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Abstract

In this paper, we study the elementary solution of the operator �k
B which is defined by

�k
B =

[(
Bx1 + Bx2 + · · · + Bxp

)3
+

(
Bxp+1 + · · · + Bxp+q

)3
]k

,

where p + q = n is the dimension of R+n = {(x = x1, x2, . . . , xn) : x1 > 0, x2 > 0, . . . , xn > 0}, Bxi
= ∂2

∂x2
i

+ 2vi

xi

∂
∂xi

,

2vi = 2αi + 1, αi > − 1
2 , xi > 0, i = 1, 2, . . . , n and k is a positive integer. After that, we apply such an elementary solution

to solve the equation �k
Bu(x) = f (x), where f is a generalized function and u is an unknown function.
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1. Introduction

I. M. Gelfand and G. E. Shilov (1964) have first introduced the elementary solution of the n−dimensional classical di-
amond operator. S. E. Trione has shown that the n−dimensional ultra-hyperbolic equation has u(x) = R2k(x) as unique
elementary solution. Later, M. A. Tellez has proved that R2k(x) exists only for case p is odd with p+ q = n. A. Kananthai
has showed that the solution in the convolution form u(x) = (−1)kS 2k(x) ∗ R2k(x) is the unique elementary solution of the
♦ku(x) = δ. Furthermore, M. Z. Sarikaya and H. Yildirim have introduced the Bessel diamond operator and have proved
that the convolution solution u(x) = (−1)kS 2k(x) ∗ R2k(x) is the unique elementary solution of the ♦k

Bu(x) = δ, where ♦k
B

is the Bessel diamond operator iterated k times with x ∈ R+n ,

♦k
B =

[(
Bx1 + Bx2 + · · · + Bxp

)2 −
(
Bxp+1 + · · · + Bxp+q

)2
]k

, p + q = n. (1)

The Bessel diamond operator can be expressed in the form ♦B = �B�B = �B�B, where �B is the Laplace-Bessel operator
which is defined by

�B = Bx1 + Bx2 + · · · + Bxn
, (2)

and �B is the Bessel ultra-hyperbolic operator which is defined by

�B = Bx1 + Bx2 + · · · + Bxp
− Bxp+1 − Bxp+2 − · · · − Bxp+q

. (3)

In this paper, at first we study the elementary solution of the �k
B operator, that is

�k
BG(x) = δ, (4)

where G(x) is the elementary solution of such equation, δ is the Dirac delta distribution, k is nonnegative integer and the
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�B operator is defined by

�B =

⎛⎜⎜⎜⎜⎜⎝ p∑
i=1

Bxi

⎞⎟⎟⎟⎟⎟⎠3

+

⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑
i=p+1

Bxi

⎞⎟⎟⎟⎟⎟⎟⎠
3

=

⎡⎢⎢⎢⎢⎢⎢⎣ p∑
i=1

Bxi
+

p+q∑
i=p+1

Bxi

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝ p∑

i=1

Bxi

⎞⎟⎟⎟⎟⎟⎠2

−
p∑

i=1

Bxi

p+q∑
i=p+1

Bxi
+

⎛⎜⎜⎜⎜⎜⎜⎝ p+q∑
i=p+1

Bxi

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦

= �B

[
�2

B −
3
4

(�B +�B) (�B −�B)
]

=
3
4
�B�2

B +
1
4
�3

B

=
3
4
♦B�B +

1
4
�3

B. (5)

After that, we apply such an elementary solution to solve for the solution of the equation �k
BG(x) = f (x), where f (x) is a

generalized function and u(x) is an unknown function for x ∈ R+n .

2. Preliminaries

The generalized shift operator, T
y
x has the following form (B.M. Levitan, 1951, p.102-143),

T
y
x =C∗

v

∫ π

0
· · ·

∫ π

0
ϕ(s1, . . . , sn)

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

sin2vi−1 θi

⎞⎟⎟⎟⎟⎟⎠ dθ1 · · · dθn,

where s2
i = x2

i + y2
i − 2xiyi cos θi, x, y ∈ R+n and C∗

v =
∏n

i=1
Γ(vi+1)
Γ( 1

2 )Γ(vi)
. We remark that this shift operator is closely connected

with the Bessel differential operator (B.M. Levitan, 1951, p.102-143),

d2ϕ

dx2
i

+
2vi

xi

dϕ

dxi

=
d2ϕ

dy2
i

+
2vi

yi

dϕ

dyi

,

ϕ(xi, 0) = f (x),
ϕyi

(xi, 0) = 0,

where xi, yi ∈ R+n for i = 1, 2, . . . , n. The convolution operator denoted by T
y
x is defined as follows

( f ∗ ϕ)(x) =
∫

R
+
n

f (y)T y
xϕ(x)

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

y2vi

i

⎞⎟⎟⎟⎟⎟⎠ dy. (6)

Convolution in (6) is known as a B-convolution. We note the following properties of the B-convolution and the generalized
shift operator,

(a) T
y
x · 1 = 1.

(b) T 0
x · f (x) = f (x).

(c) If f (x), g(x) ∈ C(R+n ), g(x) is a bounded function for x ∈ R+n and∫
R
+
n

| f (x)|
⎛⎜⎜⎜⎜⎜⎝ n∏

i=1

x2vi

i

⎞⎟⎟⎟⎟⎟⎠ dx < ∞,

then ∫
R
+
n

T
y
x f (x)g(y)

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

y2vi

i

⎞⎟⎟⎟⎟⎟⎠ dy =

∫
R
+
n

f (y)T y
xg(x)

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

y2vi

i

⎞⎟⎟⎟⎟⎟⎠ dy.

(d) From (c), we have the following equality for g(x) = 1,∫
R
+
n

T
y
x f (x)

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

y2vi

i

⎞⎟⎟⎟⎟⎟⎠ dy =

∫
R
+
n

f (y)

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

y2vi

i

⎞⎟⎟⎟⎟⎟⎠ dy.

(e) ( f ∗ g)(x) = (g ∗ f )(x).
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The Fourier-Bessel transformation and its inverse transformation are defined as follows (H. Yildirim, 1995),

(FB f )(x) = Cv

∫
R
+
n

f (y)

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

Jvi− 1
2
(xiyi)y

2vi

i

⎞⎟⎟⎟⎟⎟⎠ dy,

(F−1
B f )(x) = (FB f )(−x), Cv =

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

2vi− 1
2 Γ

(
vi +

1
2

)⎞⎟⎟⎟⎟⎟⎠−1

,

where Jvi− 1
2
(xiyi) is the normalized Bessel function which is the eigenfunction of the Bessel differential operator. There

are following equalities for Fourier-Bessel transformation (H. Yildirim, 1995),

FBδ(x) = 1 and FB( f ∗ g)(x) = FB f (x) · FBg(x).

Lemma 1. There is a following equality for Fourier-Bessel transformation

FB(|x|−α) = 2n+2|v|−2αΓ

(
n + 2|v| − α

2

) [
Γ

(
α

2

)]−1
|x|α−n−2|v|,

where |v| = v1 + v2 + · · · + vn.

Proof. (H. Yildirim, 1995).

Lemma 2. Given the equation �k
Bu(x) = δ(x) for x ∈ R+n , where �k

B is the Laplace-Bessel operator iterated k-times

defined by (2). Then u(x) = (−1)kS 2k(x) is an elementary solution of the �k
B operator, where

S 2k(x) =
2n+2|v|−4kΓ( n+2|v|−2k

2 )

Πn
i=12vi− 1

2 Γ(vi +
1
2 )Γ(k)

|x|2k−n−2|v|. (7)

Proof. (H. Yildirim, 1995).

Lemma 3. Given the equation �k
Bu(x) = δ(x) for x ∈ Γ+ = {x ∈ R+n : x1 > 0, x2 > 0, · · · , xn > 0 and V > 0}, where �k

B is

the Bessel-ultra-hyperbolic operator iterated k-times defined by (3). Then u(x) = R2k(x) is an elementary solution of the

�k
B operator, where

R2k(x) =
V

2k−n−2|v|
2

Kn(2k)
(8)

for

V = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − · · · − x2
p+q

and

Kn(2k) =
π

n+2|v|−1
2 Γ( 2+2k−n−2|v|

2 )Γ( 1−2k
2 )Γ(2k)

Γ( 2+2k−p−2|v|
2 )Γ( p−2k

2 )

Proof. (H. Yildirim, M. Z. Sarikaya and S. Öztürk, 2004, p.375-387).

Lemma 4. The functions S 2k(x) and R2k(x) are homogeneous distributions of order (2k − n− 2|v|) for Re(2k) < n+ 2|v|.
In particular, the B-convolution S 2k(x) ∗ R2k(x) exists and is a tempered distribution.

Proof. (H. Yildirim, M. Z. Sarikaya and S. Öztürk, 2004, p.375-387).

Lemma 5. Given the equation ♦k
Bu(x) = δ(x) for x ∈ R+n , where ♦k

B is the diamond Bessel operator iterated k-times

defined by (1). Then u(x) = (−1)kS 2k(x) ∗ R2k(x) is an elementary solution of the ♦k
B operator.

Proof. (H. Yildirim, M. Z. Sarikaya and S. Öztürk, 2004, p.375-387).

Lemma 6. Let k and r be nonnegative integer.

(a) Let S 2k(x) and S 2r(x) be defined by (7), then S 2k(x) ∗ S 2r(x) = S 2k+2r(x).

(b) Let R2k(x) and R2r(x) be defined by (8), then R2k(x) ∗ R2r(x) = R2k+2r(x).

Proof. (M. Z. Sarikaya and H. Yildirim, 2009, p.18-22).
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Lemma 7. The convolution S 6k(x) ∗ R4k(x) exists and is a tempered distribution where S 6k(x) = S 2k(x) ∗ S 2k(x) ∗ S 2k(x)
and R4k(x) = R2k(x) ∗ R2k(x) such that S 2k(x) and R2k(x) are defined by (7) and (8), respectively.

Proof. Since S 2k(x) ∗ R2k(x) exists and is a tempered distribution, by W.F. Donoghue (1969, p.156-159), we obtain
S 6k(x) ∗ R4k(x) exists and is a tempered distribution. �

Lemma 8. Let S 6(x) with k = 3 and R4(x) with k = 2 be defined by (7) and (8) respectively. Then

(a) ♦B�B (S 6(x) ∗ R4(x)) = −S 4(x),

(b) �3
B

(S 6(x) ∗ R4(x)) = −R4(x).

Proof. (a) We obtain

♦B�B (S 6(x) ∗ R4(x)) = ♦B�B

(
(−1)2S 6(x) ∗ R4(x)

)
= ♦B ((−1)S 2(x) ∗ R2(x)) ∗�B (R2(x)) ∗ (−1)S 4(x)
= δ(x) ∗ δ(x) ∗ (−1)S 4(x)
= −S 4(x).

(b) We get

�3
B (S 6(x) ∗ R4(x)) = �3

B

(
(−1)4(S 6(x) ∗ R4(x)

)
= �3

B

(
(−1)3S 2(3)(x)

)
∗ (−1)R4(x)

= δ(x) ∗ (−1)R4(x)
= −R4(x).

�
3. Main results

Theorem 1. Given the equation

�k
BG(x) = δ(x), (9)

then G(x) = S 6k(x) ∗ R4k(x) ∗
(
C∗k(x)

)∗−1
is a Green function for the �k

B operator iterated k-times where �B is defined by

(5), δ is the Direc delta distribution, x = (x1, x2, . . . , xn) ∈ R+n , k is a nonnegative integer and

C(x) = −
[
3
4

S 4(x) +
1
4

R4(x)
]
, (10)

C∗k(x) denotes the convolution of C(x) itself k-times,
(
C∗k(x)

)∗−1
denotes the inverse of C∗k(x) in the convolution algebra.

Moreover C∗k(x) is a tempered distribution.

Proof. Since �B =
3
4♦B�B +

1
4�3

B
, by (9) we obtain[
3
4
♦B�B +

1
4
�3

B

] [
3
4
♦B�B +

1
4
�3

B

]k−1

G(x) = δ(x).

By Lemma 7 with k = 1, S 6(x) ∗ R4(x) exists and is a tempered distribution. Convolving both side of the above equation
by S 6(x) ∗ R4(x), we have[

3
4
♦B�B +

1
4
�3

B

]
(S 6(x) ∗ R4(x)) ∗

[
3
4
♦B�B +

1
4
�3

B

]k−1

G(x) = (S 6(x) ∗ R4(x)) ∗ δ(x).

By Lemma 8, we obtain

C(x) ∗
[
3
4
♦B�B +

1
4
�3

B

]k−1

G(x) = S 6(x) ∗ R4(x).

Keeping on convolving both sides of the above equation by S 6(x) ∗ R4(x) up to k − 1 times, we have

C∗k(x) ∗G(x) = (S 6(x) ∗ R4(x))∗k .
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where the symbol ∗k denotes the convolution of itself k-times. By M.A. Tellez (1994), we get

(S 6(x) ∗ R4(x))∗k = S 6k(x) ∗ R4k(x).

Therefore,
C∗k(x) ∗G(x) = S 6k(x) ∗ R4k(x). (11)

Since S 4(x) and R4(x) are lies in S ′ where S ′ is a space of tempered distribution, C(x) ∈ S ′. By W.F. Donoghue (1996, p.
152), we obtain C∗k(x) ∈ S ′. Since S 6k(x) ∗R4k(x) ∈ S ′, choose S ′ ⊂ D′

R where D′
R is the right-side distribution which is a

subspace of D′ of distribution. Thus S 6k(x) ∗ R4k(x) ∈ D′
R, it follows that S 6k(x) ∗ R4k(x) is an element of the convolution

algebra. By A.H. Zemanian (1964, p. 150-151) the equation (11) has an unique solution

G(x) = S 6k(x) ∗ R4k(x) ∗
(
C∗k(x)

)∗−1

where
(
C∗k(x)

)∗−1
is an inverse of C∗k(x) in the convolution algebra, G(x) is called the elementary solution of the �k

B

operator. Since S 6k(x) ∗ R4k(x) and
(
C∗k(x)

)∗−1
are tempered distribution, by W.F. Donoghue (1996, p. 152), we obtain

S 6k(x) ∗ R4k(x) ∗
(
C∗k(x)

)∗−1
is a tempered distribution. It follows that G(x) is a tempered distribution. �

Theorem 2. Given the equation

�k
Bu(x) = f (x) (12)

where f is a given generalized function and u(x) is an unknown function, we obtain

u(x) = G(x) ∗ f (x)

is an unique solution of (12) where G(x) is an elementary solution for the operator �k
B.

Proof. Convolving both sides of the equation (12) by the Green function G(x) of the �k
B operator in Theorem 1, we

obtain
G(x) ∗�k

Bu(x) = G(x) ∗ f (x)

or
�k

BG(x) ∗ u(x) = G(x) ∗ f (x).

Applying Theorem 1, we have
δ(x) ∗ u(x) = G(x) ∗ f (x)

or
u(x) = G(x) ∗ f (x).

Since G(x) is an unique, u(x) is an unique solution of the equation (12). �
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