In cas U (g) is multiple-value, the notation U (g) will represent one of possible values
chosen arbitrarily.

We have
/20 = fan O] < 1fu(®) = ELO] + [E£u(3) = f, ()]
By lemmas 4.2 and 4.3
| fu(x) — fgo(x)| — 0 almost surely when n — oo,
consequently,
1 1
Pr ob{ lim f;7 (x) = fé} (x) for all x} =1.
Since
[ ioux= [ sux=1.
R R
then,

2 \3
dx} —> 0 a.s whenn — oo.

£ - £ ()

Hy(fu, fo,) = {L

Thus f,(x) — fy,(x) a.s when n — oo in the Hellinger topology.

From the continuity of the functional U (Beran, 1977, Theorem 1), we obtain

6, = U(f,(x)) — U(fy,(x)) = 6y a.s when n — oo.
Lemma 4.2. Suppose that assumptions (Al)-(A5) are satisfied. Then,

|fn(x) — Ef,(x)] — 0 a.s when n —> oo,

Proof of lemma 4.2.

We have
1 n
IﬂUO—EﬁuN=nh12;&
where ¥ X
X — t X — t
A, =K - EK .
+ = K( b ) ( b )
Using assumption (AS5) and Jensen’s inequality, we get
-X -X
Al < [K(E ‘)+E@3blﬂ
-X -X
< k2L +E('K(x - 1))
-X -X
< sup K(x ]) + E|sup K(x ])'
X bn X bl‘l
< 2Ky
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where K is a constant.
We have also

2

EIAP =ElK(x_Xl)—EK(x;X1)
o)
by by
SEKZ(X_—XI)

n

_ f K2(xb_ 2 ) fon(8)ds
R n

< f K22 )supfi (s)ds
R

bn seR

= supfy,(s) f K2 )ds
R

seR b n

= supfy, ()b, f K2(u)du
R

seR
= Cbn S Kls

where C = supfy,(s) fR K?(u)du and K is a constant.
seR

Then, by the relation (20) in Hang et al (2015) and for all € > 0, we obtain

> e) = P[1 iA,
g =
<2expi|-— ]
8C, (4K + 2Kon~% eb, )

€ Vb,
=2exp1{|— ; )
8C, (4K + 2Koen™1h, )

P nt
nb,,

n
S
t=1

_1
>n 4ebn]

where Cy = k; k.

‘We have

Cy = Z¢k < ocoand lim n_%bn =0.
k:1 n—oo
Then, using assumption (A4) and Borel Cantelli’s lemma, we get

ni |fu(x) — Efy(x)] — 0 a.s whenn — oo .

Hence 1
[fu(x) = Efy(x)] = 0(}17) a.s whenn — oo .

Lemma 4.3. Suppose that assumptions (Al)-(A5) are satisfied. Then,

sup |Ef,(x) = fan(x)| — 0 when n — oo,
xeR
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Proof of lemma 4.3.
Using assumption (AS5) and the Taylor’s expansion in a neighbourhood

of x, we have
Efu(x) = fo,(x)

1 < x—X;
=E[nbn;K( . >]—f90<x)

) = fo, (%)

1

- —E(K(x —X

b,

b
- L f KC) i (5)ds — f ()
- f K (1) fay (x = bpu)du — f K(u)dut fo,(x) + b fy, (%) f uK(u)du
R
K(u) [feo(x) bt fy, () + bzu%’eo(é)—feo<x>+bnuféo<@] du

- f K(u)§b5u2 o (O)du.
R

where 6 = x + ¢ (=b,u) with 0 < ¢ < 1.
Then, by assumption (A3) and (A5)

sup|Ef,,(x) fa ()] < sup|f90(6)| f u? K(u)du < C1b>. 4.2)

where C is a constant.

Using assumption (A4), we conclued that sup |E fa(X) = fa, (x)| — 0 when n — oo.
xeR

5. Asymptotic Normality of the Estimator 0,
For the following theorem, denote by

3 T

1 .
Se=F2, Sg=—2, =
0=Jgs Se= 5 36067

when these quantities exist. Furthermore, let

S J (x)
2f, ey

-1
Vi(x) = [ f Sg(x)s'j(x)dx] Sg(x) and hg (x) = (5.1)
R

Theorem 5.1 (asymptotic normality of the estimator). Suppose that assumptions (Al)-(A6) are satisfied. Furthermore,
assume that

(i) if the components of Sgand Sy are in Ly and the norms of these components are continuous functions at 6 and

(ii) if 6y lies in the interior of ® and iff]R Sneo(x)S g,(X)dx is a non singular (p + q + 1) X (p + g + 1)—matrix, then, the
limiting distribution of \n @ - 6()) is N (0, 22) where

, 1 . T -1
> = 1 ng(,(x)Sgo(x)dx .
R

Proof of theorem 5.1.

From theorem 2 of Beran (1977), we can write :
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Vi (= 00) = Vi [ Vo[£ - o) ax
+ VA, fR Sa [ - W] ax

where the components of A, — 0 when n — oo and Vj,(x) defined in (5.1).

We have

(o) = fa () (fn% (x) = f; (x))2

2/ () 21w
_ @ fu) A0S
20 2w (@ o)

f - fi =

Thus,
Vi f Va0 £ 00 = (0] ax
v f" ICETC Y LG,
2/, o (Rw o)
= \/vago(x)wdx+3n
R 2fgf)(x)
where
v fw 0~ G
= o o(fw o)
Since
1 1 1 2 3
20 (A 0+ fe0] > 2750,
thus,

i< [ [Va | V(a0 = )
N 2f9 (x)

Using (4.1), (4.2) and assumption (A4), we get
nt £ — fo 0| < 0t 1fu(0) = Efp(0] + n%su]g |Efu(x) = fan ()

< n% /(%) = Efu(x)] + Clnibﬁ —> 0 a.s when n — oo.

In conclusion,
Vi (fu(x) - fao(x))2 —> 0 a.s when n — oo,

Conditions (i) and (ii) of theorem 5.1 imply that Vj, is continuous and bounded (for 6, fixed), futhermore, applying Vitali’s
theorem on the sequence |V90 (x)| Vi (fu(x) - ﬂ;U()c))2 , we obtain |B,| — 0 in probability when n — oo.
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On the other hand,
Vi f Vi (x )(fn(x) er(X))
262 ()

- (f SGO(X)SéU(X)TdX) f \/ZSQO( )(fn(x) feo(-x))
R R 2, O(x)

= ( f Sgo(x)sg,o(x)fdx) Sgi(X) fu(x)dx — % vn f S g, (%) f(j)(x)dx
R R 2 fgf) (x) R

_ (f C ) T ) S(')o( Xx)

= | Sg,(x)Sg(x) dx fo(0)dx — 0 (see (5.4))
R 2f (x)

- ( | S'go(x)sa(J(x)de) [ i 0 £,

Since A, — 0 when n —> oo, then, the limit distribution of +/n (5; - 90) is reduced to the limit distribution of

-1
( f S'%(x)S'gO(x)de) f Vihg, () fu(x)dx.
R R

Therefore, by the lemmas 5.3 and 5.4

f Vithg, () fy(x)dx —> N (0, T2) when n —> oo,
R

where |
r?=- f S 6,(0)S g, () dx .
4 Jr

We conclued that,

-1
( f S%(x)S'ao(x)de) f Vithg, (%) fy(x)dx = N (0, £2)
R R

where
-2

Ezz(fsao(X)Sleo(x)de) lj‘SQo(x)S'GO(X)TdX
R 4 Jr

-1
= 1( f Sgo(x)sg,o(x)fdx) .
4 \Ur

© 1
Lemma 5.2. Let {Yj RS N} be a stationary sequence which is ¢-mixing with Y, q)]? < o0. Assume E|Y,|* < C < o and
=

E (YY) =0. Then,

Proof of lemma 5.2.

Using lemma 20.1 in Billingsley (1968), we have

)2)%

Zzw G (EWP) (£

Z 'E (Yl ,+1
=1

< 2CZ¢% (j) < .

J=1
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Hence, the lemma follows from Ibragimov and Linnik (1971, theorem 18.5.2).

Lemma 5.3. Let hy (.) the continuous function defined in (5.1). Suppose that assumptions (Al)-(AS5) hold. Then,
1< . .
Vn f hg, (x) fu(x)dx — —Zhgo (X)) y — 0 in probability.
R =)

Proof of lemma 5.3.

We have
{ f hay () fiu(x)dx — —Zh(,o X; )}
= v { fR nanK( 5 2K gy () dx %ih% (Xi)}
«f{%Z(be K2 kg, (0 dx = (X))}
_ %Z(.ﬁa o KOS, (0 <X))
- %Z( fR K(u)hg, (X; + uby) du — hg, (X;) fR K(u)du)
- %;( fR (hay (X; + uby) — e, (X)) K(u)du).
Thus,

2
1 n
E ( "z { fR hay () fulx)dx = > g (Xi)})
] ) i=1 ,
=E [%Z; ( fR (hg, (Xi + uby) — hg, (X)) K(u)du))
n 2
_1 E(Z ( f (hgy (X; + uby) — hg, (X)) K(u)du)]
noE Wk
n 2
- EZE ( f (hg, (X; + uby) — hg, (X)) K(u)du)
n<
- ZE(( f (hay (X; + uby) = hg, (X0)) K(u)du)

<j

X ( fR (e, (X; + uby) = hg, (X;)) K(u)du))

Step 1: we prove that
1 n 2
—ZE (f (hg, (Xi + uby) — hg, (X)) K(u)du) —> 0 when n — co.
i R
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Using Cauchy-Schwarz’s inequality and Fubini’s theorem, we obtain

n 2
lZE ( f (hay (X; + uby) — hg, (X)) K(u)du)
e R

2
_ l{n f ( f (g, (x + by) — hg, (X)) K(u)du) fgo(x)dx}
n R \JR

2
= f(f (hg, (x + uby,) — hg, (x)) K(u)du) Jo,(x)dx
R \JR

< f [f (hg, (x + uby,) — hyg, (x))2 dufoz(u)du] Jo,(x)dx
R [JR R

=G, f f (ha, (x + uby) — hg, (X))* fa, (x)dudx
R JR

-, f f (he, (x + uby) — hg, (X))? fo, (X)dxdu
R JR

where C, is a constant.

By the continuity of hg,, we get
(hg, (x + uby) — hg, (x))* — 0 when n — oo.

Conditions (i) of theorem 5.1 imply that S g,18 bounded (for 6, fixed). Then, Ay, is also bounded (for 6y fixed).

Thus, there existe a constant C3 > O such that for all n € N

(hg, (x + uby) — hg, (x))* < Cs.

Since by assumption (A3) 0 < f, < oo, we have

(hg, (x + uby,) — hg, ()c))2 Ja,(x) — O when n — oo

and foralln e N
(h90 (x + ubn) - h9o (x))2 ﬁio (x) < C3f90 (x)

Then, by the dominated convergence theorem,
f (hg, (x + uby,) — hyg, (x))2 Jao(x)dx — 0 when n — oo
R

where u esupp(K) the support of kernel density K (.) a compact set.
On other hand, for all u esupp(K) and for all n € N we obtain

fR (g (5 + by) =y () fon (Ddx

<G ffao(x)dx
R
= Cs.
Therefore, by the dominated convergence theorem
f f (hg, (x + uby,) — hy, (x))2 Ja,(x)dxdu — 0 when n — oo.
R JR

Step 2: we prove that

%ZE(( f (hg, (Xi + uby) — hg, (X)) K(u)du)
R

i<j

X (f (hgo (Xj + ubn) — hyg, (X,)) K(u)du)) — 0 when n — oo.
R
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Let ¢ be the function defined by:

for all u esupp(K) a compact set and for all x € R
0 )= [ (o) =y () K
R

¥ is a continuous function. Therefore ¥ (X;) is ¢-mixing.

‘We have
o ()| = f (hg, (x + uby,) — hg, (x)) K(u)du
R
= f |(g, (x + uby) — hg, (x))| K(w)du
R
< Cy f K(u)du
R
= Cy.
Thus, there exists a constant Cs such that
Ely (X)I* < Cs.

On the other hand, we know that

¢ (k) < Cpt

where C >0and 0 <p < 1.

Therefore,

1 1
¢? (k) < Cexp(EkLogp) =Cexp (_EVk)

with v = —Logp.
Let y be the decreasing function defined by: for all k € N

x (k) = Cexp (—%vk) .

We have

%ZE(( f (ha, (X; + uby) — hg, (X)) K(u)du)
i<j R

X ( IR; (e, (X + uby) = hg, (X;)) K(u)du))

= 2 (v (x).

i<j
Using lemma 20.1 in Billingsley (1968), (5.2) and the fact that y is a decreasing function, we obtain
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2 3 [etonste)] =35 et o)

_Zm O (Ew x0P)! (EJw (%)

4C L
< —SZW ()
n &
n—1n-1

-4 240

k=1 I=k

1

o

n—1n-1

4C5;§ (x (D)? (x (1)

n—1n-1

ZZ O (D)? (x (k)

k=1 I=k

4Cs < R I
<=2 ) )t Y )
k=1 =1
) 2
4Cs N2
ST[;(X(D)-] 0

By Step 1 and Step 2 we obtain
1 n 2
E|vn f hay (X) fu(x)dx — —Zhgo X)) — 0 when n —s co.
R i
‘We conclued that,
1 n
\Vn f hg, (x) fu(x)dx — —Zhgo (X;) ¢ — 0 in probability.
R =
Lemma 5.4. Suppose that assumptions (Al)-(A5) are hold. Then,
1 ¢ b2} 1 . .
%;hg (X)) — N(0,T?). whereT” = 7 L S 6,(0)S g,(x)" dx and

“D” denote the convergence in distribution.

Proof of lemma 5.4.

We have
1 . 1
E (hg, (X)) = f hg, (x) fo,(x)dx = 3 f S 6y (%) fy, ()dx
R R
-1 f 28 6,(X)S g,(X)dx = 0
4 Jr
and

1 .
E (I, (X)) = fR g, () fop(¥)dx = 7 fR § % (x)dx

1 . .
== f S 6o (2)S g, (X) dx < oo.
4 Jr

90
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We have

n 2
E[%;hg (xk>] = E (hg, (X)) + %ZE(heo (X) he, (X;))

i<j

and

n—1
2 (X, (35))| = 2 7] (e, 60 e, (50|
1<i<j<n =

1

y

n—1 1
2 L 2\2
<R 220 (B 1o, GOF) (] (X31)
n—1
4Co . 1 .
< —ZW -
n
Using the same arguments as in the lemma 5.3, we can prove that

o 2
%Z ‘E(heu (X;) hg, (X,))‘ < ? (Z g\/(i))%] — 0,
i<j i=1

where y is defined in (5.3).

‘We conclued that,

n 2
1 1 . A
E[ \/ﬁ;hf’ﬂ (Xk)] > 1 .[1; SGQ(X)SQD(X)TdX when n — oo.

Using the convergence limit theorem in Ibragimov (1975)

%Zh% X) - N(0,T?),
k=1

where

1 ) .
= 1 f Sgo(x)Sgo(x)de when n — oo.
R

6. Simulations

In this section we give some numerical simulations for minimum Hellinger distance estimator (MDHE) to show its perfor-
mance. Note that the model density fp is intractable. However, the GARCH process generating the X; can be simulated.
Thus, on the basis of X; simulated, we can obtain the nonparametric density estimate denoted f, 4, which becomes an
alternative to intractable fy in expression (3.1) (see Gouriéroux & Monfort, 1996). Using the method of Takada (2007),
we define f, ¢ as follows:

let (Yf o, ...,Yg (0)) be the s-th replication of the simulated sequence from the model GARCH, s = 1,2,...,S. That
simulated sequence has the length S X n.

~ I LB, =X 0
Fao(x) = §; nanK(T) ,xeR.

t=

We generate a ¢—mixing GARCH(1,1) stationary process with true parameter 6y = (w = 0.09, @ = 0.15, 8 = 0.4). We
choose a sample length: n = 500. The process &; is gaussian with mean 0 and standard deviation 1. To calculate the MDH
estimator, we choose the bandwidth b, = n=°2%. The nonparametric estimator f, 4 is calculated by choosing S = 100;
b, is the same for ﬁg and f,. The kernel is gaussian with mean 0 and standard deviation 1. For the simulations, we use
“fgarch and fbasics” in R packages.
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To confirm the performance of the estimator, we use the sample bias and the root means quare error (RMSE) defined as
follows:

S
BIAS(6) = Z 6, — 6,
s=1
and

RMSE(9) = 90 -

Wi Mo:

Table 1 shows the consistency of the MHD estimator.

Table 1. Consistency of the MHD estimator and the comparison between MHDE and QMLE

w a B
MHDE 0.09107473  0.15162636  0.40128264
BIAS -0.00107473  -0.00162636 -0.00128264
RMSE  0.385817373 0.05417584  0.03038960
QMLE 0.08569830  0.17748747  0.30008846
BIAS 0.0043015 -0.00274874  0.09991154
RMSE  0.38228581 0.73444438  0.11449742

The above results show the good performance of the MHD method because all estimations biases are close to 0. Also, the
table 1 shows that the estimations biases and the RMSE of the MHD method are small or almost equal to the estimation
biases and the RMSE of QMLE. The MHD estimator seems better performed than the QML estimator.

To illustrate the robustness of the MHD estimator, we proceed in this manner: Let
Jar =0 =D f, + A0[0, 1], where A € [0, 1],

and [0, 1] the uniform density on the interval [0, 1]. We vary A between O and 1 and consider the MHD associated
estimator. In each case, we replace f, by f, 1. This gives the following table with nine values of A.

Table 2. Robustness of the MHD estimator

A w a B

0.1 0.08971371 0.14954614 0.39994447
0.2 0.08988248 0.14988466 0.40021855
0.3 0.09113607 0.15321818 0.39774967
0.4 0.09000711 0.14994950 0.40003438
0.5 0.09107550 0.15284870 0.40281130
0.6 0.08961155 0.14484359 0.39813678
0.7 0.08963666 0.14753569 0.39873747
0.8 0.08997696 0.15081873  0.40006430
0.9 0.08943709 0.14916746 0.39941254

The results of table 2 seem to indicate a certain robustness of the MHD estimator.
7. Application in Finance

The data used for our empirical study are daily returns of S&P500 index of 1272 observations. The study period is from
21-01-2009 to 02-01-2004 (cf figure 1 page 22).

We define the daily returns r, of S&P500 index as follows:

= log Pt ’
Pi-1

where p; is the price at the end of trading day ¢.
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Figure 1. Returns of sp500 index from 02/01/2004 to 21/09/2009

One can adjust a GARCH(1,1) model to the series (r;). Supposing that we are looking for the return at the date r. Two
informations are particulaly interesting: the average and the variance. Particulary, we hope modeling the average and the
conditional variance of r;. Then, for the GARCH modeling, it amounts to write:

re=p+ X, (7.1)

where

X, = \Vhm,  n o~ LidN(0,1)

hy =w+ 01)([271 + Bhi-1,

with ¢ and A, are respectily the conditional average and conditional variance of r;.

To estimate the parameters (w, @, 8) , we will use the MHD method. For that, we use the method described in the paragraph
6 with 50 replications of the model (7.1) and the bandwidth b, = n~°23. We obtain

W = 1.30022275, @ = 0.06422973, B = 0.92449759.

and
u=-0.2311027

Finaly we can write,
r, =-0.2311027 + X;
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where

X, = \hn,  n o~ LidN(0,1)
h, = 1.30022275 + 0.06422973X> | + 0.9244975%, ;.

8. Open problem

The multivariate GARCH process study case can be examined using the same method. Also, this study can be examined
in EGARCH (Exponential GARCH) model case, IGARCH (integrated GARCH) model case and FIGARCH (Fractionary
integrated GARCH) model case.
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