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Abstract

In this paper, the approximate solutions for quadratic integral equations (QIEs) are given by the variational iteration
method (VIM) and homotopy perturbation method (HPM). These methods produce the solutions in terms of convergent
series without needing to restrictive assumptions, to illustrate the ability and credibility of the methods, we deal with some
examples that show simplicity and effectiveness.
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1. introduction

Quadratic integral equations (QIEs) are often applied in the radiative transfer, neutron transport, kinetic theory of gases
and in the traffic theories.
The QIEs are studied in many papers and monographs (Bana’s, et al., 2005; Bana’s, et al., 1998; Bana’s & Martinon,
2004; El-sayed & Hashem, 2009a; El-Sayed & Hashem, 2009b).
Recently, the different analytical and numerical methods are applied to reach the approximate solutions of QIEs. As
there is no exact solutions for the most QIEs, many different kinds of researches are focusing on the effective of QIEs
properties like the existence, uniqueness, positive solutions and monotonic solutions of this class of equations (Argyros,
1985; Bana’s et, al., 1998; Bana’s & Martinon, 2004; El-Sayed & Rzepka, 2006). There are few papers which have dealt
with the numerical solutions of QIEs such as Elsayed (El-Sayed et al., 2010) used the classical method of successive
approximations Picard and Adomian decomposition method for solving QIEs, Avazzadeh (Avazzadeh, 2012) used the
radial basis functions to obtain the approximate solutions of QIEs of Urysohn’s type. (He, 1999a; He, 1999b; He, 2000;
He, 2003) was the first one who proposed the VIM and HPM to find the solutions of linear and nonlinear problems.
Widely, the VIM is used in the literature in different scientific applications in (Abdou & Soliman, 2005; Abulwafa et al.,
2006; He & Wu, 2007). This method presents significant enhancements over existing numerical and analytic technique
like the perturbation, Adomian, Galerkin, finite differences methods, etc. These methods have dealt with ordinary, partial
differential equations, the integro-differential equations (IDEs) and integral equations, in a direct way without needing to
any specific restriction which may give the closed form of exact solution if there is an exact solution. The VIM has no
specific restrictions for nonlinear terms which involve in the equation.
The homotopy perturbation method deforms a difficult problem under study into a simple one which is easy to solve.
Most perturbation methods assume there is a small parameter, but there is no small parameter at all in the most nonlinear
problems. Many new methods are proposed to eliminate the small parameter (He, 1999b; Liao, 1995). Also, the HPM
is employed for solving several kinds of integral equations. Such as, Fredholm, nonlinear Volterra-Fredholm integral
equations and Volterra integro-differential equations.
The aim of the present paper is extending the application of HPM and VIM to give some approximate solutions for the
following QIE whereA(t) is given and F (s, x(s)) is any nonlinear functions. We want to point out that this work is applied
for first time on these kind of equations.

x(t) = A(t) + G(t, x(t))

t∫
0

F (s, x(s))ds. (1)

It is clear that the results reveal the effectively and simplicity for the presented two methods.
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2. Variational Iteration Method

Consider the following differential equation where L and N are linear and nonlinear operators respectively, and g(x) is
the inhomogeneous source term

L[u(x)] +N[u(x)] = g(x). (2)

The VIM presents a correction functional for eq.(2) in the following form:

un+1(x) = un(x) +

x∫
0

λ(ζ)[Lun(ζ) +N ũn(ζ) − g(ζ)]dζ, (3)

where λ is a general Lagrange multiplier, noting that in this method λ may be a constant or a function, which can be
identified perfectly by the variational theory and the subscript n denotes the nth-order approximation, ũn is considered as
a restricted value that means it behaves as a constant, i.e. δũn = 0.
It was found in (Abdou & Soliman, 2005; Abulwafa et al., 2006; He & Wu, 2007). the general formula for λ(x) for the
nth order differential equation

u(n) + f
(
u(ζ), u′(ζ), u′′(ζ), ...., u(n)(ζ)

)
= 0, (4)

has the form

λ(x) = (−1)n 1
(n − 1)!

(ζ − x)(n−1). (5)

The solution given by
u(x) = lim

n→∞
un(x).

3. Homotopy Perturbation Method

Consider the differential equation (2) with following the boundary conditions where B is a boundary operator, Γ is the
boundary of the domain Ω and x ∈ Ω

B

(
u,
∂u

∂n

)
= 0, x ∈ Γ. (6)

The He’s homotopy perturbation technique (He, 1999a), (He, 2000) defines the homotopy ν(x, p) : Ω × [0, 1]→ℜ which
satisfies

H(ν, p) = (1 − p)[L(ν) − L(u0)] + p[L(ν) +N(ν) − g(x)] = 0, (7)

or

H(ν, p) = [L(ν) − L(u0)] + pL(u0) + p[N(ν) − g(x)] = 0, (8)

where x ∈ Ω and p ∈ [0, 1] is an impeding parameter, u0 is an initial approximation which satisfies the boundary conditions,
from eq’s.(7) and (8), we have

H(ν, 0) = L(ν) − L(u0) = 0, (9)
H(ν, 1) = L(ν) +N(ν) − g(x) = 0. (10)

The p process of changing from zero to unity is just that of ν(x, p) from u0 to u(x). In topology, this is called deformation,
L(ν) − L(u0) and L(ν) +N(ν) − g(x) are homotopic. The solutions of eq.(7) and eq.(8) can be defined as a power series
in p

ν = ν0 + pν1 + p2ν2 + ...., (11)

when p→ 1, corresponding to (7) becomes the approximate solution is

u = ν0 + ν1 + ν2 + ...., (12)

the convergence of the series (12) has been proved in (He, 1999a; He, 2000).

135



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

4. Numerical Examples

In this part, we study some examples and apply the VIM and HPM methods for comparison reasons.

Example 1. solve the QIE (El-Sayed et al., 2010)

x(t) =
(
t2 − t10

35

)
+

t
5

x(t)

t∫
0

s2x2(s)ds, (13)

with exact solution x(t) = t2.
as beginning we have to convert volterra QIE to an equivalent volterra IDE. We can do this by differentiating two sides of
the QIEs, we should used the Leibnitz rule for differentiating the QIEs at the right side.

x′(t) = 2t − 10
(

t9

35

)
+

t3

5
x3(t) +

(
1
5

x(t) +
t
5

x′(t)
) t∫

0

s2x2(s)ds, x(0) = 0, (14)

we can get the initial condition x(0) = 0 by substituting x = 0 in eq.(13), the correction functional for Equation (14) is

xn+1(t) = xn(t) +

t∫
0

λ(ζ)
(
x′n(ζ) − 2ζ + 10

ζ9

35
− ζ

3

5
x3

n(ζ) −
(

1
5

xn(ζ) +
ζ

5
x′n(ζ)

)
ζ∫

0

r2x2(r)dr

 dζ. (15)

We substitute the value of λ(ζ) = −1 in eq.(15) which is identified by the variational theory, also, we can use the initial
value x(0) = 0 to obtain the zeroth approximation x0(t) and by using Equation (15) we get the successive approximations,

x0(t) = 0, (16)

x1(t) = t2 − 1
35

t10, (17)

x2(t) = t2 − 1
4930625

t34 +
61

2113125
t26 − 29

18375
t18, (18)

and so on, and the solution given by

x(t) = lim
n→∞

xn(t).

Table 1. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error
0.10 0.01000000 0.01000000 3.008×10−40

0.20 0.04000000 0.04000000 5.168×10−30

0.30 0.09000000 0.09000000 5.017×10−24

0.40 0.16000000 0.16000000 8.879×10−20

0.50 0.25000000 0.25000000 1.751×10−16

0.60 0.36000000 0.36000000 8.617×10−14

0.70 0.49000000 0.49000000 1.626×10−11

0.80 0.64000000 0.64000000 1.521×10−9

0.90 0.80999992 0.81000000 8.311 ×10−8

1.00 0.99999704 1.00000000 0.0000029606
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Figure 1. Comparison of the approximate solution by VIM with the exact solution

Table 1 shows the approximate solution for n = 4, also it is obvious that we can improve the accuracy of solutions by
computing more terms of the approximate solutions. We can construct the following homotopy according to HPM,

H(u, p) = (1 − p)(u(t) − g(t)) + p

u(t) −
(
t2 − t10

35

)
− t

5
u(t)

t∫
0

s2u2(s)ds

 = 0, (19)

such that g(t) =
(
t2 − t10

35

)
then

H(u, p) = u(t) −
(
t2 − t10

35

)
− p

t
5
u(t)

t∫
0

s2u2(s)ds = 0, (20)

substituting (11) into (20) and equating the terms with the same identical powers of p we have

p0 : u0(t) =

(
t2 − t10

35

)
, (21)

p1 : u1(t) =
t
5
u0(t)

t∫
0

s2H0(s)ds, (22)

p2 : u2(t) =
t
5
u0(t)

t∫
0

s2H1(s)ds +
t
5
u1(t)

t∫
0

s2H0(s)ds, (23)

p3 : u3(t) =
t
5
u0(t)

t∫
0

s2H2(s)ds +
t
5
u1(t)

t∫
0

s2H1(s)ds

+
t
5
u2(t)

t∫
0

s2H0(s)ds, (24)

and so on, where Hi are He’s polynomials of the nonlinear term x2, and the solution will be,

u(t) =
n∑

i=0

ui(t).
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Tbale 2. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error
0.10 0.01000000 0.01000000 4.992×10−49

0.20 0.04000000 0.04000000 2.195×10−36

0.30 0.09000000 0.09000000 5.462×10−29

0.40 0.16000000 0.16000000 9.655×10−24

0.50 0.25000000 0.25000000 1.134×10−19

0.60 0.36000000 0.36000000 2.398×10−16

0.70 0.49000000 0.49000000 1.549×10−13

0.80 0.64000000 0.64000000 4.181×10−11

0.90 0.80999999 0.81000000 5.745×10−9

1.00 0.99999954 1.00000000 4.554×10−7

Figure 2. Comparison of the approximate solution by HPM with the exact solution

Table 2 shows the approximate solution for n = 4, also it is obvious that we can improve the accuracy of solutions by
computing more terms of the approximate solutions.

Example 2. Solve the QIE (El-Sayed et al., 2010)

x(t) =
(
t3 − t19

100
− t20

110

)
+

t3

10
x2(t)

t∫
0

(s + 1)x3(s)ds, (25)

with exact solution x(t) = t3.
as beginning we have to convert volterra QIE to an equivalent volterra IDE. We can do this by differentiating two sides of
the QIEs, we should used the Leibnitz rule for differentiating the QIEs at the right side.

x′(t) =

(
3t2 − 19

t18

100
− 20

t19

110

)
+ 3

t2

10
x2(t)

t∫
0

(s + 1)x3(s)ds +
t3

10
(2x(t)x′(t))

t∫
0

(s + 1)x3(s)ds

+
t3

10
(t + 1)x5(t)ds, x(0) = 0, (26)

we can get the initial condition x(0) = 0 by substituting x = 0 in eq.(25), the correction functional for Equation (26) is

xn+1(t) = xn(t) +

t∫
0

λ(ζ)

x′n(ζ) − 3ζ2 + 19
ζ18

100
+ 20

ζ19

110
− 3
ζ2

10
x2

n(ζ)

ζ∫
0

(r + 1)x3
n(r)dr

− ζ
3

10
(2xn(ζ)x′n(ζ))

ζ∫
0

(r + 1)xn
3(r)dr − ζ

3

10
(ζ + 1)x5

n(ζ)

 dζ, (27)
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We substitute the value of λ(ζ) = −1 in eq.(27) which is identified by the variational theory, also, we can use the initial
value x(0) = 0 to obtain the zeroth approximation x0(t) and the solution given by

x(t) = lim
n→∞

xn(t).

Table 3. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error
0.10 0.00100000 0.00100000 1.112×10−56

0.20 0.00800000 0.00800000 3.189×10−41

0.30 0.02700000 0.02700000 3.813×10−32

0.40 0.06400000 0.06400000 1.105×10−25

0.50 0.12500000 0.12500000 1.175×10−20

0.60 0.21600000 0.21600000 1.540×10−16

0.70 0.34300000 0.34300000 4.749×10−13

0.80 0.51200000 0.51200000 5.066 ×10−10

0.90 0.72899976 0.72900000 2.393×10−7

1.00 0.99994142 1.00000000 0.0000585810

Figure 3. Comparison of the approximate solution by VIM with the exact solution

Table 3 shows the approximate solution for n = 3, also it is obvious that we can improve the accuracy of solutions by
computing more terms of approximate solutions. We can construct the following homotopy according to HPM,

H(u, p) = (1 − p)(u(t) − g(t)) + p
(
u(t) −

(
t3 − t19

100
− t20

110

)

− t3

10
x2(t)

t∫
0

(s + 1)x3(s)ds

 = 0, (28)

such that g(t) =
(
t3 − t19

100
− t20

110

)
, then

H(u, p) = u(t) −
(
t3 − t19

100
− t20

110

)
− p

t3

10
x2(t)

t∫
0

(s + 1)x3(s)ds = 0, (29)
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substituting (11) into (29) and equating the terms with identical powers of p we have

p0 : u0(t) = t3 − t19

100
− t20

110
, (30)

p1 : u1(t) =
t3

10
A0(t)

t∫
0

(s + 1)B0(s)ds, (31)

p2 : u2(t) =
t3

10
A0(t)

t∫
0

(s + 1)B1(s)ds +
t3

10
A1(t)

t∫
0

(s + 1)B0(s)ds, (32)

p3 : u3(t) =
t3

10
A0(t)

t∫
0

(s + 1)B2(s)ds +
t3

10
A1(t)

t∫
0

(s + 1)B1(s)ds

+
t3

10
A2(t)

t∫
0

(s + 1)B0(s)ds, (33)

and so on, where Ai and Bi are He’s polynomials of the nonlinear terms x2 and x3 respectively, and the solution will be,

u(t) =
n∑

i=0

ui(t),

Table 4. Comparison of the numerical results with the exact solution x(t)

t Approximate Solution Exact Solution Absolute error
0.10 0.00100000 0.00100000 1 ×10−73

0.20 0.00800000 0.00800000 1.611×10−53

0.30 0.02700000 0.02700000 1.363×10−41

0.40 0.06400000 0.06400000 4.227×10−33

0.50 0.12500000 0.12500000 1.704×10−26

0.60 0.21600000 0.21600000 4.389×10−21

0.70 0.34300000 0.34300000 1.688×10−16

0.80 0.51200000 0.51200000 1.607×10−12

0.90 0.72899999 0.72900000 5.210×10−9

1.00 0.99999316 1.00000000 0.0000068386

Figure 4. Comparison of the approximate solution by HPM with the exact solution

Table 4 shows the approximate solution for n = 3, also it is obvious that we can improve the accuracy of solutions by
computing more terms of approximate solutions.
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Example 3. Solve the QIE (Bana’s et al., 2005)

x(t) = t3 +

(
1
4

x(t) +
1
4

) 
t∫

0

t + cos
(

x(s)
1 + x2(s)

) ds. (34)

According to the VIM, differentiating both sides of eq.(34) ones with respect to t gives the IDE

x′(t) = 3t2 +
1
2

tx(t) +
1
4

t2x′(t) +
1
4

x(t)cos
(

x(t)
1 + x2(t)

)

+
1
4

x′(t)

t∫
0

cos
(

x(s)
1 + x2(s)

)
ds +

1
2

t +
1
4

cos
(

x(t)
1 + x2(t)

)
, (35)

The correction functional for eq.(35) is

xn+1(t) = xn(t) −
t∫

0

(
x′n(ζ) − 3ζ2 − 1

2
ζxn(ζ) − 1

4
ζ2x′n(ζ) − 1

4
xn(ζ)cos

(
xn(ζ)

1 + x2
n(ζ)

)

−1
4

x′n(ζ)

ζ∫
0

cos
(

xn(r)
1 + x2

n(r)

)
dr − 1

2
ζ − 1

4
cos

(
xn(ζ)

1 + x2
n(ζ)

)
dζ, (36)

we can use the initial value x(0) = 0 to obtain the zeroth approximation x0(t) and by using the eq.(36) we get the successive
approximations

x0(t) = 0, (37)

x1(t) =
1
4

t + t3 +
1
4

t2, (38)

x2(t) =
1
4

t +
431
384

t3 +
5
16

t2 − 1
56

t10 − 5
336

t9 − 71
3360

t8 − 1499
53760

t7

− 269
15360

t6 +
3599
15360

t5 +
473
1536

t4, (39)

and so on, and the solution given by

x(t) = lim
n→∞

xn(t).

We can construct the following homotopy according to HPM,

H(u, p) = (1 − p)(u(t) − t3) + p

u(t) − t3 −
(

1
4
u(t) +

1
4

) t∫
0

t + cos
(
u(s)

1 + u2(s)

)
ds

 = 0, (40)

H(u, p) = u(t) − t3 − p
(

1
4
u(t) +

1
4

) t∫
0

t + cos
(
u(s)

1 + u2(s)

)
ds = 0, (41)
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substituting (11) into (41) and equating the term with identical powers of p we have

p0 : u0(t) = t3, (42)

p1 : u1(t) =
1
4
u0(t)

t∫
0

(t + H0(s))ds +
1
4

t∫
0

(t + H0(s))ds, (43)

p2 : u2(t) =
1
4
u0(t)

t∫
0

H1(s)ds +
1
4

t∫
0

H1(s)ds

+
1
4
u1(t)

t∫
0

(t + H0(s))ds, (44)

p3 : u3(t) =
1
4
u0(t)

t∫
0

H2(s)ds +
1
4

t∫
0

H2(s)ds +
1
4
u1(t)

t∫
0

H1(s)ds

+
1
4
u2(t)

t∫
0

(t + H0(s))ds, (45)

and so on, where Hi are He’s polynomials of the nonlinear term cos( x(s)
1+x2(s) ) and the solution will be

u(t) =
n∑

i=0

ui(t),

Table 5. Approximate solution x(t) by VIM and HPM for n = 1

t VIM solution HPM solution
0.10 0.02930184 0.02930216
0.20 0.07228471 0.07229271
0.30 0.13761286 0.13768016
0.40 0.23575023 0.23610759
0.50 0.37941576 0.38085479
0.60 0.58374728 0.58851618
0.70 0.86560555 0.87921321
0.80 1.24089607 1.27522943
0.90 1.71800041 1.79569813
1.00 2.28475926 2.44303370

(a) (b)
Figure 5. Approximate solutions by using (VIM) and (HPM)
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Example 4. Solve QIE (Bana’s & Martinon, 2004)

x(t) = e−t + x(t)

t∫
0

t2 ln(1 + s|x(s)|)
2e(t+s) ds, 0 < t ≤ 2. (46)

According to VIM, differentiating both sides of Equation (46) ones with respect to t gives the IDE

x′(t) = −e−t + x′(t)

t∫
0

t2 ln(1 + s|x(s)|)
2e(t+s) + x(t)

(
t2

2e2t ln(1 + t|x(t)|)

+

t∫
0

−2t2e(t+s) + 4te(t+s)

4e(t+s)2 ln(1 + s|x(s)|)

 , x(0) = 1. (47)

The correction functional for eq.(47) is

xn+1 = xn(t) −
t∫

0

x′n(ζ) + e−ζ − x′n(ζ)

ζ∫
0

ζ2

2e(ζ+r) ln(1 + r|xn(r)|)dr

−xn(ζ)

 ζ2

2e2ζ ln(1 + ζ |xn(ζ)|) +
ζ∫

0

−2ζ2e(ζ+r) + 4ζe(ζ+r))
4e(ζ+r)2 ln(1 + r|xn(r)|)dr


 dζ,

the zeroth approximation x0(t) can be selected by using the initial value x(0) = 1. We can construct the following
homotopy according to HPM,

H(u, p) = u(t) − e−t − pu(t)

t∫
0

t2 ln(1 + s|u(s)|)
2e(t+s) = 0, (48)

substituting (11) into (48) and equating the terms with identical powers of p we have

p0 : u0(t) = e−t, (49)

p1 : u1(t) = u0(t)

t∫
0

t2

2e(t+s) H0(s)ds, (50)

p2 : u2(t) = u0(t)

t∫
0

t2

2e(t+s) H1(s)ds + u1(t)

t∫
0

t2

2e(t+s) H0(s)ds, (51)

and so on, where Hi are He’s polynomials of the nonlinear term ln(1 + s|x(s)|).

Table 6. Approximate solution x(t) by VIM and HPM for n = 1

t VIM solution HPM solution
0.10 0.90486075 0.90485481
0.20 0.81907560 0.81892557
0.30 0.74240511 0.74151336
0.40 0.67478739 0.67187791
0.50 0.61603248 0.60924288
0.60 0.56560069 0.55284340
0.70 0.52254959 0.50196629
0.80 0.48565135 0.45597253
0.90 0.45360274 0.41430435
1.00 0.42522512 0.37648238
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(c) (d)
Figure 6. Approximate solution by using (VIM) and (HPM)

5. Conclusion

We have been successfully applied the VIM and HPM to find the approximate solutions for nonlinear QIEs. We have found
out that the two methods are applicable and efficient technique, also the HPM is better than VIM in finding the accurate
solutions. We have been observing that the accuracy can be improved by computing more n-terms off approximate
solutions or by taking more terms in the Taylor expansion of the nonlinear terms. To find the calculations we have used
the Maple package (2015).
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