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Abstract

In this paper, we study a special matrix used in OFDM technology including the pilot vector. This is based on the property
of ’column mean vanishing’ and orthogonal columns. We study the spectral decomposition. Using this, we suggest a new
method of generating such matrices. Numerical examples are included.
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1. Introduction

Recently, there have arisen a large necessity of developing a new technology in wireless communications. An OFDM or
its generalization is a big trend (O. Edfors, et al., 1998; Frederiksen, F. B. & Prasad, R., 2002; Myungsup, K. & Kwak, D.
Y.). In this paper, we review the algorithm developed in (Myungsup, K. & Kwak, D. Y.) and study some properties of the
OFDM matrix. Based on this we propose a simple method to generate the matrix. In the resulting matrix, we see the pilot
column has only two nonzero entries which correspond to zero rows, so that the pilot does not interfere with other data.

Definition 1.1. We say a matrix A has a column mean vanishing (CMV) property if the sum of each column is zero.

2. Generation of CMV Matrix Having Orthonormal Columns

Let L = n ≫ N. Recall the scheme introduced in (Myungsup, K. & Kwak, D. Y.):

Algorithm Orth-pilot

1. Given a N × (N − 2) initial matrix Kp with orthonormal columns.

2. Multiply by L × N matrix P obtaining A = PKp.

3. Perform IFFT to obtain F−1(PKp).

4. Subtract the first row from all the rows, the result is Φ ◦ F−1(PKp).

5. Perform FFT to get F ◦Φ ◦ F−1(PKp).

6. Multiply PT to obtain K̂ := PT ◦ F ◦Φ ◦ F−1(PKp).

7. Let G = UVH where UΣVH is the SVD of K̂.

A Ǎ A0 Â O(·)

Kp > > > > > K̂ > G

P F−1
Φ F PT

Figure 1: Signal flow diagram for matrix generation. ( ) is orthonormalization operator.Figure 1. Signal flow diagram for matrix generation. O(·) is orthonormalization operator.

Now we will explain more details of the algorithm:
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Step (2). Permute and Pad Zeros

Assume N = 2m + 1 is odd. Set M = N − 2, L = n ≫ N. Starting from an N × M initial matrix, we construct an L × M
matrix as follows: Move the last m+ 1 rows of Kp to the first m+ 1 rows of Kp. Next fill it with pad with L−M zero rows
(called zero padding). This process can be expressed as PKp where

P =



0(m+1)×m Im+1

0 0
...

...
0 0
Im 0m×(m+1)


. (1)

Steps (3) and (4) : IFFT Followed by Subtraction of the First Row

Let us use the notation K = (ki j) and K1 = (k1
i j) := PKp. Let Ǩ1 = F−1(PKp) be the inverse FFT of PKp. By definition of

IFFT the first row of Ǩ1 is

ǩ1 =
[
ǩ11, ǩ12, · · · , ǩ1M

]
=

1
n

n−1∑
i=0

k1
i1,

n−1∑
i=0

k1
i2, · · · ,

n−1∑
i=0

k1
iM

 . (2)

Hence the matrix after step (4) is

Ǩ1
′
=


ǩ11 ǩ12 · · · ǩ1M

ǩ21 ǩ22 · · · ǩ2M
...

... · · ·
...

ǩn,1 ǩn,2 · · · ǩn,M

 −

ǩ11 ǩ12 · · · ǩ1M

ǩ11 ǩ12 · · · ǩ1M
...

... · · ·
...

ǩ11 ǩ12 · · · ǩ1M

 ≡ Ǩ1 − Ǩ∗1 . (3)

Here Ǩ∗1 is the matrix all of whose rows are the vector ǩ1.

Lemma 2.1. The sum of all entries of each column of the matrix K̂ is zero.

Proof. Clear from (2) and (3). �

Step (7) - Nearest Orthogonal Matrix

The scheme to find the nearest orthogonal matrix (Higham, N. J. 1986; R. -C. Li., 1995; Ji-Guang, S., 1995; Banerjee,
2014) is given by

G = UVH = K̂
(
K̂H K̂

)−1/2
, (4)

where UΣVH is the SVD of K̂.

Theorem 2.1. The matrix G obtained in step (7) satisfies CMV property:

Proof. Let 1⃗ = [1, · · · , 1]. Then by Lemma 2.1, we have

1⃗ · K̂ = [0, 0, · · · , 0].

Hence by (4) we see
1⃗ ·G = 1⃗ · K̂

(
K̂H K̂

)−1/2
= [0, 0, · · · , 0].

�
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3. Simplification of the Algorithm

In this paper we simplify the algorithm above. We apply the algorithm to an initial matrix having CMV property. First
consider the case N = 2m + 1 is odd. We will explain with m = 2, general case follows easily from this. Consider the
following N × (N − 1) initial matrix.

K∗ =
1
√

2



0 0 0 0 1 1
0 0 1 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1


(5)

Using this matrix we will generate a pilot included matrix having the desired properties. We remove a specified column
(3rd, say) consisting of two 1’s and move the next column to the first to get N × (N − 2) matrix

Kt1 =
1
√

2



0 0 0 1 1
0 0 1 0 0
1 1 0 0 0
0 0 0 0 0
1 −1 0 0 0
0 0 −1 0 0
0 0 0 1 −1


⇒ Kt2 =

1
√

2



0 0 0 1 1
1 0 0 0 0
0 1 1 0 0
0 0 0 0 0
0 1 −1 0 0
−1 0 0 0 0
0 0 0 1 −1


(6)

Then subtract the row vector
[
0 2 0 2 0

]
from the center row, to get

Kp,e =
1
√

2



0 0 0 1 1
1 0 0 0 0
0 1 1 0 0
0 −2 0 −2 0
0 1 −1 0 0
−1 0 0 0 0
0 0 0 1 −1


(7)

In general it looks like this:

Kp,e =
1
√

2



1 1

1 . .
.

1 1
1 1
−2 0 −2
1 −1

1 −1

−1
. . .

1 −1



(8)

Next, we see the case N = 2m (even). We start from (N + 1) × N matrix. For example, when we want 8 × 6 matrix, we
start from a 9 × 8 matrix

1
√

2



0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


(9)
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Remove the zero row in the center from (9) and remove first column. Then we remove a specified column (5-th, say) and
move the next one to first to get N × (N − 2) matrix

Kt1 =
1
√

2



0 0 0 0 0 1 1
0 0 0 1 1 0 0
0 1 1 0 0 0 0
1 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1


⇒ Kt2 =

1
√

2



0 0 0 0 1 1
1 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 0 1 −1 0 0
−1 0 0 0 0 0
0 0 0 0 1 −1


(10)

Then subtract the row vector [0, 0, 1, 0, 1, 0] from 4-th and 5-th rows. The resulting matrix is the initial for pilot included
matrix.

Kp,e =
1
√

2



0 0 0 0 1 1
1 0 0 0 0 0
0 0 1 1 0 0
0 1 −1 0 −1 0
0 −1 −1 0 −1 0
0 0 1 −1 0 0
−1 0 0 0 0 0
0 0 0 0 1 −1


(11)

Lemma 3.1. If the initial matrix Kp (Kp,e or Kp,o) satisfies CMV property, then steps (1)-(7) is simplified as

Algorithm Orth-pilot-CMV

1. Given a N × (N − 2) initial CMV matrix Kp with orthonormal columns.

2. Let G = UVH where UΣVH is the SVD of K̂ = Kp.

4. Property of Odd Columns

We assume N is odd. The case of even is similar. Let ki and gi and denote the i-th column of the matrix Kp and G
respectively.

Lemma 4.1. The odd columns of Kp are orthogonal to all other columns of Kp. As a consequence, for all odd j, the
vector e j = [0, · · · , 1, · · · , 0]T is an eigenvector of KH

p Kp corresponding to the eigenvalue 1.

Proof. The orthogonality of odd columns of Kp comes from that of K∗ of (5) since during the transformation of K∗ to
Kp in (5), (7), the odd columns did not change essentially(only the orders are permuted). Let Kp = [k1, · · · ,kN−2]. Then
Kpe j = k j and hence the j -th column of K̂H

p K̂p satisfies

K̂H
p K̂pe j = KH

p Kpe j =


kT

1
...

kT
N−1

 k j =


kT

1 · k j
...

kT
N−1 · k j

 = e j. (12)

This means that when j is odd, the j-th columns of Kp are orthogonal to all other columns of Kp. Clearly (12) implies the
second assertion of the lemma. �

Example 4.1. For N = 5 we see

KH
p Kp =

1
2

1 0 0 0 −1
0 1 −2 1 0
0 1 0 −1 0




1 0 0
0 1 1
0 −2 0
0 1 −1
−1 0 0

 =
1
2

2 0 0
0 6 0
0 0 2

 (13)

Note that the zeros in the box keep the odd columns of Kp orthogonal to other columns. In view of (12), KH
p Kp has two

eigenvectors e j, j = 1, 3 corresponding to the eigenvalue 1.
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Theorem 4.2. The odd columns of G = Kp(KH
p Kp)−1/2 are the same as those of Kp.

Proof. From the spectral decomposition of Kp = UΣVH we have that of KH
p Kp:

KH
p Kp = VΣHΣVH := VΛVH(VH = V−1), (14)

where by (12) Λ and V have the following form:

Λ =



1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 1 0

· · · · · · . . . 0
0 0 0 · · · 1


, Λ−1/2 =



1 0 0 · · · 0
0 1

λ2
0 · · · 0

0 0 1 0

· · · · · · . . . 0
0 0 0 · · · 1


, V = [e1, v2, · · · , eM−1, vM] . (15)

Note that for j odd Ve j = e j and for each odd j,

Kp(KH
p Kp)−1/2e j = KpVΛ−1/2V−1e j

= KpVΛ−1/2e j

= KpVe j

= Kpe j.

This is the same as j-th column of Kp (normalization does not change even columns). �

5. Numerical Example

Example 5.1. Let N = 7. We have, from initial matrix (7)

Gp =



0.0000 −0.1954 0.0000 0.5117 0.7071
0.7071 0.0000 0.0000 0.0000 0.0000
0.0000 0.5117 0.7071 −0.1954 0.0000
0.0000 −0.6325 0.0000 −0.6325 0.0000
0.0000 0.5117 −0.7071 −0.1954 0.0000
−0.7071 0.0000 0.0000 0.0000 0.0000
0.0000 −0.1954 0.0000 0.5117 −0.7071


Example 5.2 (Even N). When N = 8,M = 6 we start from the initial matrix

Kp =
1
√

2



0 0 0 0 1 1
1 0 0 0 0 0
0 0 1 1 0 0
0 1 −1 0 −1 0
0 −1 −1 0 −1 0
0 0 1 −1 0 0
−1 0 0 0 0 0
0 0 0 0 1 −1


to get

G =



0.0000 0.0000 −0.1494 0.0000 0.5577 0.7071
0.7071 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.5577 0.7071 −0.1494 0.0000
0.0000 0.7071 −0.4082 0.0000 −0.4082 0.0000
0.0000 −0.7071 −0.4082 0.0000 −0.4082 0.0000
0.0000 0.0000 0.5577 −0.7071 −0.1494 0.0000
−0.7071 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 −0.1494 0.0000 0.5577 −0.7071
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In these matrices, we observe that rows corresponding to the nonzero entries of pilot vector (blue) are zeros (red) except
the first entry.
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