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Abstract

We consider a one-dimensionnal bilayer model coupling shallow water and Reynolds lubrication equations with a molecu-
lar interactions between molecules. These molecular interactions give rise to intermolecular forces, namely the long-range
van der Waals forces and short-range Born intermolecular forces. In this paper, an expression will be used to take into
account all these intermolecular forces. Our model is a similar model studied in (Roamba, Zabsonré& Zongo, 2017).
The model considered is represented by the two superposed immiscible fluids. A similar model was studied in (Zabsonré
Lucas & Fernandez-Nieto, 2009) but the authors do not take into account the intermolecular forces. Without hypothesis
about the unknowns as in (Roamba, Zabsonré& Zongo, 2017), we show the existence of global weak solution in time in
a periodic domain.

Keywords: shallow water equations, bilayer models, viscosity, friction, capillarity, intermolecular forces

1. Introduction

The purpose of this paper is devoted to the existence of global weak solutions to 1D pollutant transport model. This model
can be used to simulate for instance the evolution of a pollutant fluid over water. It is a bilayer model of two immiscible
fluids where the upper layer can be represented by a Reynolds lubrifications model and the lower layer by a shallow water
model.

This work follows the work done in (Roamba, Zabsonré & Zongo, 2017). In (Roamba, Zabsonré & Zongo, 2017) as in
this present work, we use a model of transport of pollutant in 1D formally derived in (Fernandez-Nieto, Narbona-Reina
& Zabsonré 2013). In (Roamba, Zabsonré & Zongo, 2017), the authors showed the existence of global weak solutions
of similar model derived in (Fernandez-Nieto, Narbona-Reina & Zabsonré 2013). To lead well this result, the authors
considered the condition according to which h2 ≤ h1 (the water layer is more important than the layer of the pollutant).
We suppose in this paper the existence of molecular interactions between molecules and this leads us to use the force of

Van Der Waals which is given by V(h1) =
1
h3

1

− α
h4

1

(α > 0), see (Kitavtsev, Laurençot & Niethammer, 2011; Seemann,

Herminghaus & Jacobs, 2001). This force of Van Der Waals allows us to lower the height of water which allows us to get
around hypothesis made in (Roamba, Zabsonré& Zongo, 2017). The model studied is read as follow:

∂th1 + ∂x(h1u1) = 0, (1)

∂t(h1u1) + ∂x(h1u1
2) +

1
2

g∂xh2
1 − 4ν1∂x(h1∂xu1) +

u1

β
− h1∂x(σ∂2

xh1 − V(h1))

rgh1∂xh2 + rgh2∂x(h1 + h2) + r1h1|u1|2u1 = 0. (2)

∂th2 + ∂x(h2u1) − ε∂2
xh2 − ∂x

(
(ah2

2 + bh2
3)∂x p2

)
= 0. (3)

with
∂x p2 = ρ2g∂x(h1 + h2) and V(h1) =

1
h3

1

− α
h4

1

(α > 0), (4)

where (t, x) ∈ (0,T ) × [0, 1].

These equations represent a system composed of two layers of immiscible fluids.
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We denote h1, h2 respectively, the water and the pollutant heights, u1 is the water velocity. We introduce the ratio of
densities r =

ρ2

ρ1
where ρ1 and ρ2 denoted respectively the densities of the water and the pollutant. ν1 is the kinematic

viscosity; g is the constant gravity.

The coefficients σ, r1 and β are respectively the coefficients of the interfaz tension, quadratic friction and positive slip
length parameters. a and b are respectively depending on the friction at the interfaz and coefficient of the viscosity of the
pollutant. α and ε are positive constants.

From a theoretical point of view, several studies have been carried out on the existence of global weak solutoins of
shallow-water equations model. We cite among others some results concerning the existence of global weak solutions of
the transport models.

The existence of weak solutions for a viscous sedimentation model is obtained by assuming smallness of the data in
(Toumbou, Le Roux & Sene, 2007) in which the viscosity term is the form −ν∆u. The authors in (Zabsonré Lucas & Fern
ndez-Nieto, 2009) studied the stability of global weak solutions for a sediment transport model in two- dimensional with
the term νdiv(h∇u).

The stability result is obtained without any restriction on the data and by using a mathematical entropy introduced first in
(Bresch & Desjardins, 2003) namely BD entropy. The BD entropy allows us to get regularity on ∂x

√
h, see lemma 2. The

authors in (Bresch, Desjardins & Grard-Varet, 2007; Bresch, Desjardins & Lin, 2003; Marche, 2007; Mellet & Vasseur,
2007) use the BD entropy inequality to get the existence results of global weak solutions for Shallow-Water and viscous
compressible Navier-Stokes equations. In (Kitavtsev, Laurençot & Niethammer, 2011) the authors proved the existence
of global weak solutions for one-dimensional lubrication models that describe the dewetting process of nanoscopic thin
polymer films on hy-drophobyzed substrates and take into account a large slippage at the polymer-substrate interface. In
their work, the authors have used an intermolecular force that is very crucial in ours.

In the analysis, our contribution is to show the existence of global weak solutions for a similar model studied in (Roamba,
Zabsonré & Zongo, 2017) taking into acount the presence of intermolecular forces, namely long-range attractive van der
Waals and short-range Born repulsive intermolecular forces without any hypothesis on unknown.

We complete the system studied with the initial conditions

h1(0, x) = h10 (x), h2(0, x) = h20 (x), (h1u1)(0, x) = m0(x) in (0, 1). (5)

h10 ∈ L2(0, 1), h10 + h20 ∈ L2(0, 1), ∂x(h10 ) ∈ L2(0, 1),

∂xm0 ∈ L1(0, 1), m0 = 0 if h10 = 0, (6)

|m0|2
h10

∈ L1(0, 1), φ(h10 ) ∈ L1(0, 1).

where φ will be defined later on (see (13)).

Our paper is organized as follows. First of all, we will give in the Section 2, the definition of global weak solutions,
secondly, we will establish a classical energy equality and the ”mathematical BD entropy”, which entails some regularities
on the unknown. Thirdly, we will give a proposition allowing us to limit inferiorly the height of water which is very
fundamental for the continuation since this limit study gives us additional regularities on the unknowns. Fourthly, we will
give an existence theorem of global weak solutions. And finally, we will give the proof of existence Theorem including
the limits passage.

2. Main Results

Definition 1. We say that (h1, h2, u1) is a weak solution of (1)-(3), with the initial condition verifying the entropy inequality
(12) for all smooth test functions ϕ = ϕ(t, x) with ϕ(T, ) = 0, we have:

h01ϕ(0, .) −
∫ T

0

∫ 1

0
h1∂tϕ −

∫ T

0

∫ 1

0
h1u1∂xϕ = 0 (7)

−h02ϕ(0, .) −
∫ T

0

∫ 1

0
h2∂tϕ −

∫ T

0

∫ 1

0
h2u1∂xϕ + ε

∫ T

0

∫ 1

0
∂xh2∂xϕ

+

∫ T

0

∫ 1

0

(
(ah2

2 + bh2
3)∂x p2

)
∂xϕ = 0 (8)
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h01u01ϕ(0, .) −
∫ T

0

∫ 1

0
h1u1∂tϕ −

∫ T

0

∫ 1

0
h1u1

2∂xϕ + 4ν1

∫ T

0

∫ 1

0
h1∂xu1∂xϕ

+
1
β

∫ T

0

∫ 1

0
u1ϕ +

∫ T

0

∫ 1

0
(σ∂2

xh1 − V(h1))ϕ∂xh1 +

∫ T

0

∫ 1

0
(σ∂2

xh1 − V(h1))h1∂xϕ

−1
2

g
∫ T

0

∫ 1

0
h2

1∂xϕ − rg
∫ T

0

∫ 1

0
h2h1∂xϕ + r1

∫ T

0

∫ 1

0
h1|u1|2u1ϕ

−rg
∫ T

0

∫ 1

0
ϕh2∂xh1 − rg

∫ T

0

∫ 1

0
(h1 + h2)h2∂xϕ − rg

∫ T

0

∫ 1

0
(h1 + h2)∂xh2ϕ = 0 (9)

Lemma 1. (Energy inequality) For classical solutions of the system (1)-(3), the following inequality holds

d
dt

∫ 1

0

[1
2

h1|u1|2 + U(h1) +
1
2

g(1 − r)|h1|2 +
1
2

rg|h1 + h2|2 +
1
2
σ|∂xh1|2

]
+4ν1

∫ 1

0
h1|∂xu1|2 +

1
β

∫ 1

0
|u1|2 +

1
2

grε
∫ 1

0
|∂xh2|2

+r1

∫ T

0

∫ 1

0
h1|u1|4 + ρ2rg2

∫ 1

0
h2

2|∂x(h1 + h2)|2(a + bh2) ≤ 1
2

rgε
∫ 1

0
|∂xh1|2 (10)

where the potential function U is the indefinite integral of V defined by U(h1) = − 1
2h2

1

+
α

3h3
1

, h1 > 0.

Proof: First, we multiply the momentum equation by u1 and we integrate from 0 to 1. We use the mass conservation
equation of the first layer for simplification. Then, we obtain∫ 1

0

1
2
∂t(h1u2

1) +
1
2

∫ 1

0
g∂xh2

1u1 − 4
∫ 1

0
∂x(ν1h1∂xu1)u1 −

∫ 1

0
h1u1∂x(σ∂2

xh1 − V(h1)) +
∫ 1

0

u2
1

β

+rg
∫ 1

0
h1∂xh2u1 + rg

∫ 1

0
h2∂x(h1 + h2)u1 + r1

∫ T

0

∫ 1

0
h1|u1|4 = 0 (11)

Now, let us simplify each term:

• −4
∫ 1

0
∂x(ν1h1∂xu1)u1 = 4ν1

∫ 1

0
h1(∂xu1)2

• −
∫ 1

0
h1u1∂x(σ∂2

xh − V(h1)) =
∫ 1

0
∂x(hu)(σ∂2

xh1 − V(h1))

= −
∫ 1

0
∂th1(σ∂2

xh1 − V(h1))

=

∫ 1

0
σ∂xth1∂xh1 +

∫ 1

0
∂t(U(h1))

=

∫ 1

0
∂t

(1
2
σ|∂xh1|2 + U(h1)

)
• rg

∫ 1

0
h1∂xh2u1 = −rg

∫ 1

0
h2∂x(h1u1) = rg

∫ 1

0
h2∂th1

• 1
2

g
∫ 1

0
∂xh2

1u1 =
1
2

g
d
dt

∫ 1

0
|h1|2

• rg
∫ 1

0
h2∂x(h1 + h2)u1 = −rg

∫ 1

0
(h1 + h2)∂x(h2u1)

The equation for the thin film flow gives us : ∂x(h2u1) = −∂th2 + ε∂
2
xh2 + ∂x

(
(ah2

2 + bh2
3)∂x p2

)
and we have:

• rg
∫ 1

0
h2∂x(h1 + h2)u1 = rgε

∫ 1

0
∂xh1∂xh2 + rgε

∫ 1

0
|∂xh2|2 +

1
2

rg
d
dt

∫ 1

0
|h2|2

+ρ2rg2
∫ 1

0
h2

2|∂x(h1 + h2)|2(a + bh2) + rg
∫ 1

0
h1∂th2

Substituting all these terms in (11), we get (10) by integrating under 0 to T .
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Remark 1. 1. Notice that the term in the right of (10) can be controlled using Gronwall’s lemma.

2. The term
∫ 1

0

∫ T

0
U(h1)|∂xh1|2 can be absorbed by

∫ 1

0

∫ T

0
(
α

6h3
1

− 2
3α2 )|∂xh1|2 thanks to the work done in (Kitavtsev,

Laurençot & Niethammer, 2011).

Corollary 1. Let (h1, h2, u1) be a solution of model (1) − (2). Then, thanks to Lemma 1 we have:

h1 is bounded in L∞(0,T ; L2(0, 1)),

∂xh1 is bounded in L∞(0,T ; L2(0, 1)),

(h1 + h2) is bounded in L∞(0,T ; L2(0, 1)),√
h1∂xu1 is bounded in L2(0,T ; L2(0, 1)),

u1 is bounded in L2(0,T ; L2(0, 1)),

h2

√
a + bh2

(
∂x(h1 + h2)

)
is bounded in L2(0,T ; L2(0, 1)),

h−1
1 is bounded in L∞(0,T ; L2(0, 1)),

h−
3
2

1 is bounded in L∞(0,T ; L2(0, 1)),

∂xh2 is bounded in L2(0, T ; L2(0, 1)),√
h1|u1|2 is bounded in L2(0,T ; L2(0, 1)).

We will need furthermore, some additional regularities on h1 and this will be achieved through an additional BD entropy
inequality presented in the next lemma.

Lemma 2. For smooth solutions (h1, h2, u1) of model (1) − (3) satisfying the classical energy equality of the Lemma 1,
we have the following mathematical BD entropy inequality:

d
dt

∫ 1

0

[1
2

h1|u1 + ∂xφ(h1)|2 − 1
β
φ(h1) +

1
2

g(1 − r)|h1|2 +
1
2

rg|h1 + h2|2 +
1
2
σ|∂xh1|2 + U(h1)

]
+

1
β

∫ 1

0
|u1|2 + 4ν1

∫ 1

0
(g + gr

h2

h1
+ V

′
(h1))|∂xh1|2 + rg

∫ 1

0
(ε + 4ν1

h2

h1
)∂xh1∂xh2 + 4ν1σ

∫ 1

0
|∂2

xh1|2

+4ν1r1

∫ T

0

∫ 1

0
|u1|2u1∂xh1 + grε

∫ 1

0
|∂xh2|2 + rg2

∫ 1

0
h2

2(a + bh2)
(
∂x(h1 + h2)

)2
≤ 1

2
rgε
∫ 1

0
|∂xh1|2 (12)

where
φ(h1) = 4ν1logh1. (13)

We need these results to prove the above lemma.

Proposition 1. If h1 has the regularities established in corollary 2.1, then there exists constants c1 and c2 such as 0 <
c1 < h1 < c2.

Proof: We follow the lines performed in (Kitavtsev, Laurençot & Niethammer, 2011). Using the bound on ∂xh1 we
obtain:

h(x, t) − h(y, t) ≤
∣∣∣∣∣ ∫ y

x
∂xh1(z, t)dz

∣∣∣∣∣ ≤ ||x − y||1/2||∂xh1(t)||2 ≤
C1√
σ
|x − y|1/2

for all (x, y) ∈ (0, 1) × (0, 1) and t ∈ (0, T ). Next we integrate the above inequality with respect to y ∈ (0, 1), readily give
the upper bound. To establish the lower bound for h1 , we combine the L∞(0,T ; L2(0, 1))-estimates on h−3/2

1 and
√
σ∂xh1

just established to obtain a bound on the norm of 1/
√

h1 in L∞(0,T ; W1,1(0, 1)) since∫ 1

0

∣∣∣∂x
(
h−1/2

1
)∣∣∣ = 1

2

∫ 1

0

∣∣∣∂xh1
∣∣∣

h3/2
1

≤ 1
2
√
σ
∥
√
σ∂xh1∥2∥h−3/2

1 ∥2.

Due to the continuous embedding of W1,1(0, 1) in L∞(0, 1), we get the positive lower bound.
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Proof: (Lemma 2) Let us multiply the equation (2) by ∂xφ(h1), integrate with respect to x and use an integration by parts,
and using (1), we have:

4ν1

∫ 1

0
(∂tu1 + u1∂xu1)∂xh1 + 4ν1g

∫ 1

0
|∂xh1|2 + 16ν21

∫ 1

0
h1∂xu1∂x

(
∂xh1

h1

)
+ 4ν1

∫ 1

0

u1∂xh1

βh1
+ 4ν1σ

∫ 1

0
|∂2

xh1|2

+4ν1

∫ 1

0
V
′
(h1)|∂xh1|2 + 4ν1rg

∫ 1

0
∂xh2∂xh1 + 4ν1rg

∫ 1

0

h2

h1
|∂xh1|2 + 4ν1rg

∫ 1

0

h2

h1
∂xh2∂xh1 = 0. (14)

On the one hand, a further integration by parts of the first integral of (14), equation (1), and the energy equality (10) give

4ν1

∫ 1

0
(∂tu1 + u1∂xu1)∂xh1

= 4ν1
( d
dt

∫ 1

0
u1∂xh1 −

∫ 1

0
u1∂

2
xth1 +

∫ 1

0
u1∂xu1∂xh1

)
= 4ν1

( d
dt

∫ 1

0
u1∂xh1 −

∫ 1

0
∂xu1∂x(h1u1) +

∫ 1

0
u1∂xu1∂xh1

)
= 4ν1

( d
dt

∫ 1

0
u1∂xh1 −

∫ 1

0
h1(∂xu1)2

)
=

d
dt

∫ 1

0

[
4ν1u1∂xh1 +

1
2

h1|u1|2 + U(h1) +
1
2

g(1 − r)|h1|2 +
1
2

rg|h1 + h2|2 +
1
2
σ|∂xh1|2

]
+

1
β

∫ 1

0
|u1|2 + rgε

∫ 1

0
∂xh1∂xh2 + rgε

∫ 1

0
|∂xh2|2 + rg2

∫ 1

0
h2

2(a + bh2)
(
∂x(h1 + h2)

)2

(15)

On the other hand,we can write the third and the fourth integrals of (14) as

• 16ν21

∫ 1

0
∂x

(
∂xh1

h1

)
∂xu1h1 =

1
2

d
dt

∫ 1

0
h1|φ(h1)|2

• 4ν1

∫ 1

0

u1∂xh1

βh1
= −4ν1

∫ 1

0

∂x(u1h1)
βh1

+ 4ν1

∫ 1

0

∂xu1

β

= −1
β

d
dt

∫ 1

0
φ(h1).

(See (Kitavtsev, Laurençot & Niethammer, 2011)).

Substituting finally the last three identities into (14), we obtain (13).

Remark 2.

In Lemma 2 all the terms, excepted∫ T

0

∫ 1

0
|u1|2u1∂xh1,

∫ T

0

∫ 1

0
(ε + 4ν1

h2

h1
)∂xh1∂xh2 and

∫ 1

0

∫ T

0
V
′
(h1)|∂xh1|2

are controlled since they have the good sign. The control of the term
∫ T

0

∫ 1

0
|u1|2u1∂xh1 takes inspiration in (Roam-

ba, Zabsonr?& Traor? 2016). The term
∫ 1

0

∫ T

0
V
′
(h1)|∂xh1|2 can be absorbed thanks to the work done in (Kitavtsev,

Laurençot & Niethammer, 2011). It remains for us to control the term
∫ T

0

∫ 1

0
(ε + 4ν1

h2

h1
)∂xh1∂xh2.

Proposition 2. There exists a constant C such as ∥ (ε + 4ν1
h2

h1
)∂xh1∂xh2 ∥L2(0,T ;L2(0,1))≤ C.

Proof: We have:∫ T

0

∫ 1

0
∂xh1∂xh2 ≤

1
2

∫ T

0

∫ 1

0
(| ∂xh1 |2 + | ∂xh2 |2) ≤ C′ because ∂xh1, ∂xh2 are in L∞(0,T ; L2(0, 1)). It remains for us to
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limit
h2

h1
∂xh1∂xh2.

Since
h2

h1
∂xh1∂xh2 = ∂xφ(h1)∂xh1∂xh2, we can write:∫ T

0

∫ 1

0
|h2

h1
∂xh1∂xh2| ≤

1
2

∫ T

0

∫ 1

0
|∂xφ(h1)|2 + 1

2

∫ T

0

∫ 1

0
|h2∂xh2|2.

We will now look at the two terms to the right of the above inequality separately. For the first one, we have:∫ T

0

∫ 1

0
|∂xφ(h1)|2 =

∫ T

0

∫ 1

0

| ∂xh1 |2
h2

1

≤
∫ T

0

∫ 1

0
| ∂xh1 |2 ≤ C (h1 being bounded inferiorly) and ∂xh2 is in L2(0,T ; L2(0, 1)),

so ∂xφ(h1) is in L2(0,T ; L2(0, 1)). For the second one, since h2 ∈ L∞(0,T ; H1(0, 1)) and ∂xh2 ∈ L∞(0,T ; L2(0, 1)) then,
h2∂xh2 ∈ L∞(0,T ; L2(0, 1)) see (Marche, 2007) for instance. Which completes the proof.

Lemma 3. For classical solutions of the system (1) − (3) with a first component h1, we have

1
4

∫ 1

0
h1|∂xφ(h1)|2 ≤ 1

2

∫ 1

0
h1(u + ∂xφ(h1))2 + 2E(h1, h2, u1) +

1
3α2 (16)

with

E(h1, h2, u1) =
∫ 1

0

[1
2

h1|u1|2 + U(h1) +
1
2

rg|h1 +
1
2

g(1 − r)|h1|2 + h2|2 +
1
2
σ|∂xh1|2

]
.

Proof: Using the elementary inequality

(y + z)2 ≥ y2

2
− z2,

the fact that
U(h1) ≥ −1

6α2 (17)

for h1 > 0, and the definition of E, we obtain:∫ 1

0
h1(u1 + ∂xφ(h1))2 ≥ 1

2

∫ 1

0
h1|∂xφ(h1)|2 −

∫ 1

0
h1u2

1

≥ 1
2

∫ 1

0
h1|∂xφ(h1)|2 − 2

[
E(h1, h2, u1) −

∫ 1

0

(
U(h1) +

1
2

g(1 − r)|h1|2 +
1
2

rg|h1 + h2|2 +
1
2
σ|∂xh1|2

)]
≥ 1

2

∫ 1

0
h1|∂xφ(h1)|2 − 2E(h1, h2, u1) − 1

3α2

from that the statement of the lemma follows.

Corollary 2. Let (h1, h2, u1) be a solution of model (1) − (3).
Then, thanks to Lemma 2 and Lemma 3 we have:√

h1 is bounded in L∞(0,T ; L2(0, 1)),

∂x

√
h1 is bounded in L∞(0,T ; L2(0, 1)),

∂2
xh1 is bounded in L2(0, T ; L2(0, 1)).

Remark 3. 1. In the Corollary 1, the estimate√
h1u1 is bounded in L∞(0,T ; L2(0, 1))

implies,
h1u1 is bounded in L∞(0, T ; L2(0, 1))

this leads us
∂th1 is bounded in L∞(0,T ; W−1,2(0, 1)).

2. We have the additional regularities thanks to Corollary 1:

(a) h1 is bounded in L2(0,T ; H1(0, 1)),
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(b) h1u1 is bounded in L3(0,T ; L3(0, 1)) ∩ L∞(0, T ; L2(0, 1)) ∩ L2(0,T ; W1,1(0, 1)).

Remark 4. We have the following additional regularities:

1. h1 and h2 are bounded in L∞(0,T ; L2(0, 1)).

2.
√

h1 is bounded in L2(0,T ; H1(0, 1)).
Indeed,

by integrating the mass equation, we obtain directly
√

hk
1 in L∞(0,T ; L2(Ω)). As Corollary 2 gives us ∂x

√
hk

1 in

L∞(0,T ; L2(Ω)), so
√

hk
1 is bounded in L∞(0,T ; H1(Ω)).

Theorem 1. There exists a global weak solutions to the system (1)-(3) with initial data (5), (6) and satisfying energy
equality (10) and energy inequality (12).

3. Convergences

The objective of this section is to prove the Theorem 1. Let (hk
1, h

k
2, u

k
1) be a sequence of weak solutions with initial data

hk
1|t=0 = hk

10
, hk

2|t=0 = hk
20
, (hk

1uk)|t=0 = mk
0

such as
hk

10
−→ h10 in L1(Ω), hk

20
−→ h20 in L1(Ω), mk

0 −→ m0 in (L1(Ω))2,

and satisfies

−1
β

∫ 1

0
φ(hk

10
) +
∫ 1

0

[
hk

10

∣∣∣uk
10

∣∣∣2 + 64ν21
∣∣∣∂x

√
hk

10

∣∣∣2 + 1
2

g(1 − r)
∣∣∣hk

10

∣∣∣2 + 1
2

rg
∣∣∣hk

10
+ hk

20

∣∣∣2 + 1
2
σ
∣∣∣∂xhk

10

∣∣∣2] ≤ C.

Such approximate solutions can be built by a regularization of capillary effect.

3.1 Strong Convergence of
√

hk
1, hk

1 and hk
2

From the remark 4: √
hk

1 is bounded in L∞(0,T ; H1(Ω)). (18)

Moreover, using the mass equation, we obtain the following equality:

∂t

√
hk

1 =
1
2

√
hk

1∂xuk
1 − ∂x(

√
hk

1uk
1),

which gives that ∂t

√
hk

1 is bounded in L2(0,T ; H−1(Ω)).

Applying Aubin-Simon lemma (see (Lions, 1969), (Simon, 1987)), we can extract a subsequence, still denoted (hk
1)1≤k,

such as √
hk

1 converges strongly to
√

h1 in C0(0,T ; L2(0, 1)).

According to the Proposition 1, we show that∣∣∣∣∣hk
1 − h1

∣∣∣∣∣ ≤ √c2

∣∣∣∣∣ √hk
1 −
√

h1

∣∣∣∣∣⇒ ∣∣∣∣∣hk
1 − h1

∣∣∣∣∣2 ≤ c2

∣∣∣∣∣ √hk
1 −
√

h1

∣∣∣∣∣2.
This ensures

hk
1 converges strongly to h1 in L2(0,T ; L2(0, 1)).

We have hk
2 bounded in L2(0,T ; H1(0, 1)). Moreover, we have ∂th2

k = −∂x(hh
2uk

1) + ε∂2
xh2.

Since hk
2 is in L∞(0,T ; L2(0, 1)) and uk

1 is in L2(0,T ; L2(0, 1)), we show that the first term is in L2(0,T ; W−1,1(0, 1)). By
analogy we prove that the last term is in the same space and we also get ∂thk

2 in this space. According to the Aubin-Simon
lemma, we have:

hk
2 converges strongly to h2 in L2(0,T ; W−1,1(0, 1)).
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3.2 Strong Convergence of hk
1uk

1

We have hk
1uk

1 =

√
hk

1

√
hk

1uk
1. Since

√
hk

1 is bounded in L∞(0,T ; L4(0, 1)) and
√

hk
1uk

1 is bounded in L∞(0,T ; L2(0, 1)) so

hk
1uk

1 bounded in L∞(0,T ; L
4
3 (0, 1)). Writingthe gradient as follows:

∂x(hk
1uk

1) = hk
1∂xuk

1 + uk
1∂xhk

1 =

√
hk

1

√
hk

1∂xuk
1 + uk

1∂xhk
1,

since the first term is in L2(0,T ; L
4
3 (0, 1)) and thanks to the Corollary 1, the second one belongs to L∞(0, T ; W−1, 43 (0, 1))∩

L2(0,T ; L1(0, 1)), we have
(hk

1uk
1)k bounded in L2(0,T ; W1,1(0, 1)).

Moreover, the momentum equation (2) enables us to write the time derivation of the water discharge:

∂t(hk
1uk

1) = −∂x(hk
1uk

1
2
) − 1

2
g∂xhk

1
2
+ 4ν1∂x(hk

1∂xu1) +
uk

1

β
+ hk

1∂x(σ∂2
xhk

1 − V(hk
1))

−rghk
1∂xhk

2 − rghk
2∂x(hk

1 + hk
2) − r1hk

1|uk
1|2uk

1.

We then study each term:

• ∂x(hk
1(uk

1)2) = ∂x(
√

hk
1

√
hk

1(uk
1)2) which is bounded in L2(0,T ; W−1, 43 (0, 1)).

• As hk
1 is in L∞(0,T ; L2(0, 1)), we have:

∂x[(hk
1)2] is in L∞(0,T ; W−1,1(0, 1)).

• ∂x(hk
1∂xuk

1) is bounded in L2(0,T ; W−1, 43 (0, 1)).

• Let us write hk
1uk

1(uk
1)2 =

√
hk

1uk
1

√
hk

1(uk
1)2, which is in L2(0,T ; W−1,1(0, 1)).

• rghk
1∂xhk

2 is bounded in L2(0,T ; W−1,1(0, 1)).
• rghk

2∂x(hk
1 + hk

2) is bounded in L2(0,T ; W−1,1(0, 1)).
• (hk

1∂x(σ∂2
xhk

1 − V(hk
1)))k is bounded in L2(0,T ; H−3(0, 1)) see ( Kitavtsev, Laurençot & Niethammer, 2011).

Thus the sequence ∂t(hk
1uk

1) is bounded in L2(0,T ; H−3(0, 1)). Then, applying Aubin-Simon lemma, we obtain,

(hk
1uk

1)k converges strongly to m in L2(0,T ; L2(0, 1)).

3.3 Strong Convergence of
√

hk
1uk

1

Setting mk = hk
1uk

1, we have
√

hk
1uk

1 =
mk√

hk
1

. We want to prove the strong convergence for this term. We know that
mk√

hk
1

is bounded in L∞(0,T ; (L2(Ω))2); consequently, Fatou lemma reads:∫
Ω

lim
k

inf
(mk)2

hk
1

≤ lim
k

inf
∫
Ω

(mk)2

hk
1

< +∞.

In particular, m is equal to zero for almost every x where h1(t, x) vanishes.Then, we can define the limit velocity taking
uk

1(t, x) = m(t,x)
h1(t,x) since h1(t, x) , 0 . So we have a link between the limits m(t, x) = h1(t, x)u1(t, x) and:∫

Ω

(m)2

h1
=

∫ 1

0
h1|u1|2 < +∞.

Moreover, we can use Fatou lemma again to write∫ T

0

∫
Ω

h1|u1|4 ≤
∫ T

0

∫
Ω

lim inf h1|u1|4 ≤ lim inf
∫ T

0

∫
Ω

h1|u1|4

= lim inf
∫ T

0

∫
Ω

√
h1|u1|2

√
h1|u1|2,
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which gives
√

h1|u1|2 in L2(0,T ; L2(Ω)).

As mk and hk
1 converge almost everywhere, the sequence of

√
hk

1uk
1 =

mk√
hk

1

converges almost everywhere to
√

h1u1 =
m
√

h1
.

Moreover, for all M positive
√

hk
1uk

11|uk
1 |≤M converges to

√
h1u11|u|≤M ( still assuming that hk

1 does not vanish). Then, al-

most everywhere, we obtain the convergence of (
√

hk
1uk

11|uk
1 |≤M)k

Finally, let us consider the following norm:
∫ T

0

∫ 1

0

∣∣∣∣∣ √hk
1uk

1 −
√

h1u1

∣∣∣∣∣2 ≤∫ T

0

∫ 1

0

(
|
√

hk
1uk

11|uk
1 |≤M −

√
h1u11|u1 |≤M | + |

√
hk

1uk
11|uk

1 |>M | + |
√

h1u11|u1 |>M |
)2

≤ 3
∫ T

0

∫ 1

0

∣∣∣∣∣ √hk
1uk

11|uk
1 |≤M −

√
h1u11|u|≤M

∣∣∣∣∣2 + 3
∫ T

0

∫ 1

0

∣∣∣∣∣ √hk
1uk

11|uk
1 |>M

∣∣∣∣∣2 + 3
∫ T

0

∫ 1

0

∣∣∣∣∣ √hk
1uk

11|uk
1 |>M

∣∣∣∣∣2.
Since

√
hk

1 is in L2(0,T ; L4(0, 1)),
√

hk
1uk

11|uk
1 |≤M is bounded in this space. So, as we have seen previously, the first integral

tends to zero. Let us study the other two terms:∫ 1

0

∣∣∣∣∣ √hk
1uk

11|uk
1 |>M

∣∣∣∣∣2 ≤ 1
M2

∫ 1

0
hk

1(uk
1)4 ≤ c

M2 and
∫ 1

0

∣∣∣∣∣ √h1u1|u|>M

∣∣∣∣∣2 ≤ 1
M2

∫ 1

0
h1u4

1 ≤
c

M2 ,

for all M > 0. When M tends to the infinity, our two integrals tend to zero. Then√
hk

1uk
1 converges strongly to

√
h1u in L2(0,T ; (L2(Ω))2).

3.4 Strong Convergence of ∂xhk
1, hk

2∂xhk
1, ∂2

xhk
1, hk

1∂
2
xh1 and ∂xhh

1∂
2
xhk

1

• We have ∂xh1 bounded in L2(0,T ; H1(0, 1)) and ∂t∂xh1 is bounded in L∞(0,T ; H−1(0, 1)) since ∂th1 is bounded in
L∞(0,T ; H−1(0, 1)). Thanks to compact injection of H1(0, 1) in L2(0, 1) in one dimension, we have:

∂xhk
1 converges strongly to ∂xh1 in L2(0,T ; L2(0, 1)).

• The bound of ∂2
xhk

1 in L2(0,T ; L2(0, 1)) and ∂xhk
2 in L2(0,T ; L2(0, 1)) gives us:

∂2
xhk

1 converges weakly to ∂2
xh1 in L2(0,T ; L2(0, 1)),

∂xhk
2 converges weakly to ∂xh2 in L2(0,T ; L2(0, 1)).

• Thanks to the strong convergence of hk
1, hk

2, ∂xhk
1 and the weak convergence of ∂2

xhk
1, we have:

(hk
2∂xhk

1)k converges strongly to h2∂xh1 in L1(0,T ; L1(0, 1)),

(hk
1∂

2
xhk

1)k converges weakly to h1∂
2
xh1 in L1(0,T ; L1(0, 1)),

(∂xhk
1∂

2
xhk

1)k converges weakly to ∂xh1∂
2
xh1 in L1(0,T ; L1(0, 1)),

(hk
1∂xhk

2)k converges strongly to h1∂xh2 in L1(0,T ; L1(0, 1)),

(hk
2∂xhk

2)k converges strongly to h2∂xh2 in L1(0,T ; L1(0, 1)),

((hk
1)2)k converges strongly to h1

2 in L1(0, T ; L1(0, 1)),

((hk
2)2)k converges strongly to h2

2 in L1(0,T ; L1(0, 1)),

(hk
1hk

2)k converges strongly to h1h2 in L1(0,T ; L1(0, 1)).

3.5 Convergences of hk
1∂xuk

1, uk
1 and hk

1|uk
1|2uk

1

As uk
1 is bounded in L2(0,T ; L2(0, 1)), then ∂xuk

1 is bounded in L2(0,T ; W−1,2(0, 1)).

Then,
(uk

1)k converges weakly to u1 in L2(0,T ; L2(0, 1)).
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However, the function (hk
1, ∂xuk

1) 7−→ hk
1∂xuk

1 is a continuous in L∞(0,T ; H1(0, 1))×L2(0,T ; W−1,2(0, 1)) to L2(0,T ; W−1,2(0, 1)).

So,
(hk

1∂xuk
1)k converges weakly to h1∂xu1 in L2(0,T ; H−1(0, 1)).

At last, thanks to the strong convergence of
√

hk
1uk

1 in L2(0,T ; L2(0, 1)) and above the weak convergence of uk
1, gives us:

(hk
1|uk

1|2uk
1)k converges weakly to h1|u1|2u1 in L1(0,T ; L1(0, 1)).

3.6 Convergences of (hk
2uk

1)k and (∂2
xhk

1)k

We know that ∂xhk
2 is bounded in L2(0,T ; L2(0, 1)) this implies ∂2

xhk
2 is in L1(0,T ; W−1,2(0, 1)).

So,
(∂2

xhk
2)k converges weakly to ∂2

xh2 ∈ L1(0,T ; W−1,2(0, 1))

To end we have (uk
1)k converges weakly to u1 in L2(0,T ; L2(0, 1)) and the strong convergence of (hk

2)k to h2, gives us:

(hk
2uk

1)k converges weakly to h2u1 in L1(0,T ; L1(0, 1)).

3.7 Convergence of
[(

a(hk
2)2 + b(hk

2)3)
)
∂x(hk

1 + hk
2)
]

We know that (∂x(hk
1+hk

2))k converges weakly to ∂x(h1+h2) in L2(0,T ; L2(0, 1)) and ((a(hk
2)2+b(hk

2)3))k converges strongly
to ah2

2 + bh3
2 in L1(0,T ; L1(0, 1)).

So, [(
a(hk

2)2 + b(hk
2)3)
)
∂x(hk

1 + hk
2)
]

k
converges weakly to (ah2

2 + bh3
2)∂x(h1 + h2) in L1(0,T ; L1(0, 1))

3.8 Convergences of (h1V(hk
1))k and (V(hk

1)∂xhk
1)k

We will begin by studying the convergence of the term h1V(hk
1). We have h1V(hk

1) =
1

(hk
1)2
− α

(hk
1)3

and

∣∣∣∣∣ 1
(hk

1)2
− α

(hk
1)3
− (

1
h2

1

− α
h3

1

)
∣∣∣∣∣ ≤ ∣∣∣∣∣ 1

(hk
1)2
− 1

h2
1

∣∣∣∣∣ + ∣∣∣∣∣ 1
(hk

1)3
− 1

h3
1

∣∣∣∣∣
∣∣∣∣∣ 1
(hk

1)2
− α

(hk
1)3
− (

1
h2

1

− α
h3

1

)
∣∣∣∣∣ ≤ |hk

1 − h1||hk
1 + h1|

(hk
1)2h2

1

+
|hk

1 − h1||(hk
1)2 + hk

1h1 + h2
1|

(hk
1)3h3

1

.

We use the Proposition 1 to find two constants η1 and η2 such as∣∣∣∣∣ 1
(hk

1)2
− α

(hk
1)3
− (

1
h2

1

− α
h3

1

)
∣∣∣∣∣ ≤ η1|hk

1 − h1| + η2|hk
1 − h1|.

So ∣∣∣∣∣ 1
(hk

1)2
− α

(hk
1)3
− (

1
h2

1

− α
h3

1

)
∣∣∣∣∣2 ≤ η2

3|hk
1 − h1|2 → 0. with η3 = 2max(η1, η2).

We have ( 1
(hk

1)2
− α

(hk
1)3

)
k

converges strongly to
1
h2

1

− α
h3

1

in L2(0,T ; L2(0, 1)).

A similar reasoning ensures the strong convergence of
( 1
(hk

1)3
− α

(hk
1)4

)
k

to
1
h3

1

− α
h4

1

in L2(0,T ; L2(0, 1)).

The strong convergence of (∂xhk
1)k in L2(0,T ; L2(0, 1)) gives us

(V(hk
1)∂xhk

1)k converges weakly to V(h1)∂xh1 in L1(0,T ; L1(0, 1)).

4. Conclusion

In this paper, we shown the existence of global weak solutions to 1D pollutant transport model. We have considered
the existence of molecular interactions between the molecules and we added the term ε∂2

xh2 to the level of the transport
equation. This has led us to the use of a molecular interaction force in this work. We obtained a result of existence of
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weak solutions. For our future works, we intend to tend the coefficient ε (of ε∂2
xh2) to 0. We will also show the existence

of strong global solutions of our model.
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Roamba, B., Zabsonré, J. D. D., & Traoré, S. (2016). Formal derivation and existence of global weak solutions of a
two-dimensional bilayer model coupling shallow water and Reynolds lubrication equations. Asymptotic Analysis,
99. 207-239. https://doi.org/10.3233/ASY-16138
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