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Abstract

In this paper, we introduce a new class of monotone operators − (H(·, ·), η)- monotone operators, which generalize many

existing monotone operators. The resolvent operator associated with an (H(·, ·), η)- monotone operator is defined and

its Lipschitz continuity is presented. As an application, we also consider a new generalized mixed variational inclusion

involving (H(·, ·), η)-monotone operators and construct a new algorithm for solving the generalized mixed variational in-

clusion. Under some suitable conditions, we prove the convergence of the iterative sequences generated by the algorithm.

These results improve and generalize many corresponding results in recently literatures.
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1. Introduction

The resolvent operator method is an important and useful tool to study approximation solvability of nonlinear varia-

tional inequalities and variational inclusions, which are providing mathematical models to some problems arising in

optimization and control, economics and engineering science. In order to study various variational inequalities and varia-

tional inclusions, Ding(2000), Huang and Fang (2003), Fang and Huang (2003), Fang et al.(2005), Verma (2006), Zhang

(2007), Sun et al.(2008), Xia and Huang (2007), Feng and Ding (2009) and He et al.(2008) have introduced the con-

cepts of η-subdifferential operators, maximal η-monotone operators, H-monotone operators, (H, η)-monotone operators,

A-monotone operators, (A, η)-monotone operators, G-η-monotone operators, M-monotone operators in Hilbert spaces,

H-monotone operators, A-monotone operators and H-η-monotone operators in Banach spaces and their resolvent oper-

ators, respectively. Further, by using the resolvent operator technique, a number of nonlinear variational inclusions and

many systems of variational inequalities and variational inclusions have been studied by some authors in recent years (for

example Lan (2007), Ding and Feng (2008), Peng and Zhu (2007), Zeng (2007), Ding and Wang (2009)).

Motivated and inspired by the above works, we introduce a new class of monotone operators: (H(·, ·), η)- monotone

operators, which provide a unifying framework for maximal monotone operators, η-subdifferential operators, maximal η-
monotone operators, H-monotone operators, (H, η)-monotone operators, A-monotone mappings, (A, η)-monotone opera-

tors, G-η-monotone operators, M-monotone operators, H-monotone operators, A-monotone operators and H-η-monotone

operators. The resolvent operator associated with an (H(·, ·), η)- monotone operator is defined and its Lipschitz continuity

is presented. We also consider a new generalized mixed variational inclusion involving (H(·, ·), η)-monotone operators

and construct a new algorithm for solving the generalized mixed variational inclusion. Under some suitable conditions,

we prove the convergence of iterative sequences generated by the algorithm. These results improve and generalize many

known corresponding results.

2. Preliminaries

Let E be a real Banach space with dual space E∗, and the norm and the dual pair between E and E∗ are denoted by ‖ · ‖
and 〈·, ·〉 respectively. CB(E) denotes the family of all bounded closed subsets of E. The Hausdorff metric on CB(E) is

defined by

H̃(A, B) = max{sup
x∈A

inf
y∈B

‖x − y‖, sup
y∈B

inf
x∈A

‖x − y‖}, ∀ A, B ∈ CB(E).

The normalized duality mapping J : E → 2E∗
on E is defined by

J(x) = { f ∗ ∈ E∗: 〈x, f ∗〉 = ‖ f ∗‖‖x‖, ‖ f ∗‖ = ‖x‖} , ∀ x ∈ E.

If E = H is a Hilbert space, then J is the identity mapping on H.

Published by Canadian Center of Science and Education 47



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 3; August 2010

Lemma 2.1 (Petryshyn(1970)) Let E be a real Banach space and J : E → 2E∗
be the normalized duality mapping. Then

for all x, y ∈ E,

‖ x + y ‖2≤‖ x ‖2 +2〈 y, j(x + y)〉, ∀ j(x + y) ∈ J(x + y).

Definition 2.1 Let A, B : E → E, T : E → E∗, H : E × E → E∗ and η : E × E → E be five single-valued mappings.

(1) T is said to be η-monotone if 〈T (x) − T (y), η(x, y)〉 ≥ 0;

(2) T is said to be strictly η-monotone if T is η-monotone and

〈T (x) − T (y), η(x, y))〉 = 0

if and only if x = y;

(3) H(A, ·) is said to be α-strongly η-monotone with respect to A if there exists a constant α > 0 such that

〈H(Ax, u) − H(Ay, u), η(x, y)〉 ≥ α ‖ x − y ‖2, ∀ x, y, u ∈ E;

(4) H(·, B) is said to be β-relaxed η-monotone with respect to B if there exists a constant β > 0 such that

〈H(u, Bx) − H(u, By), η(x, y))〉 ≥ −β ‖ x − y ‖2, ∀ x, y, u ∈ E;

(5) H(·, ·) is said to be λ-Lipschitz continuous with respect to A if there exists a constant λ > 0 such that

‖ H(Ax, u) − H(Ay, u) ‖≤ λ ‖ x − y ‖, ∀ x, y, u ∈ E;

(6) T is said to be ε-Lipschitz continuous if there exists a constant ε > 0 such that

‖ T (x) − T (y) ‖≤ ε ‖ x − y ‖, ∀ x, y ∈ E;

(7) η is said to be τ-Lipschitz continuous if there exists a constant τ > 0 such that

‖ η(x, y) ‖≤ τ ‖ x − y ‖, ∀ x, y ∈ E.

Remark 2.1 If E = H is an Hilbert space, η(x, y) = x− y, ∀ x, y ∈ E, then (3) and (4) of Definition 2.1 reduce to (i) and

(ii) of Definition 1.2, respectively(Sun et al.(2008)).

Definition 2.2 (Lou et al.(2008)) Let M : E → 2E∗
be a multi-valued mapping, H : E → E∗ and η : E × E → E be

single-valued mappings. M is said to be

(1) monotone if 〈x − y, u − v〉 ≥ 0, ∀ u, v ∈ E, x ∈ M(u), y ∈ M(v);

(2) η-monotone if 〈x − y, η(u, v)〉 ≥ 0, ∀ u, v ∈ E, x ∈ M(u), y ∈ M(v);

(3) strictly η-monotone if M is η-monotone and equality holds if and only if x = y;

(4) r-strongly η-monotone if there exists a constant r > 0 such that

〈x − y, η(u, v)〉 ≥ r ‖ u − v ‖2, ∀ u, v ∈ E, x ∈ M(u) , y ∈ M(v);

(5) m-relaxed η-monotone if there exists a constant m > 0 such that

〈x − y, η(u, v)〉 ≥ −m ‖ u − v ‖2, ∀ u, v ∈ E, x ∈ M(u), y ∈ M(v);

(6) maximal monotone, if M is monotone and has no a proper monotone extension in E, i.e., for all u, v0 ∈ E, x ∈ M(u),

〈x − y0, u − v0〉 ≥ 0 implies y0 ∈ M(v0);

when E is a reflexive Banach space, M is maximal monotone if and only if M is monotone and (J + λM)E = E∗ for all

λ > 0;

(7) maximal η-monotone, if M is η-monotone and has no a proper η-monotone extension in E, when E is a reflexive

Banach space, M is maximal η-monotone if and only if M is η-monotone and (J + λM)E = E∗ for all λ > 0;

(8) H-monotone, if M is monotone and (H + λM)E = E∗ for all λ > 0;

(9) (H, η)-monotone, if M is η-monotone and (H + λM)E = E∗ for all λ > 0;
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(10) H-η-monotone, if M is m-η-relaxed monotone and (H + λM)E = E∗ for all λ > 0.

Definition 2.3 Let T : E → E be a single-valued mapping. T is said to be δ-strongly accretive, if there exists a constant

δ > 0 and j(x − y) ∈ J(x − y) such that

〈T (x) − T (y), j(x − y)〉 ≥ δ ‖ x − y ‖2, ∀ x, y ∈ E.

3. (H(·, ·), η)-monotone operators

In this section, we shall introduce a new class of monotone operators − (H(·, ·), η)-monotone operators and discuss some

properties of this class of operators

Definition 3.1 Let H : E × E → E∗, η : E × E → E, A, B : E → E be four single-valued mappings. Then the

set-valued mapping M : E → 2E∗
is said to be (H(·, ·), η)-monotone with respect to mappings A and B (or simply

(H(·, ·), η)-monotone in the sequel), if M is m-relaxed η-monotone and (H(A, B) + ρM)(E) = E∗ for all ρ > 0.

Remark 3.1 (1) If H(Au, Bu) = Au, ∀ u ∈ E, then Definition 3.1 reduces to the definition of H − η-monotone operators

(Lou et al.(2008)). Hence, the class of (H(·, ·), η)-monotone operators in Banach spaces provides a unifying framework

for the classes of η-subdifferential operators, maximal monotone operators, maximal η-monotone operators, H-monotone

operators, (H, η)-monotone operators, G-η-monotone operators, A-monotone operators and (A, η)-monotone operators

in Hilbert spaces and H-η-monotone operators, H-monotone operators, A-monotone operators in Banach spaces. We

emphasize that an (H(·, ·), η)-monotone operator in Banach spaces maps from E to E∗.

(2) If E = H is a Hilbert space, m = 0 and η(x, y) = x − y, ∀ x, y ∈ H , then Definition 3.1 reduces to the definition of

M-monotone operators (Sun et al. (2008)).

Theorem 3.1 Let A, B : E → E, η : E × E → E and H : E × E → E∗ be single-valued mappings and H(A, B) be

α-strongly η-monotone with respect to A, β-relaxed η-monotone with respect to B and α > β. Let M : E → 2E∗
be

an (H(·, ·), η)-monotone operator with respect to A and B. If 〈x − y, η(u, v)〉 ≥ 0 holds for all (v, y) ∈ Graph(M), where

Graph(M) = {(a, b) ∈ E × E : b ∈ M(a)}, then (u, x) ∈ Graph(M).

Proof Since M is (H(·, ·), η)-monotone with respect to A and B, we know that (H(A, B)+ ρM)(E) = E∗ holds for all ρ > 0

and so there exists (u1, x1) ∈ Graph(M) such that

H(Au, Bu) + ρx = H(Au1, Bu1) + ρx1.

Since H(A, B) is α-strongly η-monotone with respect to A, β-relaxed monotone with respect to B and α > β, we have

0 ≤ ρ〈x − x1, η(u, u1)〉
= −〈H(Au, Bu) − H(Au1, Bu1), η(u, u1)〉
= −〈H(Au, Bu) − H(Au1, Bu), η(u, u1)〉 − 〈H(Au1, Bu) − H(Au1, Bu1), η(u, u1)〉
≤ −(α − β) ‖ u − u1 ‖2≤ 0.

This implies that u = u1 and x = x1. Thus (u, x) = (u1, x1) ∈ Graph(M). This completes the proof. �

Theorem 3.2 Let A, B : E → E, η : E × E → E and H : E × E → E∗ be single-valued mappings and H(A, B) be

α-strongly η-monotone with respect to A, β-relaxed η-monotone with respect to B and α > β. Let M : E → 2E∗
be an

(H(·, ·), η)-monotone operator with respect to A and B. Then the operator (H(A, B)+ρM)−1 is single-valued for 0 < ρ < r
m ,

where r = α − β.
Proof. For any given u∗ ∈ E, let ∀ u, v ∈ (H(A, B) + ρM)−1(u∗). It follows that

−H(Au, Bu) + u∗ ∈ ρM(u) and − H(Av, Bv) + u∗ ∈ ρM(v).

Since M : E → 2E∗
is an (H(·, ·), η)-monotone operator with respect to A and B and H(A, B) is α-strongly η-monotone

with respect to A, β-relaxed η-monotone with respect to B and α > β, we have
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−m ‖ u − v ‖2 ≤ 1

ρ
〈(−H(Au, Bu) + u∗) − (−H(Av, Bv) + u∗), η(u, v)〉

= −1

ρ
〈H(Au, Bu) − H(Av, Bv), η(u, v)〉

= −1

ρ
〈H(Au, Bu) − H(Av, Bu), η(u, v)〉

−1

ρ
〈H(Av, Bu) − H(Av, Bv), η(u, v)〉

≤ −1

ρ
(α − β) ‖ u − v ‖2= − r

ρ
‖ u − v ‖2 .

This show that

mρ ‖ u − v ‖2≥ r ‖ u − v ‖2 .

If u � v, then ρ ≥ r
m contradicts with 0 < ρ < r

m . Thus u = v, that is, (H(A, B) + ρm)−1 is singe-valued. The proof is

completed. �

Remark 3.2 Theorem 3.1 and Theorem 3.2 improve the similar conclusions (see Sun et al.(2008), Huang and Fang (2003),

Zhang (2007), Feng and Ding (2009)).

Base on Theorem 3.2, we can define the generalized resolvent operator RM,η
H(·,·),ρ associated with an (H(·, ·), η)-monotone

mapping M as follows.

Definition 3.2 Let A, B : E → E, η : E × E → E and H : E × E → E∗ be single-valued mappings and H(A, B) be

α-strongly η-monotone with respect to A, β-relaxed η-monotone with respect to B and α > β. Let M : E → 2E∗
be an

(H(·, ·), η)-monotone operator with respect to A and B. Then the general resolvent operator RM,η
H(·,·),ρ : E → E is defined by

RM,η
H(·,·),ρ(u) = (H(A, B) + ρM)−1(u), ∀ u ∈ E.

Remark 3.3 The general resolvent operators associated with (H(·, ·), η)-monotone operators include as special cases the

corresponding resolvent operators associated with maximal monotone operators (Zeidler (1985)), η-subdifferential oper-

ators, maximal η-monotone operators, H-monotone operators, (H, η)-monotone operators, A-monotone mappings, (A, η)-
monotone operators, G-η-monotone operators, M-monotone operators, H-monotone operators, A-monotone operators and

H-η-monotone operators, respectively.

Theorem 3.3 Let A, B : E → E, H : E × E → E∗ be single-valued mappings, η : E × E → E be τ-Lipschitz contin-

uous and H(A, B) be α-strongly η-monotone with respect to A, β-relaxed η-monotone with respect to B and α > β. Let

M : E → 2E∗
be an (H(·, ·), η)-monotone operator with respect to A and B. Then the resolvent operator RM,η

H(·,·),ρ : E → E
is τ

r−ρm−Lipschitz continuous for 0 < ρ < r
m , where r = α − β, that is,

‖ RM,η
H(·,·),ρ(u) − RM,η

H(·,·),ρ(v) ‖≤ τ

r − ρm ‖ u − v ‖,∀ u, v ∈ E.

Proof Let u, v ∈ H be any given points, it follows from (3.2) that

RM,η
H(·,·),ρ(u) = (H(A, B) + ρM)−1(u)

and

RM,η
H(·,·),ρ(v) = (H(A, B) + ρM)−1(v).

This implies that
1

ρ
(u − H(A(RM,η

H(·,·),ρ(u)), B(RM,η
H(·,·),ρ(u))) ∈ M(RM,η

H(·,·),ρ(u)),

1

ρ
(v − H(A(RM,η

H(·,·),ρ(v)), B(RM,η
H(·,·),ρ(v))) ∈ M(RM,η

H(·,·),ρ(v)).

For the sake of brevity, let z1 = RM,η
H(·,·),ρ(u) and z2 = RM,η

H(·,·),ρ(v).

Since M is m-relaxed η-monotone, we get
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−m ‖ z1 − z2 ‖2 ≤ 1

ρ
〈u − H(Az1, Bz1) − (v − H(Az2, Bz2)), η(z1, z2)〉

=
1

ρ
〈u − v − (H(Az1, Bz1) − H(Az2, Bz2)), η(z1, z2)〉.

From the above inequality and the conditions in the Theorem 3.3, we have

τ ‖ u − v ‖ · ‖ z1 − z2 ‖ ≥ ‖ u − v ‖ · ‖ η(z1, z2) ‖≥ 〈u − v, η(z1, z2)〉
≥ 〈H(Az1, Bz1) − H(Az2, Bz2), η(z1, z2)〉 − ρm ‖ z1 − z2 ‖2

≥ 〈H(Az1, Bz1) − H(Az2, Bz1), η(z1, z2)〉
+〈H(Az2, Bz1) − H(Az2, Bz2), η(z1, z2)〉 − ρm ‖ z1 − z2 ‖2

≥ (α − β − ρm) ‖ z1 − z2 ‖2= (r − ρm) ‖ z1 − z2 ‖2 .

Hence

‖ RM,η
H(·,·),ρ(u) − RM,η

H(·,·),ρ(v) ‖≤ τ

r − ρm ‖ u − v ‖,∀u, v ∈ E.

This completes the proof. �

4. An application for solving a generalized mixed variational inclusion

In this section, we shall study a new generalized mixed variational inclusion involving (H(·, ·), η)-monotone operators in

Banach spaces and construct an iterative algorithm for approximating the solution of this variational inclusion by using

the resolvent operator technique.

Throughout the rest of the paper, unless otherwise stated, let E be a real Banach space with the dual space E∗ and the

norm ‖ · ‖, 〈·, ·〉 be the dual pair between E and E∗, CB(E) be the family of all bounded closed subsets of E, J : E → 2E∗

be the normalized duality mapping on E defined by

J(x) = { f ∗ ∈ E∗: 〈x, f ∗〉 =‖ f ∗ ‖‖ x ‖, ‖ f ∗ ‖=‖ x ‖} , ∀ x ∈ E

and J∗ : E∗ → E∗∗ be the normalized duality mapping on E∗ defined by

J∗(y) = { f ∈ E∗∗ : 〈 f , y〉 =‖ y ‖‖ f ‖, ‖ f ‖=‖ y ‖}, ∀y ∈ E∗,

where E∗∗ is a dual space of E∗.

We observe that E = H is a Hilbert space, then J and J∗ are the identity mappings on H. In the sequel, j and j∗ denote a

selection of J and J∗, respectively.

Let G : E → CB(E), S : E → CB(E) and T : E → CB(E) be set-valued mappings, and let N : E ×E → E∗, p, g: E → E,

A, B : E → E, H : E×E → E∗, η : E×E → E and F : E×E×E → E∗ be single-valued mappings. Let M : E×E → 2E∗

be a set-valued mapping such that for each fixed z ∈ G(E), M(·, z) : E → 2E∗
is an (H(·, ·), η)-monotone operator with

respect to A and B and (g− p)(E)
⋂

dom(M(·, z)) � ∅. We consider the following generalized mixed variational inclusion:

for given ω ∈ E∗ find u ∈ E, x ∈ S (u), y ∈ T (u) and z ∈ G(u) such that

ω ∈ F(u, u, z) + N(x, y) + M((g − p)(u), z) (1)

Special cases

(I) If F = p = ω = 0 and E = H is a Hilbert space, then the problem (1) reduces to a generalized mixed quasi-variational-

like inclusion with (H(·, ·), η)-monotone operators in a Hilbert space: find u ∈ E, x ∈ S (u), y ∈ T (u) and z ∈ G(u) such

that

0 ∈ N(x, y) + M(g(u), z). (2)

If M is H-monotone in the first argument, then the problem (2) was introduced and studied by Zeng (2007).

From Definition 3.2, we can obtain the following conclusion.
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Lemma 4.1 Let E, ω, F, N, T , S , p, g, H, η, G and M be same as in the problem (1). Then (u, x, y, z) is a solution of the

problem (1) if and only if (u, x, y, z, ) satisfies the following relation

(g − p)(u) = RH(·,·),η
M(·,z),ρ(H(A((g − p)(u)), B((g − p)(u))) + ρω − ρN(x, y) − ρF(u, u, z)). (3)

where u ∈ E, x ∈ S (u), y ∈ T (v), z ∈ G(u) RH(·,·),η
M(·,z),ρ=(H(A, B) + ρM(·, z))−1 and ρ > 0 are constants.

Remark 4.1 The equality (3) can be written as

z = H(A((g − p)(u)), B((g − p)(u))) + ρω − ρN(x, y) − ρF(u, u, z), (g − p)(u) = RM,η
H(·,·),ρ(z),

where ω ∈ E∗ is any given element and ρ > 0 is a constant. By Nadler (1969), we know that this formulation enables us

to suggest the following iterative algorithm.

Algorithm 4.1 Step 1. For given ω ∈ E∗ and ρ > 0, choose u0 ∈ E, x ∈ S (u0), y ∈ T (v0) and z ∈ G(u0).

Step 2. Let

(g − p)(un+1) = RH(·,·),η
M(·,zn),ρ(H(A((g − p)(un)), B((g − p)(un))) + ρω − ρN(xn, yn) − ρF(un, un, zn)) + en. (4)

Step 3. Choose xn+1 ∈ S (un+1), yn+1 ∈ T (un+1) and zn+1 ∈ G(un+1) such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖ xn+1 − xn ‖≤ (1 + 1

n+1
)H̃(S (un+1), S (un)),

‖ yn+1 − yn ‖≤ (1 + 1
n+1

)H̃(T (un+1),T (un)),

‖ zn+1 − zn ‖≤ (1 + 1
n+1

)H̃(G(un+1),G(un)).

(5)

Step 4. Choose errors {en} ⊂ E to take into account a possible inexact computation such that

∞∑
j=1

‖ e j − e j−1 ‖ �− j < ∞, ∀� ∈ (0, 1).limn→∞en = 0. (6)

Step 5. If xn+1 ∈ S (un+1), yn+1 ∈ T (vn+1) and zn+1 ∈ G(vn+1) satisfy (5) to sufficient accuracy, stop; otherwise, set n := n+1

and return to Step 2.

Definition 4.1 A set-valued mapping A : E → CB(E) is said to be H̃-Lipschitz continuous if there exists a constant L > 0

such that

H̃(A(x), A(y)) ≤ L ‖ x − y ‖, ∀ x, y ∈ E.

Definition 4.2 Let F : E × E × E → E∗ be a single-valued mapping. F is said to be

(1) ξ1-Lipschitz continuous in the first argument if there exists some constant ξ1 > 0 such that

‖ F(u1, ·, ·) − F(v1, ·, ·) ‖≤ ξ1 ‖ u1 − v1 ‖, ∀ u1, v1 ∈ E;

(2) ξ2-Lipschitz continuous in the second argument if there exists some constant ξ2 > 0 such that

‖ F(·, u2, ·) − F(·, v2, ·) ‖≤ ξ2 ‖ u2 − v2 ‖, ∀ u2, v2 ∈ E;

(3) ξ3-Lipschitz continuous in the third argument if there exists some constant ξ3 > 0 such that

‖ F(·, ·, u3) − F(·, ·, v3) ‖≤ ξ3 ‖ u3 − v3 ‖, ∀ u3, v3 ∈ E.

Definition 4.3 Let N : E × E2 → E∗ be a single-valued mapping. N is said to be

(1) ᾱ-Lipschitz in the first argument if there exists some constant ᾱ > 0 such that

‖ N(u1, v′) − N(u2, v′) ‖≤ ᾱ ‖ u1 − u2 ‖, ∀ u1, u2 ∈ E, v′ ∈ E;

(2) β̄-Lipschitz in the second argument if there exists some constant β̄ > 0 such that

‖ N(u′, v1) − N(u′, v2) ‖≤ β̄ ‖ v1 − v2 ‖, ∀ v1, v2 ∈ E, u′ ∈ E.

Theorem 4.1 Let G : E → CB(E), S : E → CB(E) and T : E → CB(E) be set-valued mappings, and let N : E×E → E∗,
A, B, p, g : E → E, H : E × E → E∗, η : E × E → E, and F : E × E × E → E∗ be single-valued mappings. Let
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M : E × E → 2E∗
be a set-valued mapping such that for each fixed z ∈ G(E), M(·, z) : E → 2E∗

is an (H(·, ·), η)-monotone

mapping with respect to A and B, and (g − p)(E)
⋂

dom(M(·, z)) � ∅. Furthermore, suppose the following conditions are

satisfied:

(i) H(A, B) is α-strongly η-monotone with respect to A, β-relaxed η-monotone with respect to B and α > β, and ε1-

Lipschitz continuous with respect to A and ε2-Lipschitz continuous with respect to B;

(ii) S , T and G are H̃-Lipschitz continuous with constants l1, l2 and l3, respectively;

(iii) η : E × E → E is τ-Lipschitz continuous and N is ᾱ-Lipschitz continuous in the first argument and β̄-Lipschitz

continuous in the second argument;

(iv) g − p is s-Lipschitz continuous, and g − p − I is ς-strongly accretive, where I denotes the identity mapping on E;

(v) F is ξ j-Lipschitz continuous in the j-th argument for j = 1, 2, 3;

In addition, if there are constants μ > 0 such that

‖ RH(·,·),η
M(·,z),ρ(u) − RH(·,·),η

M(·,z̄),ρ(u) ‖≤ μ ‖ z − z̄ ‖, ∀ (z, z̄) ∈ E × E, u ∈ E∗, (7)

and there exist constants 0 < ρ < r
m , where r = α − β, such that

τ

√
(ε1 + ε2)2s2 + 2ρᾱl1((ε1 + ε2)s + ρᾱl1) + τρ(β̄l2 + ξ1 + ξ2 + ξ3l3) + μl3 < (r − ρm)

√
2ς + 1 (8)

Then the iterative sequences {un}, {xn}, {yn} and {zn} generated by Algorithm 4.1 converge strongly to u∗, x∗, y∗ and z∗,
respectively, and (u∗, x∗, y∗, z∗) is a solution of the problem (1).

Proof Since g − p − I is ς-strongly monotone, by Lemma 2.1, we have the following estimate:

‖ un+2 − un+1 ‖2

=‖ (g − p)(un+2) − (g − p)(un+1) + un+2 − un+1

− ((g − p)(un+2) − (g − p)(un+1)) ‖2

≤‖ (g − p)(un+2) − (g − p)(un+1) ‖2

− 2〈(g − p − I)(un+2) − (g − p − I)(un+1), j(un+2 − un+1)〉
≤‖ (g − p)(un+2) − (g − p)(un+1) ‖2 −2ς ‖ un+2 − un+1 ‖2,

(9)

which implies that

‖ un+2 − un+1 ‖≤ 1√
2ς + 1

‖ (g − p)(un+2) − (g − p)(un+1) ‖ . (10)

Now, by using (4), (7) and Theorem 3.3, we have

‖ (g − p)(un+2) − (g − p)(un+1) ‖
=‖ RH(·,·),η

M(·,zn+1),ρ(H(A((g − p)(un+1)), B((g − p)(un+1))) + ρω − ρN(xn+1, yn+1)

− ρF(un+1, vn+1, zn+1)) + en+1 − (RH(·,·),η
M(·,zn),ρ(H(A((g − p)(un)), B((g − p)(un)))

+ ρω − ρN(xn, yn) − ρF(un, vn, zn)) + en) ‖
≤‖ RH(·,·),η

M(·,zn+1),ρ(H(A((g − p)(un+1)), B((g − p)(un+1))) + ρω − ρN(xn+1, yn+1)

− ρF1(un+1, vn+1, zn+1)) − RH(·,·),η
M(·,zn),ρ(H(A((g − p)(un)), B((g − p)(un)))

+ ρω − ρN(xn, yn) − ρF(un, vn, zn)) ‖ + ‖ en+1 − en ‖
≤‖ RH(·,·),η

M(·,zn+1),ρ(H(A((g − p)(un+1)), B((g − p)(un+1))) + ρω − ρN(xn+1, yn+1)

− ρF(un+1, vn+1, zn+1)) − RH(·,·),η
M(·,zn+1),ρ(H(A((g − p)(un)), B((g − p)(un)))

+ ρω − ρN(xn, yn) − ρF(un, vn, zn)) ‖
+ ‖ RH(·,·),η

M(·,zn+1),ρ(H(A((g − p)(un)), B((g − p)(un))) + ρω − ρN(xn, yn) − ρF(un, vn, zn))

− RH(·,·),η
M(·,zn),ρ(H(A((g − p)(un)), B((g − p)(un))) + ρω − ρN(xn, yn)

− ρF(un, vn, zn)) ‖ + ‖ en+1 − en ‖
≤ τ

r − ρm [‖ (H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un)))

− ρ(N(xn+1, yn+1) − N(xn, yn+1)) ‖ +ρ ‖ F(un+1, vn+1, zn+1) − F(un, vn, zn) ‖
+ ρ ‖ N(xn, yn+1) − N(xn, yn) ‖]+ ‖ en+1 − en ‖ +μ ‖ zn+1 − zn ‖

(11)
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Since g − p and H(·, ·) are Lipschitz continuous, by using Lemma 2.1, we obtain

‖ H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un)))

− ρ(N(xn+1, yn+1) − N(xn, yn+1)) ‖2

≤‖ H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un))) ‖2

− 2ρ〈N(xn+1, yn+1) − N(xn, yn+1),

j∗1(H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un)))

− ρ(N(xn+1, yn+1) − N(xn, yn+1)))〉
≤‖ H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un))) ‖2

+ 2ρ ‖ N(xn+1, yn+1) − N(xn, yn+1) ‖
[‖ H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un))) ‖
+ ρ ‖ N(xn+1, yn+1) − N(xn, yn+1) ‖]

≤ (ε1 + ε2)2s2 ‖ un+1 − un ‖2 +2ρ ‖ N(xn+1, yn+1) − N(xn, yn+1) ‖
[(ε1 + ε2)s ‖ un+1 − un ‖ +ρ ‖ N(xn+1, yn+1) − N(xn, yn+1) ‖].

(12)

Now, by Algorithm 4.1, and conditions (ii)-(iii) and (v), we get

‖ N(xn+1, yn+1) − N(xn, yn+1) ‖≤ ᾱ ‖ xn+1 − xn ‖
≤ ᾱ(1 +

1

n + 1
)H̃(S (un+1), S (un)) ≤ ᾱ(1 +

1

n + 1
)l1 ‖ un+1 − un ‖,

(13)

‖ N(xn, yn+1) − N(xn, yn) ‖≤ β̄ ‖ yn+1 − yn ‖
≤ β̄(1 + 1

n + 1
)H̃(T (un+1),T (un)) ≤ β̄(1 + 1

n + 1
)l2 ‖ un+1 − un ‖,

(14)

‖ zn+1 − zn ‖≤ (1 +
1

n + 1
)H̃(G(un+1),G(un)) ≤ (1 +

1

n + 1
)l3 ‖ un+1 − un ‖, (15)

‖ F(un+1, un+1, zn+1) − F(un, un, zn) ‖
≤ ξ1 ‖ un+1 − un ‖ +ξ2 ‖ un+1 − un ‖ +ξ3 ‖ zn+1 − zn ‖
≤ (ξ1 + ξ2 + (1 +

1

n + 1
)ξ3l3) ‖ un+1 − un ‖ .

(16)

From (12) and (13), we get

‖ H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un)))

− ρ(N(xn+1, yn+1) − N(xn, yn+1)) ‖2

≤ [(ε1 + ε2)2s2 + 2ρᾱ(1 +
1

n + 1
)l1((ε1 + ε2)s + ρᾱ(1 +

1

n + 1
)l1)] ‖ un+1 − un ‖2 .

(17)

By (11)-(17), we obtain

‖ (g − p)(un+2) − (g − p)(un+1) ‖
≤ τ

r − ρm [‖ (H(A((g − p)(un+1)), B((g − p)(un+1))) − H(A((g − p)(un)), B((g − p)(un)))

− ρ(N(xn+1, yn+1) − N(xn, yn+1)) ‖ +ρ ‖ F(un+1, vn+1, zn+1) − F(un, vn, zn) ‖
+ ρ ‖ N(xn, yn+1) − N(xn, yn) ‖]+ ‖ en+1 − en ‖ +μ ‖ zn+1 − zn ‖

≤ [
τ

r − ρm

√
(ε1 + ε2)2s2 + 2ρᾱ(1 +

1

n + 1
)l1((ε1 + ε2)s + ρᾱ(1 +

1

n + 1
)l1)

+
τρ

r − ρm (β̄(1 +
1

n + 1
)l2 + ξ1 + ξ2 + (1 +

1

n + 1
)ξ3l3) + μ(1 +

1

n + 1
)l3] ‖ un+1 − un ‖

+ ‖ en+1 − en ‖ .

(18)
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Hence

‖ un+2 − un+1 ‖
≤ 1√

2ς + 1
‖ (g − p)(un+2) − (g − p)(un+1) ‖

≤ 1√
2ς + 1

[
τ

r − ρm

√
(ε1 + ε2)2s2 + 2ρᾱ(1 +

1

n + 1
)l1((ε1 + ε2)s + ρᾱ(1 +

1

n + 1
)l1)

+
τρ

r − ρm (β̄(1 +
1

n + 1
)l2 + ξ1 + ξ2 + (1 +

1

n + 1
)ξ3l3) + μ(1 +

1

n + 1
)l3] ‖ un+1 − un ‖

+
1√

2ς + 1
‖ en+1 − en ‖≤ Λn+1 ‖ un+1 − un ‖ + 1√

2ς + 1
‖ en+1 − en ‖,

(19)

where Λn+1 =
1√

2ς+1
[ τ

r−ρm
√

(ε1 + ε2)2s2 + 2ρᾱ(1 + 1
n+1

)l1((ε1 + ε2)s + ρᾱ(1 + 1
n+1

)l1)

+
τρ

r−ρm (β̄(1 + 1
n+1

)l2 + ξ1 + ξ2 + (1 + 1
n+1

)ξ3l3) + μ(1 + 1
n+1

)l3].

Let

Λ = 1√
2ς+1

[ τ
r−ρm

√
(ε1 + ε2)2s2 + 2ρᾱl1((ε1 + ε2)s + ρᾱl1)

+
τρ

r−ρm (β̄l2 + ξ1 + ξ2 + ξ3l3) + μl3] and γ = 1√
2ς+1

. Then we know Λn → Λ as n → ∞.

By (8), we know that 0 < Λ < 1 and hence there exist n0 > 0 and Λ0 ∈ (0, 1) such that Λn+1 ≤ Λ0 for all n ≥ n0.

Therefore, by (19) we have

‖ un+2 − un+1 ‖≤ Λ0 ‖ un+1 − un ‖ +γ ‖ en+1 − en ‖, ∀n ≥ n0. (20)

(20) implies that

‖ un+1 − un ‖≤ Λn−n0

0
‖ un0+1 − un0

‖ +γ
n−n0∑
j=1

Λ
j−1

0
tn−( j−1), (21)

where tn+1 =‖ en+1 − en ‖ for all n ≥ n0. Hence, for any m ≥ n > n0, we have

‖ um − un ‖ ≤
m−1∑
k=n

‖ uk+1 − uk ‖

≤
m−1∑
k=n

Λ
k−n0

0
‖ un0+1 − un0

‖ +γ
m−1∑
k=n

Λk
0[

k−n0∑
j=1

tk−( j−1)

Λ
k−( j−1)

0

].

Since
∑∞

j=1 ‖ e j − e j−1 ‖ �− j < ∞, ∀� ∈ (0, 1) and 0 < χ0 < 1, it follows that ‖ um − un ‖→ 0 as n → ∞, and so un

is a Cauchy sequence in E. Thus, there exists u∗ ∈ E such that un → u∗ as n → ∞. By Algorithm 4.1 and the Lipschitz

continuity of S , T and G, we get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖ xn+1 − xn ‖≤ (1 + 1

n+1
)H̃(S (un+1), S (un)) ≤ (1 + 1

n+1
)l1 ‖ un+1 − un ‖,

‖ yn+1 − yn ‖≤ (1 + 1
n+1

)H̃(T (un+1),T (un)) ≤ (1 + 1
n+1

)l2 ‖ vn+1 − vn ‖,
‖ zn+1 − zn ‖≤ (1 + 1

n+1
)H̃(G(un+1),G(un)) ≤ (1 + 1

n+1
)l3 ‖ un+1 − un ‖,

(22)

It follows that {xn}, {yn} and {zn} are all Cauchy sequence. Thus, there exist x1, y1, z1, x2, y2 and z2 such that xn → x∗,
yn → y∗, and zn → z∗, as n → ∞. Next, we will show that x∗ ∈ S (u∗). Noting xn ∈ S (un), we have

d(x∗, S (u∗)) ≤‖ x∗ − xn ‖ +d(xn, S (u∗))

≤‖ x∗ − xn ‖ +H̃(S (un), S (u∗))
≤‖ x∗ − xn ‖ +l1 ‖ un − u∗ ‖→ 0 (n → ∞).

Since S (u) is closed, it implies x∗ ∈ S (u∗). Similarly, one can show that y∗ ∈ T (u∗) and z∗ ∈ G(u∗).
By the condition (7), Theorem 3.3 and the continuity of all mappings, letting n → ∞ in (4), we obtain

(g − p)(u∗) = RH(·,·),η
M(·,z∗),ρ(H(A((g − p)(u∗)), B((g − p)(u∗))) + ρω − ρN(x∗, y∗) − ρF(u∗, u∗, z∗)). (23)

where u∗ ∈ E, x∗ ∈ S (u∗), y∗ ∈ T (v∗), z∗ ∈ G(u∗) RH(·,·),η
M(·,z∗),ρ=(H(A, B) + ρM(·, z∗))−1 and ρ > 0 are constants.

By Lemma 4.1, (u∗, x∗, y∗, z∗) is a solution of the problem (1). This completes the proof. �
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Remark 4.1 By Algorithm 4.1 and Theorem 4.1, it is easy to obtain the convergence results for iterative algorithms for

special cases of the problem (1), We omit them here. We emphasize that the existence result and algorithm of solutions

for the problem (1) are given in general Banach spaces without uniform smoothness and the set-valued mappings that may

not be monotone or accretive.
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