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Abstract

In this paper, we study a special matrix used in OFDM technology including the pilot vector. This is based on the property
of ’column mean vanishing’ and orthogonal columns. We study the spectral decomposition. Using this, we suggest a new
method of generating such matrices. Numerical examples are included.
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1. Introduction

Recently, there have arisen a large necessity of developing a new technology in wireless communications. An OFDM or
its generalization is a big trend (O. Edfors, et al., 1998; Frederiksen, F. B. & Prasad, R., 2002; Myungsup, K. & Kwak, D.
Y.). In this paper, we review the algorithm developed in (Myungsup, K. & Kwak, D. Y.) and study some properties of the
OFDM matrix. Based on this we propose a simple method to generate the matrix. In the resulting matrix, we see the pilot
column has only two nonzero entries which correspond to zero rows, so that the pilot does not interfere with other data.

Definition 1.1. We say a matrix A has a column mean vanishing (CMV) property if the sum of each column is zero.

2. Generation of CMV Matrix Having Orthonormal Columns
Let L = n > N. Recall the scheme introduced in (Myungsup, K. & Kwak, D. Y.):
Algorithm Orth-pilot

1. Givena N x (N — 2) initial matrix K, with orthonormal columns.

2. Multiply by L X N matrix P obtaining A = PK,.

3. Perform IFFT to obtain F~!(PK »)-

4. Subtract the first row from all the rows, the result is ® o F~1(PK )

5. Perform FFT to get F o ® o F~!(PK,,).

6. Multiply P” to obtain K := P” o F o ® o F~!(PK,).

7. Let G = UVH where USV# is the SVD of K.
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Figure 1. Signal flow diagram for matrix generation. O(:) is orthonormalization operator.

Now we will explain more details of the algorithm:
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Step (2). Permute and Pad Zeros

Assume N = 2m + 1 isodd. Set M = N —2, L = n > N. Starting from an N X M initial matrix, we construct an L X M
matrix as follows: Move the last m + 1 rows of K, to the first m + 1 rows of K,. Next fill it with pad with L — M zero rows
(called zero padding). This process can be expressed as PK, where

0(m+1)><m Im+1
0 0
P=| : (1)
0 0
Im 0m><(m+l)

Steps (3) and (4) : IFFT Followed by Subtraction of the First Row

Let us use the notation K = (k;;) and K} = (kilj) :=PK,. Let K, = F’l(PK,,) be the inverse FFT of PK),. By definition of
IFFT the first row of K| is

n—1 n—1 n-l1
A L TR  E L DI ey gy @)
i=0 i=0 i=0

Hence the matrix after step (4) is

/:<11 /:<12 e /:<1M l:m /:<12 e /:<1M
L, |kt kap o koy kiw ki oo kg .
Kl — : : . — . . . = K] - Kl' (3)
7@:,1 7€n,2 e /VCn,M kn koo oo ki
Here K | is the matrix all of whose rows are the vector k.
Lemma 2.1. The sum of all entries of each column of the matrix K is zero.
Proof. Clear from (2) and (3). O

Step (7) - Nearest Orthogonal Matrix

The scheme to find the nearest orthogonal matrix (Higham, N. J. 1986; R. -C. Li., 1995; Ji-Guang, S., 1995; Banerjee,
2014) is given by
g an—1/2
G=uvi=R(R"R) ", 4)

where UZVH is the SVD of K.

Theorem 2.1. The matrix G obtained in step (7) satisfies CMV property:
Proof. Let 1= [1,---,1]. Then by Lemma 2.1, we have
1-K =10,0,---,0]

Hence by (4) we see
o o\—1/2
(R"R) " =10,0,---,01.

>

1.6=1-
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3. Simplification of the Algorithm

In this paper we simplify the algorithm above. We apply the algorithm to an initial matrix having CMV property. First
consider the case N = 2m + 1 is odd. We will explain with m = 2, general case follows easily from this. Consider the
following N X (N — 1) initial matrix.

(0 000 1 1

0 01| 1 0 o0

N O R
K'=—|0 0lolo o o )

V2|1 —1]olo o o

0 0ol1|-1 0 o0

0 o fo[0 1 —-1|

Using this matrix we will generate a pilot included matrix having the desired properties. We remove a specified column
(3rd, say) consisting of two 1’s and move the next column to the first to get N X (N — 2) matrix

0 0 0|1 1 0/0 0 1 1
0 0 1]0 O 110 0 0 O
1 1 1 01]0 O 1 0|1 1 0 O
Ki=—|0 0 0|0 0 |=Ko=——| 0|0 0 0 O (6)
V2l 1 -1 oo o V2l 0 (1 -1 0 0
0 0 -1/0 O -1{0 0 0 O
L0 0 0|1 -1 . 0|0 O 1 -1 |
Then subtract the row vector [0 2 0 2 O] from the center row, to get
0|0 0 1 1
1[0 0 0 O
1 oj1 1 0 O
Kpe=—| 0|2 0 -2 0 @)
V2l o1 -1 0 o0
-1/0 O 0 O
0|0 o0 1 -1]
In general it looks like this:
1 1
1
1 1
1 1 1
K,.= — -2 0 -2 )
"2 -
1 -1
-1
I -1 ]

Next, we see the case N = 2m (even). We start from (N + 1) X N matrix. For example, when we want 8 X 6 matrix, we
start from a 9 X 8 matrix

000 0 ol0|lo0 1 1

00 0 0/1]1 0 0

00 1 100 0 0

10 0l0fo0 00
— 1o 0o 0o ololo 0o o ©)
V211 -1 0 ololo o0 o

00 1 -1/0/0 0 0

0 0 0 0[1[=T 0 0

000 0 ololo 1 -1]
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Remove the zero row in the center from (9) and remove first column. Then we remove a specified column (5-th, say) and
move the next one to first to get N X (N — 2) matrix

0 0 0f0[0 1 1 00 0 0 1 1
00 0]1/1 0 0 1[0 0 0 0 0
0 1 1]/0[0 0 0 00 I 1 0 0
1|1 0 0f0oj0 0 0 1{o]1 00 0 0
Ki=Zl-1 0 olofo o o |T%=50o]-10 0 0 0 (10)
0 1 -1]0/0 0 0 0]0 1 -10 0
0 0 0[I[-T 0 0 1[0 0 0 0 0
0 0 0]0/0 1 -1] 00 0 0 1 -1]

Then subtract the row vector [0, 0, 1,0, 1, 0] from 4-th and 5-th rows. The resulting matrix is the initial for pilot included
matrix.

00 0 0 1 1
1o 0 0 0 0
070 1 1 0 0
1lof|1 =1 0 -1 0
Ke=Fl o1 -1 0 -1 0 (b
0/0 1 -1 0 0
1[0 0 0 0 0
0/0 0 0 1 -1]

Lemma 3.1. If the initial matrix K, (K, or K, ,) satisfies CMV property, then steps (1)-(7) is simplified as
Algorithm Orth-pilot-CMV

1. Givena N X (N —2) initial CMV matrix K, with orthonormal columns.

2. Let G = UV where ULV is the SVD of K = K,,.

4. Property of Odd Columns
We assume N is odd. The case of even is similar. Let k; and g; and denote the i-th column of the matrix K, and G

respectively.

Lemma 4.1. The odd columns of K, are orthogonal to all other columns of K,. As a consequence, for all odd j, the
vectore; =[0,--- ,1,---, 01" is an eigenvector ofK;IK,, corresponding to the eigenvalue 1.

Proof. The orthogonality of odd columns of K, comes from that of K* of (5) since during the transformation of K* to
K, in (5), (7), the odd columns did not change essentially(only the orders are permuted). Let K, = [k, -+ ,ky_2]. Then
K,e; = k; and hence the j -th column of I?ff(,, satisfies

ki ki -k;
Koe;=Ki/Kye;=| : |kj= ; =e,. (12)
k1{/71 klf/—l -k;

This means that when j is odd, the j-th columns of K, are orthogonal to all other columns of K,,. Clearly (12) implies the
second assertion of the lemma. O

Example 4.1. For N = 5 we see

10 0
Jro oo o -njo 1 1p 1200
Kprzz[O 1 -2 1 o‘@ -2 @:5[0 6 o} (13)
01 0 -1 o]0 1 - 00 2
-1 0 0

Note that the zeros in the box keep the odd columns of K, orthogonal to other columns. In view of (12), Kllf K, has two
eigenvectors ej, j = 1,3 corresponding to the eigenvalue 1.
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Theorem 4.2. The odd columns of G = K,,(K‘,‘:’K‘,,)‘l/2 are the same as those of Kp,.

Proof. From the spectral decomposition of K, = ULV we have that of KIIZ K,:
KK, = VEsV? .= vAVA(VH = v,

where by (12) A and V have the following form:

1 0 0 -0 1 0 O 0
0 L 0 -~ 0 0 4+ 0 0
A=|0 0 1 O, A2=10 0 1 O, V=Tler,va, - en1,Vurl.
0 0
0 0 O 1 0 0 O 1
Note that for j odd Ve; = e; and for each odd j,
K, (KIK,)?e; = K,VAT'?V7le;
= K,VA %
= K,,Vej
= erj-

This is the same as j-th column of K|, (normalization does not change even columns).

5. Numerical Example

Example 5.1. Let N = 7. We have, from initial matrix (7)

[ 0.0000 -0.1954 0.0000 0.5117  0.7071 |
0.7071 ~ 0.0000  0.0000  0.0000  0.0000
0.0000  0.5117  0.7071 —-0.1954  0.0000

G, =10.0000 -0.6325 0.0000 -0.6325 0.0000
0.0000  0.5117 -0.7071 -0.1954  0.0000

-0.7071  0.0000  0.0000  0.0000  0.0000

| 0.0000 -0.1954 0.0000 0.5117 -0.7071/

Example 5.2 (Even N). When N = 8, M = 6 we start from the initial matrix

(0|0 0 0 1 1
1]0 0 0 0 0
00 T 1 0 0
o L|of1 -1 0o -1 0
PTGl 01 -1 0 -1 0
0/0 1 -1 0 0
1[0 0 0 0 0
0

o 0o 1 -I|

to get

[0.0000  0.0000 -—0.1494 0.0000 0.5577  0.7071 ]
0.7071  0.0000  0.0000  0.0000  0.0000  0.0000
0.0000  0.0000 0.5577 0.7071 -0.1494 0.0000
0.0000  0.7071 -0.4082 0.0000 -0.4082  0.0000
0.0000 -0.7071 -0.4082 0.0000 -0.4082  0.0000
0.0000  0.0000  0.5577 -0.7071 -0.1494 0.0000

-0.7071  0.0000  0.0000  0.0000  0.0000  0.0000

L 0.0000  0.0000 -0.1494 0.0000 0.5577 -0.7071]
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In these matrices, we observe that rows corresponding to the nonzero entries of pilot vector (blue) are zeros (red) except
the first entry.
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