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Abstract

Hexagonal grid methods are found useful in many research works, including numerical modeling in spherical coordinates,
in atmospheric and ocean models, and simulation of electrical wave phenomena in cardiac tissues. Almost all of these
used standard Laplacian and mostly on one configuration of regular hexagons. In this work, discrete symmetric boundary
condition and energy product for anisotropic Laplacian are investigated firstly on general net of regular hexagons, and
then generalized to its most extent in two- or three-dimensional cell-center finite difference applications up to the usage
of symmetric stencil in central differences. For analysis of Laplacian related applications, this provides with an approach
in addition to the M-matrix theory, series method, functional interpolations and Fourier vectors.
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1. Introduction

Hexagonal (Hex) grid methods are of interest in many research studies: (Pickering,1986) on direct method, (Makarov,
Mararov & Moskal’kov, 1993) giving a formula without proof, (Bystrytskyi & Mosklkov, 2001) on seven-point method on
rectangular grid with explicit form of eigenpairs, (Zhou & Fulton, 2009) with periodic boundary condition (BC), (Heikes
& Randall, 1995, part I,II) and (Heikes, Randall & Konor, 2013) on numerical modeling in spherical coordinates, (van Eck
& Kors, 2005) on action potential in heart modeling via algebraic method without using diffusion in form of differential
equation, (Nickovic,Gavrilov & Tosic, 2002) showing advantages of Hex grids over commonly used square grids for use
in atmospheric and ocean models. In the article by (Lee,Tien,Luo and Luk,2014), Hex grid finite difference (FD) methods
are derived in a finite volume (FV) approach involving standard Laplacian, and used in the simulation of electrical wave
phenomena propagated in two-dimensional reversed-C type cardiac tissues, exhibiting both linear and spiral waves more
efficiently than similar computation carried on rectangular FVs. We note these cited works all used standard Laplacian
and mostly on one configuration of regular hexagons.

In two-dimensional applications of configurations consisting of (subset of) Cartesian type regular hexagons, we denote
the radius of hexagons by r, the height by h(=

√
3

2 r), and the center-to-center distance by d(= 2h). Near a typical center
node, P0 = (x0, y0), the six neighbor (center) nodes are

P j = (x j, y j) = (x0, y0) + d(cos ξ j, sin ξ j), ξ j = φ +
jπ
3
+
π

6
, 1 ≤ j ≤ 6. (1)

Here the phase angle, φ, is the configurarion parameter. Two particular instances are called type I (φ = 0) and type II
(φ = −π6 ) for convenience. Hexagon centers in lattices of these two types are indexed as for an orthogonal Cartesian mesh
as shown in Table 1, while the geometry and neighborhood of a general Hex FV shown in Table 2. Indexing rules are
illustrated in Figs. 1, 2, 3 and 4.

For convenience, we abuse the notations and denote FV centers in a neighborhood (Figs. 3 and 4) by an ordered list,

Type I : {P j}6j=0 = {P, PN , PNW , PS W , PS , PS E , PNE },
Type II : {P j}6j=0 = {P, PNE , PNW , PW , PS W , PNW , PE }.

(2)

We note for applications that a two-dimensional irregular domain may be approximated by a sequence of (not neces-
sarily Cartesian) nets of hexagons. Actually, our work in numerical modeling of ECG depends on this (Algorithm 1 in
(Lee,Tien,Luo & Luk, 2014)).
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Figure 1. Lattice of type I regular hexagons in natural order by columns
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Figure 2. Lattice of type II regular hexagons in natural order by columns
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Figure 3. Type I regular hexagonal FV neighborhood
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Figure 4. Type II regular hexagonal FV neighborhood
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Table 1. Lattices of type I and II regular hexagons

Phase angle Type I, φ = 0 Type II, φ = −π/6
Center point ieven iodd jeven jodd

cx(i, j) (1.5i − 0.5)r 2ih (2i − 1)h
cy(i, j) 2 jh (2 j − 1)h (1.5 j − 0.5)r

Table 2. Local geometry at a regular hexagon : six vertices and six neighbor centers

Phase angle φ ∈ R
Vertices Vk = (vx(∗, k), vy(∗, k)) , k = 1, 2, · · · , 6.
vx(∗, k) cx(∗) + r cos(φ + kπ

3 )
vy(∗, k) cy(∗) + r sin(φ + kπ

3 )
Neighbor centers Pk = Vk + Vk+1 − P0, k = 1, 2, · · · , 6.

Concerning the negative anisotropic Laplacian

−Lap ( f ) := −D1 fxx − D2 fyy (3)

with positive constant diffusivities D1 and D2, we observe the following.

Lemma 1 (Reflection principle for anisotropic Laplacian.) The two configurations, type I and II regular hexagons centered
at the origin together with the anisotropic Laplacian, are convertible from each other by applying reflection with respect
to the main diagonal in the xy-plane, and therefore interchanging the two symbol lists (Figs. 3 and 4){

x, y,D1,D2,N,NW, S W, S , S E,NE
}

and
{
y, x,D2,D1, E, S E, S W,W,NW,NE

}
.

With a general phase angle, the reflection interchanges{ (
φ
)
,
(
P j
)6

j=1

}
and

{ (π
2
− φ), (P6− j%6

)6
j=1

}
.

Here
(
P6− j%6

)6
j=1 refers to the outcome of the order-2 permutation

(
1 2 3 4 5 6
5 4 3 2 1 6

)
of the indices.

The focus in subsequent discussion is on net of type I hexagons.

We note that spectral analysis of iterative methods solving the discrete anisotropic Laplacian on a net of hexagons seems
not as easy as the analysis on square grids (Suli,1993) and (Karaa & Zhang, 2003), since finite trigonometric series is
incomplete for the error analysis (even) on a single regular hexagon (McCartin,2002,2003).

The analysis of solving Laplacian related applications on net of (regular) hexagons may be based on series method (Lee,
Tien, Luo & Luk, 2014), M-matrix theory (Lee, Tien, Luo & Luk, 2014) and (Lee, August 2017), functional interpolation
(Lee, 2015), or Fourier vectors (Lee, August 2017). The current work discusses the Laplacian through discrete symmetric
boundary condition (Sections 3 and 4).

In the world of differential equations, for example (Strauss, 2008), the term symmetric boundary condition is defined so
as to make a (real) operator symmetric. On the other hand, as a practice for long time in the engineering literatures, the
phrase symmetric boundary condition may mean, differently, that the computational domain is reduced by halving and
the numerical BC on the virtual separating edge is of homogeneous Neumann type : (Kim & Huh, 2000), (Xu & Soares,
2013), and (Pal, Lan, Li, Hirleman & Ma, 2015). Same as such with spherical (reflexive) symmetric boundary condition
in similar situations.

We are with the operator-theoretic view (Eqs. (5, 20 and 24) in current work).

As for the remaining sections, symmetric boundary condition for the Laplacian is introduced for smooth scalar functions
in Section 2, with detailed discussion in Section 3. The theory is generalized and simplified in Section 4 with simple
assumption and argument. Discussed in Section 5 are many examples of symmetric boundary condition for Laplacian,
including non-product type pairs (generators) for an invariant subspace of some operator on type I Hex grid.
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2. Function Symmetric Boundary Condition for Laplacian

We focus here on standard Laplacian (Eq. (3) with D1 = D2 = 1) and recall the Green’s first and second identities,

−
"
Ω

f (x, y)∇2g(x, y) dxdy =

"
Ω

∇ f (x, y)∇g(x, y) dxdy −
∫
∂Ω

f
∂g
∂n⃗

dγ(t)

−
"
Ω

g(x, y)∇2 f (x, y) dxdy =

"
Ω

∇ f (x, y)∇g(x, y) dxdy −
∫
∂Ω

g
∂ f
∂n⃗

dγ(t)"
Ω

( f∇2g − g∇2 f ) dxdy =

∫
∂Ω

(
f
∂g
∂n⃗
− g
∂ f
∂n⃗

)
dγ (4)

in which Ω is a domain with ∂Ω its piecewise smooth boundary such that these formulas are valid. The outward normal
on the boundary is denoted by ∂n⃗.

Definition 1. A pair of (distinct) functions f , g ∈ C2(Ω) satisfies symmetric boundary condition (for the Laplacian), if∫
∂Ω

(
f
∂g
∂n⃗
− g
∂ f
∂n⃗

)
dγ = 0, (5)

so that the Laplacian is symmetric on f and g, ⟨ f ,∇2g⟩ = ⟨∇2 f , g⟩.
If every pair in a family of functions satisfies the symmetric boundary condition, we say the Laplacian is symmetric on
the family.

Notice that, with or without satisfication of the symmetric boundary condition, we may consider symmetrization of the
energy product,

⟨ f , g⟩L :=
1
2

(
⟨ f , −∇2g ⟩ + ⟨ g, −∇2 f ⟩

)
=

"
Ω

∇ f (x, y)∇g(x, y) dxdy − B2( f , g) (6)

in which the boundary functional is

B2( f , g) :=
1
2

∫
∂Ω

∂

∂n⃗
( f g) dγ(t) =

1
2

∫
∂Ω

(
f
∂g
∂n⃗
+ g
∂ f
∂n⃗
)

dγ(t) (7)

Assuming the symmetric boundary condition, there may exist simplification of the boundary functional and the energy
product.

Example 1. Some particular cases assume

∂Ω =: Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ϕ,

then the symmetric B.C. is satisfied, provided that

f
∣∣∣
ΓD
= g
∣∣∣
ΓD
=
∂ f
∂n⃗

∣∣∣
ΓN
=
∂g
∂n⃗

∣∣∣
ΓN
= 0.

Accordingly, the energy product is

⟨ f , −∇2g ⟩ = ⟨ g, −∇2 f ⟩ =
"
Ω

∇ f (x, y)∇g(x, y) dxdy (8)

Two classical examples include pairs both satisfying homogeneous Dirichlet or homogeneous Neumann BC.

Example 2. A pair satisfying Robin BC that

∂ f
∂n⃗

(x) = −c(x) f (x),
∂g
∂n⃗

(x) = −c(x)g(x) (9)

provides another example which satisfies the symmetric boundary condition, owing to∫
∂Ω

f
∂g
∂n⃗

dγ(t) = −
∫
∂Ω

c
(
x(t)
)
f
(
x(t)
)
g
(
x(t)
)

dγ(t) =
∫
∂Ω

g
∂ f
∂n⃗

dγ(t),
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The corresponding energy product

⟨ f , −∇2g ⟩ = ⟨ g, −∇2 f ⟩ =
"
Ω

∇ f (x, y)∇g(x, y) dxdy +
∫
∂Ω

c(x) f (x)g(x) dγ

is then positive definite, under an additional assumption that c(x) > 0 on ∂Ω.

Very general results in discrete symmetric boundary condition are presented in Section 4. For the motivation, we discuss
next the discretization (Fig. 1) of a Cartesian net of type I regular hexagons.

3. Discrete Symmetric Boundary Condition on Net of Regular Hexagons

The type I neighborhood topology (Fig. 3) and the geometry (Eq. (2)) are detailed below.

Ω := { (i, j) | 1 ≤ i ≤ nx, 1 ≤ j ≤ ny }, interior nodes
∂i := { (i, j) ∈ Ω | (i − 1)( j − 1)(i − nx)( j − ny) = 0 }, interior boundary
∂e := { (0, 0), (nx + 1, ny + 1) }

∪ { (i, j) | i = 0, nx + 1, 1 ≤ j ≤ ny }
∪ { (i, j) | j = 0, ny + 1, 1 ≤ i ≤ nx }, exterior (ghost) boundary

Ω := Ω ∪ ∂e, interior and exterior

ΩS := { S (P), S E(P), S W(P) | P ∈ Ω } , non-top-most part

ΩN := {N(P),NE(P),NW(P) | P ∈ Ω } , non-lowest part

∂S := ∂e ∩ΩS , southern boundary

∂N := ∂e ∩ΩN , northern boundary

With P = (i, j) ∈ Ω,

S ≡ S (P) = (i, j − 1)

N ≡ N(P) = (i, j + 1)

S W ≡ S W(P) =

{
(i − 1, j − 1 ), with odd i
(i − 1, j ), with even i

S E ≡ S E(P) =

{
(i + 1, j − 1 ), with odd i
(i + 1, j ), with even i

NW ≡ NW(P) =

{
(i − 1, j ), with odd i
(i − 1, j + 1 ), with even i

NE ≡ NE(P) =

{
(i + 1, j ), with odd i
(i + 1, j + 1 ), with even i

For the symmetry of the negative hexagonal seven-point Laplacian(
L7 f
)

P := 6 fP − fN − fS − fNW − fS E − fNE − fS W

we use backward (in vertical direction) differences to derive

⟨L7 f , g⟩ = ∑
P∈Ω
(
gP( fP − fS ) − gP( fN − fP) + gP( fP − fS W ) − gP( fNE − fP)

+gP( fP − fNW ) − gP( fS E − fP)
)

=
∑

P∈Ω
(
( fP − fS )(gP − gS ) + ( fP − fS W )(gP − gS W ) + ( fP − fNW )(gP − gNW )

)
−∑N∈∂e

gP( fN − fP) +
∑

S∈∂e
gS ( fP − fS )

−∑NE∈∂e
gP( fNE − fP) +

∑
S W∈∂e

gS W ( fP − fS W )
−∑S E∈∂e

gP( fS E − fP) +
∑

NW∈∂e
gNW ( fP − fNW )

(10)
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Similarly, by interchanging f and g,

⟨ f , L7g⟩ = ∑
P∈Ω
(

fP(gP − gS ) − fP(gN − gP) + fP(gP − gS W ) − fP(gNE − gP)

+ fP(gP − gNW ) − fP(gS E − gP)
)

=
∑

P∈Ω
(
( fP − fS )(gP − gS ) + ( fP − fS W )(gP − gS W ) + ( fP − fNW )(gP − gNW )

)
−∑N∈∂e

fP(gN − gP) +
∑

S∈∂e
fS (gP − gS )

−∑NE∈∂e
fP(gNE − gP) +

∑
S W∈∂e

fS W (gP − gS W )
−∑S E∈∂e

fP(gS E − gP) +
∑

NW∈∂e
fNW (gP − gNW )

(11)

Setting the goal ⟨L7 f , g⟩ − ⟨ f , L7g⟩ = 0 leads to backward difference version of the symmetric boundary condition,∑
N∈∂e

(
fP(gN − gP) − gP( fN − fP)

) −∑S∈∂e

(
fS (gP − gS ) − gS ( fP − fS )

)
+
∑

NE∈∂e

(
fP(gNE − gP) − gP( fNE − fP)

) −∑S W∈∂e

(
fS W (gP − gS W ) − gS W ( fP − fS W )

)
+
∑

S E∈∂e

(
fP(gS E − gP) − gP( fS E − fP)

) −∑NW∈∂e

(
fNW (gP − gNW ) − gNW ( fP − fNW )

)
= 0

(12)

Alternatively, we can make use of forward (in vertical direction) differences.

⟨L7 f , g⟩ = ∑
P∈Ω
(
( fN − fP)(gN − gP) + ( fNE − fP)(gNE − gP) + ( fS E − fP)(gS E − gP)

)
−∑N∈∂e

gN( fN − fP) +
∑

S∈∂e
gP( fP − fS )

−∑NE∈∂e
gNE( fNE − fP) +

∑
S W∈∂e

gP( fP − fS W )
−∑S E∈∂e

gS E( fS E − fP) +
∑

NW∈∂e
gP( fP − fNW )

(13)

Also, by interchanging f and g,

⟨ f , L7g⟩ = ∑
P∈Ω
(
( fN − fP)(gN − gP) + ( fNE − fP)(gNE − gP) + ( fS E − fP)(gS E − gP)

)
−∑N∈∂e

fN(gN − gP) +
∑

S∈∂e
fP(gP − gS )

−∑NE∈∂e
fNE(gNE − gP) +

∑
S W∈∂e

fP(gP − gS W )
−∑S E∈∂e

fS E(gS E − gP) +
∑

NW∈∂e
fP(gP − gNW )

(14)

Comparison of the last two equations leads to forward difference version of the symmetric boundary condition∑
N∈∂e

(
fN(gN − gP) − gN( fN − fP)

) −∑S∈∂e

(
fP(gP − gS ) − gP( fP − fS )

)
+
∑

NE∈∂e

(
fNE(gNE − gP) − gNE( fNE − fP)

) −∑S W∈∂e

(
fP(gP − gS W ) − gP( fP − fS W )

)
+
∑

S E∈∂e

(
fS E(gS E − gP) − gS E( fS E − fP)

) −∑NW∈∂e

(
fP(gP − gNW ) − gP( fP − fNW )

)
= 0

(15)

Taking average of Eqs. (10 and 13), (11 and 14), respectively, leads to

⟨L7 f , g⟩ = 1
2
∑

P∈Ω
(
( fP − fS )(gP − gS ) + ( fP − fS W )(gP − gS W ) + ( fP − fNW )(gP − gNW )

)
+ 1

2
∑

P∈Ω
(
( fN − fP)(gN − gP) + ( fNE − fP)(gNE − gP) + ( fS E − fP)(gS E − gP)

)
− ∑

N∈∂e

(gN+gP)
2 ( fN − fP) +

∑
S∈∂e

(gP+gS )
2 ( fP − fS )

− ∑
NE∈∂e

(gNE+gP)
2 ( fNE − fP) +

∑
S W∈∂e

(gP+gS W )
2 ( fP − fS W )

− ∑
S E∈∂e

(gS E+gP)
2 ( fS E − fP) +

∑
NW∈∂e

(gP+gNW )
2 ( fP − fNW )

(16)
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⟨ f , L7g⟩ = 1
2
∑

P∈Ω
(
( fP − fS )(gP − gS ) + ( fP − fS W )(gP − gS W ) + ( fP − fNW )(gP − gNW )

)
+ 1

2
∑

P∈Ω
(
( fN − fP)(gN − gP) + ( fNE − fP)(gNE − gP) + ( fS E − fP)(gS E − gP)

)
− ∑

N∈∂e

( fN+ fP)
2 (gN − gP) +

∑
S∈∂e

( fP+ fS )
2 (gP − gS )

− ∑
NE∈∂e

( fNE+ fP)
2 (gNE − gP) +

∑
S W∈∂e

( fP+ fS W )
2 (gP − gS W )

− ∑
S E∈∂e

( fS E+ fP)
2 (gS E − gP) +

∑
NW∈∂e

( fP+ fNW )
2 (gP − gNW )

(17)

To summarize in compact form. Let P′ represent a member in the neighborhood of P ∈ Ω, that is, symbolically,

P′ ∈
{

PN , PNW , PS W , PS , PS E , PNE

}
Then, in terms of backward differences (using three lower neighbors, Eq. (10)),

⟨L7 f , g⟩ =
∑

P′∈ΩS

(gP − gP′)( fP − fP′) +
∑

P′∈∂S

gP′( fP − fP′) −
∑

P′∈∂N

gP( fP′ − fP)

and, in terms of forward differences (using three upper neighbors, Eq. (13)),

⟨L7 f , g⟩ =
∑

P′∈ΩN

(gP′ − gP)( fP′ − fP) +
∑

P′∈∂S

gP( fP − fP′) −
∑

P′∈∂N

gP′ ( fP′ − fP)

Taking average of these two leads to a compact form of Eq. (16),

⟨L7 f , g⟩ = 1
2

∑
P∈Ω

(gP − gP′)( fP − fP′) −
∑
P′∈∂e

gP + gP′

2
( fP′ − fP) (18)

Similarly, with f and g interchanged, we obtain compact forms of Eqs. (11 and 14),

⟨ f , L7g⟩ =
∑

P′∈ΩS

( fP − fP′)(gP − gP′ ) +
∑

P′∈∂S

fP′(gP − gP′ ) −
∑

P′∈∂N

fP(gP′ − gP)

⟨ f , L7g⟩ =
∑

P′∈ΩN

( fP′ − fP)(gP′ − gP) +
∑

P′∈∂S

fP(gP − gP′) −
∑

P′∈∂N

fP′(gP′ − gP)

and their average, now as a compact form of Eq. (17),

⟨ f , L7g⟩ = 1
2

∑
P∈Ω

( fP − fP′ )(gP − gP′) −
∑
P′∈∂e

fP + fP′

2
(gP′ − gP) (19)

In summary.

Theorem 2 (Symmetric boundary condition and energy product for negative seven-point Laplacian on Cartesian net of
type I regular hexagons.)

⟨g, L7 f ⟩ − ⟨ f , L7g⟩ = 0 ⇔ ∑
P′∈∂e

(
( fP+ fP′ )

2 (gP′ − gP) − (gP+gP′ )
2 ( fP′ − fP)

)
= 0

⇔ ∑
P′∈∂e

(
fPgP′ − fP′gP

)
= 0

(20)

If the above (implied) symmetric boundary condition is satisfied, then the bilinear form

⟨ f , g⟩L7 := ⟨L7 f , g⟩ = ⟨ f , L7g⟩ = 1
2

∑
P∈Ω

( fP′ − fP)(gP′ − gP) +
1
2

∑
P′∈∂e

( fPgP − fP′gP′ ) (21)

is well-defined and symmetric.

Proof. Taking difference of Eqs. (19 and 18) yields the symmetric boundary condition, while taking average leads to the
discrete product. �

Remark 1. The Theorem is valid on a general (not necessarily Cartesian) net of type I hexagons, because there is no
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usage of integral indices in the relevant discussion. Even more general case is applicable with central differencing in a
proper setup, as presented in Section 4.

Example 3. (Stencil-truncation.) Assume cell-average Dirichlet BC that the grid data vanish at ghost nodes, fP′ = gP′ =

0,∀P′ ∈ ∂e, the symmetric boundary condition (Eq. (20)) is then satisfied. The simplified energy product

⟨ f , g ⟩L7 =
1
2

∑
P∈Ω

( fP′ − fP)(gP′ − gP) +
1
2

∑
P∈∂i

fPgP

is certainly positive-definite. We note the boundary functional is defined with multiplicities at interior boundary nodes.

Example 4. (Torus.) A Cartesian net of hexagons (Fig. 1), as a computational domain with periodic BC, corresponds to a
torus with no exterior boundary (ghost) node. The symmetric boundary condition for Laplacian is satisfied. The boundary
functional vanishes and the discrete energy product is positive semi-definite. ⟨ f , f ⟩L7 = 0 if and only if f is a (single)
constant with the discrete topology being path-connected.

There are more examples along this line, with the periodic BC replaced by twist BC or by mixing of periodic and twist,
resulting in applications of dynamical systems for the real projective plane or a Klein bottle. Open field problems subject
to homogeneous Dirichlet or Neumann BC are discussed as corollaries to the general result in the next section.

4. Symmetric Boundary Condition for Discrete Laplacian by Cell-center Finite Difference

For applications involving discrete (negative) Laplacian in the form

L( f ) :=
∑

P′∈N(P)

AP′
(
fP − fP′

)
,

with Ω and ∂e denoting respectively the (disjoint) set of interior grid nodes and ghost nodes, we assume very general
assumptions that

(i) the discrete neighborhood topology is reflexive so that being-neighbor-to is a symmetric relation among interior nodes,

P,Q ∈ Ω, Q ∈ N(P) ⇐⇒ P ∈ N(Q),

(ii) the central difference (CD) stencil is symmetric, assuming proper orientation (ordering) consistently in all (local)
neighbor lists, such that

A :=
{

AP′ | P′ ∈ N(P)
}

(independent of P ∈ Ω)

≡
{

A(P,Q) | P ∈ Ω, Q ∈ N(P) ⊂ Ω ∩ ∂e

}
, A(P,Q) = A(Q, P) if P,Q ∈ Ω.

As an example, consider standard Laplacian on a net of type I regular hexagons (Figs. 1 and 3, and Eq. (3)), the
homogeneous discrete neighborhood is the relation

N :=
{(

P,N(P)
)
,
(
P,NW(P)

)
,
(
P, S W(P)

)
,
(
P, S (P)

)
,
(
P, S E(P)

)
,
(
P,NE(P)

)} ⊂ Ω × (Ω ∪ ∂e)

which is symmetric among interior nodes. We abuse the notation slightly and use

N(P) ≡
{

N(P),NW(P), S W(P), S (P), S E(P),NE(P)
}

or, with implied dependence,
N =

{
N,NW, S W, S , S E,NE

}
, ∀P ∈ Ω.

The consistently ordered homogeneous symmetric stencil (Lee,2015) is,

A :=
{
AN , ANW , AS W , AS , AS E , ANE

}
=
{1
6
,

1
6
,

1
6
,

1
6
,

1
6
,

1
6

}
, ∀P ∈ Ω,

and, in order,

∀P ∈ Ω, P′ ∈
{
N,NW, S W, S , S E,NE

}
AP′ ∈

{
AN , ANW , AS W , AS , AS E , ANE

}
=
{

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

}
.
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We add in passing, for anisotropic negative Laplacian (Eq. (3) on type I Hex net, that (Lee,2015)

A ∼
{

3D2 − D1, 2D1, 2D1, 3D2 − D1, 2D1, 2D1

}
The following relations are helpful.

Lemma 3 ∑
P∈Ω

∑
P′∈N(P)∩Ω

AP′ ( fPgP′ − fP′gP) = 0 (22)∑
P∈Ω

∑
P′∈N(P)∩Ω

AP′ ( fPgP − fP′gP′ ) = 0 (23)

We establish a very general result, as follows.

Theorem 4 The symmetric boundary condition for ⟨L f , g⟩ = ⟨Lg, f ⟩ is∑
P∈Ω, P′∈N(P)∩∂e

AP′ ( fPgP′ − fP′gP) = 0, (24)

and up to satisfication of which, the resulting energy product is

⟨ f , g⟩L =
∑
P∈Ω

∑
P′∈N(P)

AP′( fP′ − fP)(gP′ − gP) +
∑

P∈Ω, P′∈N(P)∩∂e

( fPgP − fP′gP′) (25)

Proof. Note that

⟨L f , g⟩ =
∑
P∈Ω

∑
P′∈N(P)

AP′( fP − fP′ )gP

=
∑
P∈Ω

∑
P′∈N(P)∩Ω

AP′ ( fP − fP′)gP +
∑
P∈Ω

∑
P′∈N(P)∩∂e

AP′( fP − fP′ )gp

⟨Lg, f ⟩ =
∑
P∈Ω

∑
P′∈N(P)∩Ω

AP′ (gP − gP′) fP +
∑
P∈Ω

∑
P′∈N(P)∩∂e

AP′(gP − gP′ ) fP

By taking difference of the last two equations and using Eq. (22), we obtain

⟨L f , g⟩ − ⟨Lg, f ⟩ =
∑
P∈Ω

∑
P′∈N(P)∩∂e

AP′( fPgP′ − fP′gP)

(also) =
∑
P∈Ω

∑
P′∈N(P)∩∂e

AP′
( fP′ + fP

2
(gP′ − gP) − gP′ + gP

2
( fP′ − fP)

)
(26)

which yields the symmetric boundary condition (Eq. (24)), while taking the average and using Eq. (23),

⟨ f , g⟩L :=
1
2
(⟨L f , g⟩ + ⟨Lg, f ⟩) = ⟨L f , g⟩ = ⟨Lg, f ⟩

=
1
2

∑
P∈Ω

∑
P′∈N(P)∩Ω

AP′ ( fPgP + fP′gP′ − fPgP′ − fP′gP) +
1
2

∑
P∈Ω

∑
P′∈N(P)∩∈∂e

AP′(2 fPgP − fPgP′ − fP′gP)

=
1
2

∑
P∈Ω

∑
P′∈N(P)∩(Ω∪∂e)

AP′( fP′ − fP)(gP′ − gP) − 1
2

∑
P∈Ω

∑
P′∈N(P)∩∂e

AP′
(
( fP′ − fP)(gP′ − gP) − 2 fPgP + fPgP′ + fP′gP

)
=

1
2

∑
P∈Ω

∑
P′∈N(P)

AP′ ( fP′ − fP)(gP′ − gP) + B( f , g)

with boundary functional

B( f , g) :=
1
2

∑
P∈Ω, P′∈N(P)∩∂e

( fPgP − fP′gP′ ) (27)

Thus ends the proof. �
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Remark 2. A second-order central difference approximation to the contour integral term (Eq. (5)) predicts correctly the
discrete symmetric boundary condition (Eqs. (26 and 20)).

Corollary 5 Suppose every exterior (ghost) boundary node, P′ ∈ ∂e, is of homogeneous Dirichlet, homogeneous Neumann
or Robin type such that, respectively,

either fP + fP′ = gP + gP′ = 0,
or fP − fP′ = gP − gP′ = 0,

or fP+ fP′
fP− fP′

=
gP+gP′
gP−gP′

= constP′ , at each pair (P, P′),

then the symmetric boundary condition (Eq. (24)) is satisfied.

Corollary 6

(i) If a mixed type homogeneous BC consists of at least one Dirichlet and some Neumann node(s) with vanishing boundary
functional (owing to fP′/ fP = fP′/ fP = ±1 at boundary), then the energy product simplifies to

⟨ f , g⟩L = ⟨ f , Lg⟩ = ⟨L f , g⟩ = 1
2

∑
P∈Ω

∑
P′∈N(P)

( fP′ − fP)(gP′ − gP) (28)

and is (symmetric and) positive-definite.

(ii) If pure homogeneous Neumann BC ( fP′ − fP = gP′ − gP = 0) holds, then the symmetric boundary condition is
satisfied, the boundary functional vanishes, the energy product is reduced (to Eq. (28)) and is positive semi-definite such
that ⟨ f , f ⟩L = 0 if and only if f is constant in each (path-)connected component of Ω.

(iii) In case of (function) Robin BC (Eq. (9)) with c(x) > 0 on ∂Ω, the central difference approximation

fP′ − fP

2h
= −c

fP′ + fP

2

with 2h being the node-to-node distance, implies

fP′

fP
=

1 − ch
1 + ch

=
gP′

gP
.

Therefore, the energy product (Eq. (25))

⟨ f , g⟩L =
1
2

∑
P∈Ω

( fP′ − fP)(gP′ − gP) +
1
2

∑
(P,P′)∈Ω×(N(P)∩∂e)

(
fPgP

4ch
(1 + ch)2

)
(29)

is positive definite, up to c := c(P+P′)/2 > 0 in practice.
We note the boundary functional is defined with various multiplicities at ghost nodes.

4.1 Symmetric Boundary Condition for Five-point Laplacian

In a setup of rectangular grid, the scaled negative five-point Laplacian reads

L fi, j = 4 fi, j − fi−1, j − fi+1, j − fi, j−1 − fi, j+1,

in which 1 ≤ i ≤ nx, 1 ≤ j ≤ ny at interior nodes, and i = 0, nx + 1, j = 0, ny + 1 at ghost nodes. The general theory (Eqs.
(24 and 25)) specializes as follows.

Theorem 7 Let the indices run through all interior nodes, 1 ≤ i ≤ nx, 1 ≤ j ≤ ny.

(i) The discrete 2D symmetric boundary condition for five-point Laplacian is∑
i

(
fi,0gi,1 − fi,1gi,0 + fi,ny+1gi,ny − fi,ny gi,ny+1

)
+
∑

j

(
f0, jg1, j − f1, jg0, j + fnx+1, jgnx, j − fnx, jgnx+1, j

)
= 0.

(30)
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(ii) Suppose the above symmetric boundary condition is satisfied, then the following expression

⟨ f , g⟩L := ⟨L f , g⟩ = ⟨ f , Lg⟩ = 1
2

∑
i, j

(
△i fi, j △i gi, j + △ j fi, j △ j gi, j + ▽i fi, j ▽i gi, j + ▽ j fi, j ▽ j gi, j

)
+
∑

i

(
fi,1gi,1 − fi,0gi,0

)
+
∑

i

(
fi,ny gi,ny − fi,ny+1gi,ny+1

)
+
∑

j

(
f1, jg1, j − f0, jg0, j

)
+
∑

j

(
fnx, jgnx, j − fnx+1, jgnx+1, j

) (31)

defines a symmetric bilinear form.

The above theory were actually studied firstly in details, and motivated the discussion of Hex grid case (Section 3) and
then the very general case (Section 4). We omit any meta-analysis in deriving Eqs. (30 and 31). Instead, we specialize for
a commonly encountered application on rectangular grid.

Theorem 8 (Product-form symmetric boundary condition.) Suppose that the application data are (separable) in product
forms, (

aib j
)
i, j ≡
(
fi, j
)
i, j ,
(
gi, j
)
i, j ≡
(
cid j
)
i, j, (32)

then the symmetric boundary condition (Eq. (30)) simplifies to

(b0d1 − b1d0 + bny+1dny − bny dny+1)
nx∑
i=1

aici

+ (a0c1 − a1c0 + anx+1cnx − anx cnx+1)
ny∑
j=1

b jd j = 0,

(33)

which is satisfied if any of the following four conditions holds

b0d1 − b1d0 + bny+1dny − bny dny+1 = a0c1 − a1c0 + anx+1cnx − anx cnx+1 = 0 (34)

b0d1 − b1d0 + bny+1dny − bny dny+1 =

ny∑
j=1

b jd j = 0 (35)

a0c1 − a1c0 + anx+1cnx − anx cnx+1 =

nx∑
i=1

aici = 0 (36)

nx∑
i=1

aici =

ny∑
j=1

b jd j = 0 (37)

5. Discussion

We give here examples of sets of (basis) vectors which all satisfy pairwisely the symmetric boundary condition for discrete
Laplacian. The private BC in each case is indicated when it is convenient.

We consider 2D half-integral nodes

xi =
i − 0.5

nx
, 1 ≤ i ≤ nx, y j =

j − 0.5
ny
, 1 ≤ j ≤ ny,

with extensions to ghost nodes. Depending on applications, several Cartesian type bases exist as summarized in Table 3,
in which the one-dimensional components are defined next.

5.1 One-dimensional Fourier Vectors

With (n, k, tk) denoting (nx, i, xi) or (ny, j, y j), the Fourier half-wave Sine and Cosine, and quarter-wave Sine and Cosine
vectors are, respectively,

vℓk := sin(ℓπtk), uℓk := cos((ℓ − 1)πtk), wℓk := sin((ℓ − 0.5)πtk), zℓk := cos((ℓ − 0.5)πtk), 1 ≤ k, ℓ ≤ n (38)
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The implied boundary values (k = 0, n) satisfy private BCs that

vℓ0 + vℓ1 = vℓn+1 + vℓn = uℓ0 − uℓ1 = uℓn+1 − uℓn = wℓ0 + wℓ1 = wℓn+1 − wℓn = zℓ0 − zℓ1 = zℓn+1 + zℓn = 0, ∀ℓ (39)

We allow the extension that v0
i = un+1

i ≡ 0 and refer to Figs. 5 and 6 for several low degree instances of these vectors.

The bases defined by Eq. (38) satisfy many properties, among which we mention the following.

(1) (Central-)Even-odd symmetry in half-wave vectors.

With f = vℓ or uℓ, f ℓn+1−i = (−1)ℓ+1 f ℓi . That is,

v2ℓ−1
n+1−i = v2ℓ−1

i , v2ℓ
n+1−i = −v2ℓ

i ,

u2ℓ−1
n+1−i = u2ℓ−1

i , u2ℓ
n+1−i = −u2ℓ

i ,
1 ≤ i, 2ℓ ≤ n. (40)

In particular,

v2ℓ−1
n = v2ℓ−1

1 , v2ℓ
n = −v2ℓ

1 ,

u2ℓ−1
n = u2ℓ−1

1 , u2ℓ
n = −u2ℓ

1 ,

and therefore as twist and periodic BCs, respectively, that v2ℓ−1
n+1 = −v2ℓ−1

n = −v2ℓ−1
1 = v2ℓ−1

0 ,

u2ℓ
n+1 = u2ℓ

n = −u2ℓ
1 = −u2ℓ

0 .

 v2ℓ
n+1 = −v2ℓ

n = v2ℓ
1 = −v2ℓ

0 ,

u2ℓ−1
n+1 = u2ℓ−1

n = u2ℓ−1
1 = u2ℓ−1

0 .
(41)

(2) Symmetry in quarter-wave vectors.

With i + i′ = ℓ + ℓ′ = n + 1,

wℓi = (−1)ℓ+1 zℓi′ = (−1)i+1 zℓ
′

i = (−1)ℓ+1+iwℓ
′

i′

zℓi = (−1)ℓ+1wℓi′ = (−1)ℓ+1wℓi′ = (−1)ℓ+1+i zℓ
′

i′

(42)

(3) 1D orthogonality.

⟨vℓ, vp⟩ =


n, ℓ = p = n,
n
2 , 1 ≤ ℓ = p < n,
0, 1 ≤ ℓ , p ≤ n,

⟨uℓ, up⟩ =


n, 1 = ℓ = p,
n
2 , 1 < ℓ = p ≤ n,
0, 1 ≤ ℓ , p ≤ n.

(43)

⟨ wℓ, wp ⟩ = ⟨ zℓ, zp ⟩ =
n
2
δℓ,p (44)

(4) 1D cross-product.

⟨ vℓ, up ⟩ =
 0, if ℓ − p is odd,

1
2
(

csc (ℓ+p−1)π/2
n + csc (ℓ−p+1)π/2

n
)
, if ℓ − p is even.

(45)

⟨wℓ, zp ⟩ =
 −⟨wp, zℓ ⟩ = 1

2 csc (ℓ−p)π
2n , if ℓ − p is odd,

⟨wp, zℓ ⟩ = 1
2 csc (ℓ+p−1)π

2n , if ℓ − p is even,
(46)

Orthogonal bases exist in various forms. We state a few.

Lemma 9 Every set in the following generates an orthogonal basis of Rn.

(1) { vℓ | 1 ≤ ℓ ≤ n }, (3) { u2ℓ−1, v2ℓ | 1 ≤ ℓ ≤ n
2 },

(2) { uℓ | 1 ≤ ℓ ≤ n }, (4) { v2ℓ−1, u2ℓ | 1 ≤ ℓ ≤ n
2 }.
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Figure 5. Fourier half-wave Sine and Cosine vectors of degrees up to eight
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Figure 6. Fourier quarter-wave Sine and Cosine vectors of degrees up to eight
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Remark 3. These four algebraic bases are also eigenbases of the 1D three-point Laplacian subject to separable or non-
separable BCs of types (D)irichlet, (N)eumann, (P)eriodic and (T)wist, respectively, as follows.

(i) Dirichlet : f0 = − f1, fn+1 = − fn
(ii) Neumann : f0 = f1, fn+1 = fn
(iii) Periodic : f0 = fn, fn+1 = f1
(iv) Twist : f0 = − fn, fn+1 = − f1

(47)

The corresponding BCs, for smooth functions, are

(i) Dirichlet : f (0) = f (1) = 0
(ii) Neumann : f ′(0) = f ′(1) = 0
(iii) Periodic : f (0) − f (1) = f ′(0+) − f ′(1−) = 0
(iv) Twist : f (0) + f (1) = f ′(0+) + f ′(1−) = 0

The Twist subcase suggests that the dynamics of a BVP solution be realized on a Mobius strip, while on a circle with the
periodic one.

5.2 Two-dimensional Fourier Vectors

With admissible indices 1 ≤ ℓ, i ≤ nx, 1 ≤ m, j ≤ ny and extension to ghost nodes, we define 2D Fourier Sine, Cosine
and two mixed type vectors, respectively,

vℓ,m ≡ (
vℓ,mi, j
)
i, j, vℓ,mi, j := vℓi vm

j = sin
(
ℓπxi
)

sin
(
mπy j

)
,

uℓ,m ≡ (
uℓ,mi, j
)
i, j, uℓ,mi, j := uℓi um

j = cos
(
(ℓ − 1)πxi

)
cos
(
(m − 1)πy j

)
,

(vℓum)i, j ≡
(
vℓi u

m
j
)
i, j, vℓi um

j = sin
(
ℓπxi
)

cos
(
(m − 1)πy j

)
,

(uℓvm)i, j ≡
(
uℓi v

m
j
)
i, j, uℓi vm

j = cos
(
(ℓ − 1)πxi

)
sin
(
mπy j

)
,

(48)

with the convention that

vℓ,m ≡ 0, if ℓm = 0, and uℓ,m ≡ 0, if ℓ = nx + 1 or m = ny + 1.

Another four bases of mixed type are

wℓ,m ≡ (wℓ,mi, j
)
i, j, wℓ,mi, j := wℓi w

m
j = sin (ℓ−0.5)(i−0.5)π

nx
sin (m−0.5)( j−0.5)π

ny

zℓ,m ≡ (zℓ,mi, j
)
i, j, zℓ,mi, j := zℓi zm

j = cos (ℓ−0.5)(i−0.5)π
nx

cos (m−0.5)( j−0.5)π
ny

(49)

and (
wℓi z

m
j
)
i, j :=

(
sin (ℓ−0.5)(i−0.5)π

nx
cos (m−0.5)( j−0.5)π

ny

)
i, j(

zℓi w
m
j
)
i, j :=

(
cos (ℓ−0.5)(i−0.5)π

nx
sin (m−0.5)( j−0.5)π

ny

)
i, j

(50)

Appropriate BCs in applications with these bases (Eqs. (48,49 and 50)), among others, are shown in Table 3. The
associated priviate BCs can be expressed collectively, with 1 ≤ ℓ ≤ nx, 1 ≤ m ≤ ny, as

vℓ0
vℓ1
=

vm
0

vm
1
=

wℓ0
wℓ1
=

wm
0

wm
1
=

vℓnx+1

vℓnx

=
vm

ny+1

vm
ny

=
zℓnx+1

zℓnx

=
zm

ny+1

zm
ny

= −1

uℓ0
uℓ1
=

um
0

um
1
=

zℓ0
zℓ1
=

zm
0

zm
1
=

uℓnx+1

uℓnx

=
um

ny+1

um
ny

=
wℓnx+1

wℓnx

=
wm

ny+1

wm
ny

= 1

(51)

More bases and BCs appear in Tables 4 and 5, in which the types of BC are consistent with usage in Remark 3, except
for a new type: A(lternating between D and N). Discrete symmetric boundary condition and energy product for five-point
Laplacian are discussed next.
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Table 3. Fourier bases on rectangular half-integral nodes and associated BCs

Basis BC w BC e BC s BC n
DD-DD,

{
( vℓi vm

j )i, j

}
ℓ,m

vℓ0 = −vℓ1 vℓnx+1 = −vℓnx
vm

0 = −vm
1 vm

ny+1 = −vm
ny

NN-NN,
{
( uℓi um

j )i, j

}
ℓ,m

uℓ0 = uℓ1 uℓnx+1 = uℓnx
um

0 = um
1 um

ny+1 = um
ny

DD-NN,
{
( vℓi um

j )i, j

}
ℓ,m

vℓ0 = −vℓ1 vℓnx+1 = −vℓnx
um

0 = um
1 um

ny+1 = um
ny

NN-DD,
{
( uℓi vm

j )i, j

}
ℓ,m

uℓ0 = uℓ1 uℓnx+1 = uℓnx
vm

0 = −vm
1 vm

ny+1 = −vm
ny

DN-DN,
{
(wℓi w

m
j )i, j

}
ℓ,m

wℓ0 = −wℓ1 wℓnx+1 = wℓnx
wm

0 = −wm
1 wm

ny+1 = wm
ny

ND-ND,
{
( zℓi zm

j )i, j

}
ℓ,m

zℓ0 = zℓ1 zℓnx+1 = − zℓnx
zm

0 = zm
1 zm

ny+1 = − zm
ny

DN-ND,
{
(wℓi zm

j )i, j

}
ℓ,m

wℓ0 = −wℓ1 wℓnx+1 = wℓnx
zm

0 = zm
1 zm

ny+1 = − zm
ny

ND-DN,
{
( zℓi w

m
j )i, j

}
ℓ,m

zℓ0 = zℓ1 zℓnx+1 = − zℓnx
wm

0 = −wm
1 wm

ny+1 = wm
ny

DD-DN,
{
( vℓi w

m
j )i, j

}
ℓ,m

vℓ0 = −vℓ1 vℓnx+1 = −vℓnx
wm

0 = −wm
1 wm

ny+1 = wm
ny

DD-ND,
{
( vℓi zm

j )i, j

}
ℓ,m

vℓ0 = −vℓ1 vℓnx+1 = −vℓnx
zm

0 = zm
1 zm

ny+1 = − zm
ny

NN-DN,
{
( uℓi w

m
j )i, j

}
ℓ,m

uℓ0 = uℓ1 uℓnx+1 = uℓnx
wm

0 = −wm
1 wm

ny+1 = wm
ny

NN-ND,
{
( uℓi zm

j )i, j

}
ℓ,m

uℓ0 = uℓ1 uℓnx+1 = uℓnx
zm

0 = zm
1 zm

ny+1 = − zm
ny

DN-DD,
{
(wℓi vm

j )i, j

}
ℓ,m

wℓ0 = −wℓ1 wℓnx+1 = wℓnx
vm

0 = −vm
1 vm

ny+1 = −vm
ny

DN-NN,
{
(wℓi um

j )i, j

}
ℓ,m

wℓ0 = −wℓ1 wℓnx+1 = wℓnx
um

0 = um
1 um

ny+1 = um
ny

ND-DD,
{
( zℓi vm

j )i, j

}
ℓ,m

zℓ0 = zℓ1 zℓnx+1 = − zℓnx
vm

0 = −vm
1 vm

ny+1 = −vm
ny

ND-NN,
{
( zℓi um

j )i, j

}
ℓ,m

zℓ0 = zℓ1 zℓnx+1 = − zℓnx
um

0 = um
1 um

ny+1 = um
ny
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Table 4. Eigenpairs of negative 5-point Laplacian, Part I

Case Basis Types of BCs
in i and j Eigenvalue

1a vℓi v
m
j D, D λℓ,m = 4 − 2 cos ℓπnx

− 2 cos mπ
ny

1b uℓi u
m
j N, N λℓ,m = 4 − 2 cos (ℓ−1)π

nx
− 2 cos (m−1)π

ny

1c vℓi u
m
j D, N λℓ,m = 4 − 2 cos ℓπnx

− 2 cos (m−1)π
ny

1d uℓi v
m
j N, D λℓ,m = 4 − 2 cos (ℓ−1)π

nx
− 2 cos mπ

ny

2a vℓi v
2m−1
j , A, T λℓ,2m−1 = 4 − 2 cos ℓπnx

− 2 cos (2m−1)π
ny
,

uℓi u
2m
j λℓ,2m = 4 − 2 cos (ℓ−1)π

nx
− 2 cos (2m−1)π

ny

2b uℓi v
2m−1
j , A, T λℓ,2m−1 = 4 − 2 cos (ℓ−1)π

nx
− 2 cos (2m−1)π

ny
,

vℓi u
2m
j λℓ,2m = 4 − 2 cos ℓπnx

− 2 cos (2m−1)π
ny

2c vℓi v
2m−1
j , D, T λℓ,2m−1 = 4 − 2 cos ℓπnx

− 2 cos (2m−1)π
ny
,

vℓi u
2m
j λℓ,2m = 4 − 2 cos ℓπnx

− 2 cos (2m−1)π
ny

2d uℓi v
2m−1
j , N, T λℓ,2m−1 = 4 − 2 cos (ℓ−1)π

nx
− 2 cos (2m−1)π

ny
,

uℓi u
2m
j λℓ,2m = 4 − 2 cos (ℓ−1)π

nx
− 2 cos (2m−1)π

ny

2e vℓi u
2m−1
j , A, P λℓ,2m−1 = 4 − 2 cos ℓπnx

− 2 cos (2m−2)π
ny
,

uℓi v
2m
j λℓ,2m = 4 − 2 cos (ℓ−1)π

nx
− 2 cos 2mπ

ny

2f uℓi u
2m−1
j , A, P λℓ,2m−1 = 4 − 2 cos (ℓ−1)π

nx
− 2 cos (2m−2)π

ny
,

vℓi v
2m
j λℓ,2m = 4 − 2 cos ℓπnx

− 2 cos 2mπ
ny

2g vℓi u
2m−1
j , D, P λℓ,2m−1 = 4 − 2 cos ℓπnx

− 2 cos (2m−2)π
ny
,

vℓi v
2m
j λℓ,2m = 4 − 2 cos ℓπnx

− 2 cos 2mπ
ny

2h uℓi u
2m−1
j , N, P λℓ,2m−1 = 4 − 2 cos (ℓ−1)π

nx
− 2 cos (2m−2)π

ny
,

uℓi v
2m
j λℓ,2m = 4 − 2 cos (ℓ−1)π

nx
− 2 cos 2mπ

ny

3a v2ℓ−1
i vm

j , T, A λ2ℓ−1,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos mπ

ny
,

u2ℓ
i um

j λ2ℓ ,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos (m−1)π

ny

3b v2ℓ−1
i um

j , T, A λ2ℓ−1,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos (m−1)π

ny
,

u2ℓ
i vm

j λ2ℓ ,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos mπ

ny
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Table 5. Eigenpairs of negative 5-point Laplacian, Part II

Case Basis Types of BCs
in i and j Eigenvalue

3c v2ℓ−1
i vm

j , T, D λ2ℓ−1,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos mπ

ny
,

u2ℓ
i vm

j λ2ℓ ,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos mπ

ny

3d v2ℓ−1
i um

j , T, N λ2ℓ−1,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos (m−1)π

ny
,

u2ℓ
i um

j λ2ℓ ,m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos (m−1)π

ny

3e u2ℓ−1
i vm

j , P, A λ2ℓ−1,m = 4 − 2 cos (2ℓ−2)π
nx
− 2 cos mπ

ny
,

v2ℓ
i um

j λ2ℓ ,m = 4 − 2 cos 2ℓπ
nx

− 2 cos (m−1)π
ny

3f u2ℓ−1
i um

j , P, A λ2ℓ−1,m = 4 − 2 cos (2ℓ−2)π
nx
− 2 cos (m−1)π

ny
,

v2ℓ
i vm

j λ2ℓ ,m = 4 − 2 cos 2ℓπ
nx

− 2 cos mπ
ny

3g u2ℓ−1
i vm

j , P, D λ2ℓ−1,m = 4 − 2 cos (2ℓ−2)π
nx
− 2 cos mπ

ny
,

v2ℓ
i vm

j λ2ℓ ,m = 4 − 2 cos 2ℓπ
nx

− 2 cos mπ
ny

3h u2ℓ−1
i um

j , P, N λ2ℓ−1,m = 4 − 2 cos (2ℓ−2)π
nx
− 2 cos (m−1)π

ny
,

v2ℓ
i um

j λ2ℓ ,m = 4 − 2 cos 2ℓπ
nx

− 2 cos (m−1)π
ny

4a v2ℓ−1
i v2m−1

j , T, T λ2ℓ−1,2m−1

v2ℓ−1
i u2m

j , = λ2ℓ−1,2m

u2ℓ
i v2m−1

j , = λ2ℓ ,2m−1

u2ℓ
i u2m

j = λ2ℓ ,2m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos (2m−1)π

ny
,

4b u2ℓ−1
i v2m−1

j , P, T λ2ℓ−1,2m−1

u2ℓ−1
i u2m

j , = λ2ℓ−1,2m = 4 − 2 cos (2ℓ−2)π
nx
− 2 cos (2m−1)π

ny
,

v2ℓ
i v2m−1

j , λ2ℓ ,2m−1

v2ℓ
i u2m

j = λ2ℓ ,2m = 4 − 2 cos 2ℓπ
nx

− 2 cos (2m−1)π
ny

,

4c v2ℓ−1
i u2m−1

j , T, P λ2ℓ−1,2m−1

u2ℓ
i u2m−1

j , = λ2ℓ ,2m−1 = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos (2m−2)π

ny
,

v2ℓ−1
i v2m

j , λ2ℓ−1,2m

u2ℓ
i v2m

j = λ2ℓ ,2m = 4 − 2 cos (2ℓ−1)π
nx
− 2 cos (2m)π

ny
,

4d u2ℓ−1
i u2m−1

j , P, P λ2ℓ−1,2m−1 = 4 − 2 cos (2ℓ−2)π
nx
− 2 cos (2m−2)π

ny
,

u2ℓ−1
i v2m

j , λ2ℓ−1,2m = 4 − 2 cos (2ℓ−2)π
nx
− 2 cos 2mπ

ny
,

v2ℓ
i u2m−1

j , λ2ℓ ,2m−1 = 4 − 2 cos 2ℓπ
nx

− 2 cos (2m−2)π
ny

,

v2ℓ
i v2m

j λ2ℓ ,2m = 4 − 2 cos 2ℓπ
nx

− 2 cos 2mπ
ny

,
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5.3 Discrete Two-dimensional Symmetric Boundary Condition

Following the general usage of the vector notations (Eq. (32)), we note the following.

Example 5. The product-form symmetric boundary condition (Eq. (33)) is satisfied by all the 16 bases in Table 3.

Proof. With the specified component bases (and f , g), each of the individual BCs (Eq. (51)) implies

{ a1

a0
=

c1

c0
,

anx+1

anx

=
cnx+1

cnx

,
b1

b0
=

d1

d0
,

bny+1

bny

=
dny+1

dny

}
⊂
{
± 1
}
.

Hence the assertion, by Eq. (34).

An alternative argument exists as follows. For ab = f , g = cd,

if a , c, b , d, then ⟨a, c⟩ = ⟨b, d⟩ = 0,
if a , c, b = d, then ⟨a, c⟩ = b0d1 − b1d0 + bny+1dny − bny dny+1 = 0,
if a = c, b , d, then ⟨b, d⟩ = a0c1 − a1c0 + any+1cny − any cny+1 = 0.

All Eqs. (34, 35 and 36 ) are thus satisfied in these 16 cases. �

Discussion of cases in the next example makes use of (i) Eqs. (35 and 36), (ii) the respective BCs (Eq. (39)) of 1D Fourier
vectors, and (iii) the even-odd symmetry (Eqs. (40 and 47)) that(

v2ℓ−1
0 , v2ℓ−1

1 , v2ℓ−1
nx
, v2ℓ−1

nx+1

)
= v2ℓ−1

1

(
− 1, 1, 1,−1

)
,(

v2ℓ
0 , v2ℓ

1 , v2ℓ
nx
, v2ℓ

nx+1

)
= v2ℓ

1

(
− 1, 1,−1, 1

)
,(

u2ℓ−1
0 , u2ℓ−1

1 , u2ℓ−1
nx
, u2ℓ−1

nx+1

)
= u2ℓ−1

1

(
1, 1, 1, 1

)
,(

u2ℓ
0 , u2ℓ

1 , u2ℓ
nx
, u2ℓ

nx+1

)
= u2ℓ

1

(
1, 1,−1,−1

)
,

and the same holds with (l, nx) replaced by (m, ny).

Example 6. We justify the symmetric boundary condition (Eq. (33)) for all 24 bases listed in Tables 4 and 5.

(1) The first four (1a-1d) options of bases are covered in the previous example.

(2) For bases (2a-2d), we note

b j = v2m−1
j , d j = u2m

j , ⟨ b, d ⟩ = ⟨ v2m−1, u2m ⟩ = 0

and (
b0d1, −b1d0, bny+1dny , −bny dny+1

)
=
(

v2m−1
0 u2m

1 , −v2m−1
1 u2m

0 , v2m−1
ny+1 u2m

ny
, −v2m−1

ny
u2m

ny+1
)

= v2m−1
1 u2m

1
( − 1,−1, 1, 1

)
.

(3) For bases (2e-2h),
b j = u2m−1

j , d j = v2m
j , ⟨ b, d ⟩ = ⟨ u2m−1, v2m ⟩ = 0,

and (
b0d1, −b1d0, bny+1dny , −bny dny+1

)
=
(

u2m−1
0 v2m

1 , −u2m−1
1 v2m

0 , u2m−1
ny+1 v2m

ny
, −u2m−1

ny
v2m

ny+1
)

= u2m−1
1 v2m

1
(
1, 1,−1,−1

)
.

(4) Same argument applies to bases (3a-3h), as does for (2a-2h), by an interchange of the two symbol lists

{ j,m, ny, b, d } and { i, ℓ, nx, a, c }.
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(5) It is similar for bases (4a-4d). We mention for basis set (4a), by Eq. (41), that

f ∈
{

v2ℓ−1
i v2m−1

j , v2ℓ−1
i u2m

j , u2ℓ
i v2m−1

j , u2ℓ
i u2m

j

}
,

f0, j = ϵ fnx, j, fnx+1, j = ϵ f1, j, fi,0 = ϵ fi,ny , fi,ny+1 = ϵ fi,1.

with ϵ = −1. Note that ϵ = 1 works for basis 4(d).

5.4 Two-dimensional Non-product Type Pairs

This is an example on type I Hex grid. For convenience, we label components of the symmetric boundary condition (Eq.
(30)) as follows,

0 = 1st-sum + 2nd-sum + 3rd-sum + 4th-sum

≡
nx∑
i=1

(
fi,0gi,1 − fi,1gi,0

)
+

nx∑
i=1

(
fi,ny+1gi,ny − fi,ny gi,ny+1

)
(52)

+

ny∑
j=1

(
f0, jg1, j − f1, jg0, j

)
+

ny∑
j=1

(
fnx+1, jgnx, j − fnx, jgnx+1, j

)
and consider three non-product type families (and members),

Pair 1. f , g ∈
{
zℓi z

m
j + wℓ

′

i wm
j

}
ℓ,m
,

Pair 2. f , g ∈
{
zℓi z

m
j − wℓ

′

i wm
j

}
ℓ,m
,

Pair 3. f ∈
{
zℓi z

m
j + wℓ

′

i wm
j

}
ℓ,m
, g ∈

{
zℓi z

m
j − wℓ

′

i wm
j

}
ℓ,m
.

We note these are invariant under some operator, QH
4 (Lee,(2016,submitted)), on a net of type I Hex grid.

In above and below, the admissible indices satisfy

1 ≤ i, ℓ, ℓ′, p, p′ ≤ nx, ℓ + ℓ′ = p + p′ = nx + 1, 1 ≤ j,m, q ≤ ny.

Theorem 10 (Pair 1 and pair 2.) Let

fi, j = zℓi z
m
j ± wℓ

′

i wm
j , gi, j = zp

i zq
j ± wp′

i wq
j .

If (i) q = m, or (ii) p = ℓ′ and m − q is odd, then the symmetric boundary condition (Eq. (30)) is satisfied on both pairs.

Proof. With respect to Eq. (52), it is straight forward to derive the following,

1st-sum =

 ± sec (ℓ+p−1)π
2nx

sin (q−m)π
2ny
, if ℓ − p is even

± sec (ℓ−p)π
2nx

sin (q−m)π
2ny
, if ℓ − p is odd

2nd-sum = (−1)q−m · (1st-sum)

3rd-sum =

 0, if q − m is even
±2 csc (q−m)π

2ny
cos (ℓ−0.5)π

2nx
cos (p−0.5)π

2nx
, if q − m is odd

4th-sum =

 0, if q − m is even
±2 csc (q−m)π

2ny
(−1)ℓ+p sin (ℓ−0.5)π

2nx
sin (p−0.5)π

2nx
, if q − m is odd

This ends the proof. �

Theorem 11 (Pair 3.) Let
fi, j = zℓi z

m
j + wℓ

′

i wm
j , gi, j = zp

i zq
j − wp′

i wq
j .

If p = ℓ′ and m − q is even, then the symmetric boundary condition (Eq. (30)) is satisfied.
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Proof. The following are obtained.

1st-sum =

 − sec (ℓ+p−1)π
2nx

sin (m+q−1)π
2ny

, if ℓ − p is even

− sec (ℓ−p)π
2nx

sin (m+q−1)π
2ny

, if ℓ − p is odd

2nd-sum = (−1)m−q · (1st-sum)

3rd-sum =

 −2 csc (m+q−1)π
2ny

cos (ℓ−0.5)π
2nx

cos (p−0.5)π
2nx
, if m − q is even

0, if m − q is odd

4th-sum =

 (−1)ℓ+p2 csc (m+q−1)π
2ny

sin (ℓ−0.5)π
2nx

sin (p−0.5)π
2nx
, if m − q is even

0, if m − q is odd

�

We note all the calculations of discrete inner-products involving finite trigonometric series are derived by hands and also
verified by C-codes.

6. Conclusions

Cell-centered hexagonal finite volume based finite difference method were confirmed effective in Poisson problems and
also in time-dependent problems such as to exhibit successfully linear and spiral waves. The hexagonal seven-point
Laplacian is analyzed in this work by using symmetric boundary condition. The developed theory, together with some
examples, are readily generalized to many two- and three-dimensional applications up to usage of symmetric central
differences. Further generalizations to biharmonic and self-adjoint operators are expected.
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