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Abstract

We consider homogeneous linear recurring sequences over a finite field Fq, based on an irreducible characteristic polyno-
mial of degree n and order m. Let t = (qn − 1)/m. We use quadratic forms over finite fields to give the exact number of
occurrences of zeros of the sequence within its least period when t has q-adic weight 2. Consequently we prove that the
cardinality of the set of zeros for sequences from this category is equal to two.
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1. Introduction

Let Fq be the finite field with q elements where q = pm for prime p. Let k be a positive integer, and let a0, a1, . . . , ak−1 be
given elements of Fq. A sequence s0, s1, . . . of elements of Fq satisfying the relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . . + a0sn for n = 0, 1, . . . (1)

is called a kth-order homogeneous linear recurring sequence in Fq. The terms s0, s1, . . . sk−1, which determine the rest of
the sequence uniquely, are referred to as the initial values. Let s0, s1, . . . be a kth order homogeneous linear recurring
sequence in Fq satisfying the linear recurrence relation in (1), where a j ∈ Fq for 0 ≤ j ≤ k − 1. The polynomial

f (x) = xk − ak−1xk−1 − ak−2xk−2 − . . . − a0 ∈ Fq[x]

is called a characteristic polynomial of the linear recurring sequence. For the homogeneous linear recurring sequence
s0, s1, . . . in Fq,m(x) ∈ Fq[x] is said to be the minimal polynomial of the sequence if it has the following property: a
monic polynomial f (x) ∈ Fq[x] of positive degree is a characteristic polynomial of s0, s1, . . . if and only if m(x) divides
f (x).

Definition Let f ∈ Fq[x] be a non zero polynomial. If f (0) , 0, then the least positive integer e for which f (x) divides
xe − 1 is called the order of f which is denoted by ord( f ).

Theorem 1. (Lidl & Niederreiter, 1994) Let s0, s1, ... be a homogeneous linear recurring sequence in Fq with minimal
polynomial m(x) ∈ Fq[x]. Then the least period of the sequence is equal to ord(m(x)).

Discussions on linear recurring sequences took place for many years with a substantial development in the area of examin-
ing zeros and determining effective bounds for the set of zeros over infinite fields (Everest, Poorten, Shparlinski & Ward,
2003). Linear recurring sequences over finite fields have appeared sporadically over the years in a variety of contexts
in Cryptography, mainly in the area of linear shift registers where determining the exact number of zeros is of higher
importance (Lidl & Niederreiter, 1994). Let S be a homogeneous linear recurring sequence over Fq and let f (x) ∈ Fq[x]
be the irreducible minimal polynomial of S with degree n and order m and let t = qn−1

m . Kottegoda and Fitzgerald (2017)
provided an accurate bound for the number of zeros of S within its least period, also providing formulas for the exact
number of zeros when t has the form q2a − qa + 1 where a ∈ N. Here, we will give the exact number of zeros when
t = qa + 1 using applications in quadratic forms over finite fields.

In section 2, we will describe some known results on one-term trace forms over finite fields of even and odd characteristics
by Klapper (1993, 1997) and include proofs for the simpler formulation of Klapper’s results which were stated by Mullen
and Panario (2013)7.2 without proofs.

In section 3, we give our main theorem by providing formulas for the exact number of occurrences of zeros of S within its
least period for the case where t = qn−1

m takes the form qa + 1 where a ∈ N, using the quadratic form results from section
2. Hence we will also prove that the cardinality of the set of zeros in this case is 2.
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2. Results on Quadratic Forms

Let F = Fq and K = Fqn where q is a prime power. Let Q : K → F be a quadratic form and N(Q = u) be the number of
solutions for Q(x) = u in K. General information and the main definitions on quadratic forms can be obtained by Mullen
and Panario (2013)7.2.

We now recall what is known about N(Q = u) over finite fields of even and odd characteristic.

Proposition 1. (Klapper, 1993) Every quadratic form Q of rank m in n variables over Fq for even q is equivalent to one
of the following 3 standard types under a change of co-ordinates :

Type I: Bm(x);
Type II: Bm−1(x) + x2

m;
Type III: Bm−2(x) + bx2

m−1 + xm−1xm + bx2
m;

For any v ∈ Fq, let η(v) = −1 if v , 0 and η(0) = q − 1. The number of solutions to the equation Q(x) = v is :
for Type I: qn−1 + η(v)qn− m

2 −1;
for Type II: qn−1;
for Type III: qn−1 − η(v)qn− m

2 −1;

Proposition 2. (Klapper, 1997) For any quadratic form Q of rank m in n variables over Fq for odd q is equivalent under
a change of coordinates to precisely one of the following quadratic forms:

Type I: Bm(x);
Type II: Bm−1(x) + bx2

m;
Type III: Bm−2(x) + x2

m−1 − ax2
m; where b ∈ {1, a} and 1 , a ∈ F∗q/(F∗q)2.

and the determinants of Q (i.e det(Q)) are as follows:
for Type I: det(Q) = (−1)

m
2 ;

for Type II: det(Q) = b(−1)
m−1

2 ;
for Type III: det(Q) = a(−1)

m
2 ;

Furthermore the number of solutions to the equation Q(x) = u is
qn−1 + ν(u)η((−1)

m
2 det(Q))qn− m

2 −1 for Type I and Type III
qn−1 + η((−1)

m−1
2 u det(Q))qn− m+1

2 for Type II

where ν(x) =
{
−1, x , 0
q − 1, x = 0 and η(x) =


1, x is a square
−1, x is a not a square
0, x = 0

The following formulation for N(Q = 0) is much simpler to use for computations.

N(Q = 0) =
1
q

[qn + (q − 1)Λ(Q)
√

qn+r] (2)

where r = dim rad(Q) and Λ(Q) is an invariant defined in terms of the discriminant (if q is odd) or the Arf invariant (if q
is even). Let ν2(x) denote the 2-adic valuation of x. Consider the trace form Q(x) = TrK/F(γxqa+1). Set d = (n, a).

Proposition 3. (Mullen & Panario, 2013) For even q let Q(x) = TrK/F(γxqa+1) and γ ∈ K.

1. If ν2(n) < ν2(2a) then (r,Λ(Q)) = (d, 0)

2. If ν2(n) = ν2(2a) then

(r,Λ(Q)) =

(2d,+1), if γ is a (qa + 1)th power
(0,−1), if γ is not a (qa + 1)th power.

3. If ν2(n) > ν2(2a) then

(r,Λ(Q)) =

(2d,−1), if γ is a (qa + 1)th power
(0,+1), if γ is not a (qa + 1)th power.
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Proof. Case 1: ν2(2a) > ν2(n)

Since ν2(a) ≥ ν2(n), ν2(d) = ν2(n). Hence if n is even then a is even resulting n
d to be odd. If n is odd then n

d is odd.
Therefore by Theorem 4.1 (Klapper, 1993), Q(x) is of Type II with rank Q = n − d + 1 where r = 0 and Λ(Q) = 0.

Case 2: ν2(2a) = ν2(n)

Here n is even and ν2(a) < ν2(n). Hence n
d is even. Since ν2(2d) = 1+ ν2(a) = ν2(n), n

2d is odd. Therefore by Theorem 4.1
(Klapper, 1993), Q(x) is of Type III with rank n if γ is not a qa +1th power in K and Q(x) is of Type I with rank n−2d if γ
is not a qa + 1th power in K. Hence r take the values 0 and 2d respectively and Λ(Q) take the values -1 and 1 respectively.

Case 3: ν2(2a) < ν2(n)

Here n is even and ν2(n) ≥ 2. If a is odd, then d is odd and hence both n
d and n

2d are even. If a is even, then d is even and
ν2(d) = ν2(a) < ν2(n). Hence both n

d and n
2d are even. Therefore by Theorem 4.1 (Klapper, 1993), Q(x) is of Type I with

rank n if γ is not a qa + 1th power in K and Q(x) is of Type III with rank n− 2d if γ is a qa + 1th power in K. Hence r take
the values 0 and 2d respectively and Λ(Q) take the values 1 and -1 respectively.

�
Proposition 4. (Mullen & Panario, 2013) For odd q let Q(x) = TrK/F(γxqa+1) and γ ∈ K. Let ω be a primitive element
of K and write γ = ωg for some 0 ≤ g < qn − 1.

1. If ν2(n) < ν2(2a) then r = 0.

2. If ν2(n) = ν2(2a) then

(r,Λ(Q)) =

(2d,+1), if g ≡ 1
2 (qd + 1) (mod qd + 1)

(0,−1), if g . 1
2 (qd + 1) (mod qd + 1).

3. If ν2(n) > ν2(2a) then

(r,Λ(Q)) =

(2d,−1), if g ≡ 0 (mod qd + 1)
(0,+1), if g . 0 (mod qd + 1).

Proof. Case 1: ν2(n) < ν2(2a)

Here ν2(n) = ν2(d) and hence n
d is odd. Therefore by theorem 5.2,(Klapper, 1997) rank of Q = n and hence r = 0.

Case 2: ν2(n) = ν2(2a)

Here ν2(n) > ν2(a) and ν2(d) = ν2(a) and hence n
d is even. Since ν2(2d) = 1 + ν2(d) = 1 + ν2(a) = ν2(n), then n

2d is
odd. Therefore by Theorem 5.2 (Klapper, 1997), rank of Q take n − 2d when g ≡ 1

2 (qd + 1) (mod qd + 1) and n when
g . 1

2 (qd + 1) (mod qd + 1) giving r the values 2d and 0 respectively. By Theorem 5.3 (Klapper, 1997) Q is of type I in
the first case and type III in the second providing Λ(Q) = 1,−1 respectively.

Case 3: ν2(n) > ν2(2a)

As in case 2, it can be proved that n
(n,a) is even. Here ν2((n, a)) = ν2(a) and hence ν2(2(n, a)) = 1 + ν2((n, a)) < ν2(n).

Therefore n
2(n,a) is even. Hence by Theorem 5.2, 5.3 (Klapper, 1997), rank (Q) = n − 2d and Q is of type III when g ≡ 0

(mod qd + 1) giving r = 2d and Λ(Q) = −1. When g . 1
2 (qd + 1) (mod qd + 1), rank (Q) = n and Q is of type I with r = 0

and Λ(Q) = 1.

�
3. Zeros of Homogeneous Linear Recurring Sequences

When the characteristic polynomial of a homogeneous linear recurring sequence is irreducible, each term of the sequence
can be expressed in terms of a suitable trace function as given in the following theorem.

Theorem 2. (Lidl & Niederreiter, 1994) Let s0, s1, . . . be a kth-order homogeneous linear recurring sequence in F = Fq

whose characteristic polynomial f (x) is irreducible over F. Let α be a root of f (x) in the extension field K = Fqk . Then
there exists a uniquely determined θ ∈ K such that

sn = TrK/F (θαn) for n = 0, 1, . . .
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Let P(n,m) be the set of all irreducible polynomials over Fq of degree n and order m. For f ∈ P(n,m) and I ∈ (Fn
q)∗ =

(Fn
q) \ {0}, let S (I, f ) := {sk(I, f )|1 ≤ k ≤ m} be the first m terms (terms within the least period) of the homogeneous linear

recurring sequence S over Fq with the characteristic polynomial f and the initial values given by the n - tuple I. Let β be
a root of f in Fn

q and hence by Theorem 2, there exists a unique θ ∈ F∗qn such that the k th term of the sequence is given by,

sk(I, f ) = TrFqn /Fq (θβk) for all k, 1 ≤ k ≤ m (3)

The main result here is the following theorem that gives the exact values for the number of zeros of S (I, f ) when t = qn−1
m

is of the form qa + 1 for some a ∈ N.

Theorem 3. The number of zeros Z(S (I, f )) of the homogeneous linear recurring sequence S (I, f ) over Fq when t has
the form qa + 1 for some a ∈ N takes the values Z((S (I, f ))) = 1

t (N(Q) − 1) for the following N(Q) :
If q is even,

N(Q) =


1
q (qn + (q − 1)

√
qn+2d) ; ν2(n) = ν2(2a) and l ≡ 0 (mod qa + 1)

1
q (qn − (q − 1)

√
qn) ; ν2(n) = ν2(2a) and l . 0 (mod qa + 1)

1
q (qn − (q − 1)

√
qn+2d) ; ν2(n) > ν2(2a) and l ≡ 0 (mod qa + 1)

1
q (qn + (q − 1)

√
qn) ; ν2(n) > ν2(2a) and l . 0 (mod qa + 1)

and if q is odd,

N(Q) =


1
q (qn + (q − 1)

√
qn+2d) ; ν2(n) = ν2(2a) and l ≡ qd+1

2 (mod qa + 1)
1
q (qn − (q − 1)

√
qn) ; ν2(n) = ν2(2a) and l . qd+1

2 (mod qa + 1)
1
q (qn − (q − 1)

√
qn+2d) ; ν2(n) > ν2(2a) and l ≡ 0 (mod qa + 1)

1
q (qn + (q − 1)

√
qn) ; ν2(n) > ν2(2a) and l . 0 (mod qa + 1)

where θ = αl ∈ F∗qn for a fixed primitive element α ∈ F∗qn and d = (n, a).

Proof. Let F = Fq and K = Fn
q and let f ∈ P(n,m). Fix a primitive element α ∈ K. Then the order of β in equation (3) is

m and hence β = αrt where t = (qn − 1)/m and (r,m) = 1. Hence equation (3) above can be expressed as

sk(I, f ) = TrK/F(θαrtk) (4)

Define
sk(θ, t) := TrK/F(θαtk)

to be the kth term of the homogeneous linear recurring sequence S (θ, t) over F.

S (I, f ) = {TrK/F(θβk) | 1 ≤ k ≤ m}

= {TrK/F(θαrtk) | t = qn − 1
m
, 1 ≤ k ≤ m, (r,m) = 1}

= {sk(θ, rt) | t = qn − 1
m
, 1 ≤ k ≤ m, (r,m) = 1}

= S (θ, rt) where (r,m) = 1.

Now define Q : K → F by

Q(x) = TrK/F(θxqa+1).

This is known as a trace form. Since α is a primitive element of K, β = αm for any β ∈ K∗. Then

Q(β) = Q(αm) = TrK/F(θ(αm)qa+1) = TrK/F(θ(αqa+1)m) = sm(θ, t)

where t = qa + 1. Hence Q(β) gives the mth term of the homogeneous linear recurring sequence S (θ, t). Let N(Q) denote
the number of zeros of Q in K. Then N(Q) = 1 + tZ(S (θ, t)), where the extra 1 comes from including the solution x = 0.
By Lemma 1 (Kottegoda & Fitzgerald, 2017), N(Q) = 1 + tZ(S (θ, rt)) = 1 + tZ(S (I, f )).
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Now we will claim that ordt(q) = 2a. If ordt(q) = b then qb ≡ 1 (mod t). Considering the form of t (which is qa + 1),
q2a ≡ 1 (mod t) and hence t | q2a−qb which implies t | q2a−b−1. If 2a−b > 0 then by the definition of ordt(q), 2a−b > b
which implies a > b contradicting the fact that t | qb − 1. Hence the claim is proved.

Now Q is the trace form associated with a sequence S (θ, t). qn ≡ 1 (mod t) and by the claim above, 2a | n. Hence
ν2(n) ≥ ν2(a) and we are in the cases 2 and 3 in Propositions 3 and 4 above that give the number of solutions for Q(x) = 0.
Hence the result is obtained.

�
As q, n and a are fixed, depending on θ there are only two possible values of (r,Λ(Q)) by Propositions 3 and 4. Therefore
by Theorem 3, there are only two possible values for N(Q) proving the following corollary.

Corollary 1. The cardinality of the set of zeros of homogeneous linear recurring sequences S (I, f ) over Fq defined above
where t = qn−1

m with a q-adic weight 2 is equal to 2.

Example 1. Consider the set of all homogeneous linear recurring sequences over F2, based on irreducible minimal poly-
nomials of degree 8 and order 85. Here n = 8, m = 85 and q = 2 and t = 28−1

85 = 3 = 21 + 1 where a = 1. Observations
obtained by a MAPLE program in (Kottegoda, 2010, Appendix I-VIII) explains that there are 2040 such sequences (which
are based on the 8 irreducible polynomials of degree 8 and order 85) and the number of zeros within each of their least
periods are either 37 or 45. We will apply Theorem 3 and justify these observations. Here d = (n, a) = 1 and ν2(2) = 1
and ν2(8) = 3 and hence ν2(2a) < ν2(n). Therefore by Theorem 3, N(Q) takes the values

1
q

[q8 − (q − 1)
√

q10] and
1
q

[q8 + (q − 1)
√

q8].

Therefore when q = 2, N(Q) = 112 and 136 and since N(Q) = 1 + tZ(S ), we get Z(S ) = {37, 45}.
The next example considers the set of all homogeneous linear recurring sequences over F2 based on degree 16 and order
3855. There are 8388480 such sequences and computing the zeros via a computer program is a tedious task. A simple
computation with the use of Theorem 3 gives the pair of exact values for the number of zeros for this case confirming the
21st observation given in Table 1 (Kottegoda & Fitzgerald, 2017).

Example 2.

Here n = 16, m = 3855, q = 2 and hence t = 216−1
3855 = 17 = 24 + 1 where a = 4. This results d = (n, a) = 4 and

ν2(2a) < ν2(n). Therefore by Theorem 7, N(Q) takes the values

1
q

[q16 − (q − 1)
√

q24] and
1
q

[q16 + (q − 1)
√

q16].

Therefore when q = 2, N(Q) = 30720 and 32896 and since N(Q) = 1 + tZ(S ), we get Z(S ) = {1807, 1935}.
4. Conclusion

Considering homogeneous linear recurring sequences over Fq based on irreducible minimal polynomials of given degree
(n) and order (m), the main goal here was to examine the number of zeros within its least period when t = qn−1

m has a
q-adic weight 2. This was achieved by Theorem 3 here where the exact number of occurrences of zeros were determined
using applications of quadratic forms over finite fields and hence it was also proved that the cardinality of the set of zeros
in this case is 2.
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