Over Absolute Valued Algebras with Central Element not Necassary Idempotent

Alassane Diouf¹, André S. Diabang¹, Alhousseynou Ba¹ & Mankagna A. Diompy¹

¹ Département de Mathématiques et Informatiques, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal

Correspondence: Alassane Diouf, Département de Mathématiques et Informatiques, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal. E-mail: dioufalassane@hotmail.fr

Received: December 28, 2014	Accepted: February 4, 2017	Online Published: March 23, 2017
doi:10.5539/jmr.v9n2p123	URL: https://doi.org/10.5539/jmr.v9n2p123	

Abstract

We study the absolute valued algebras containing a central element non necessary idempotent. We determine the absolute valued algebras containing a central element if we add some requirements. Also we gives a classification of finite-dimensional absolute valued algebras containing a generalized left unit and central element.

Keywords: Absolute valued algebra, central element, left unit and generalized left unit.

Mathematics Subject Classification: 17A35, 17A36

1. Introduction

The absolute valued algebras are introduced by Ostrowski in 1918. It's the normed algebra *A* such that ||xy|| = ||x||||y|| for all *x*, *y* in *A*. An algebra is called division if and only if R_x and L_x are bijective for all *x* in *A*. The category of finite-dimensional absolute valued algebra is a full subcategory of the category of division algebra. If *A* is a finite dimensional absolute valued algebra, then *A* has dimension 1, 2, 4 or 8 (Bott, et al., 1958; Kervaire, 1958), *A* is isotopic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} and the norm of *A* comes from an inner product(Albert, 1947). We have in (Beslimane & Moutassim, 2011; Diankha, et al., 2013) a classification of absolute valued algebras with left unit and containing a central element. The norm of absolute valued algebra containing a central idempotent *c*, comes from to an inner product and the isometric map $x \mapsto x^* := 2(x|c)c - x$ is an involution (El-Mallah, 1990). For ||u|| = 1, we recall the following notations $\mathbb{H}_u := \mathbb{H}_{T_{u,\overline{u}}}$, and $\mathbb{O}_u := \mathbb{O}_{T_{u,\overline{u}}}$. Let $a, b \in \mathbb{H}$ such that ||a|| = ||b|| = 1, we recall that $\mathbb{H}(a, b) := (\mathbb{H}, \star_1)$, with $x \star_1 y = axyb$ and $^*\mathbb{H}(a, b) := (\mathbb{H}, \star_2)$, with $x \star_2 y = \overline{x}ayb$ (Ramirez, 1999). Let *A* be an algebra, we note that $Z(A) = \{a \in A : ax = xa \text{ for all } x \in A\}$. In this work we give a characterization of finite dimensional absolute valued algebra containing a central element. We determine the finite-dimensional absolute algebra containing a central element if we add some conditions.

2. Preliminary

Let f, g, f', g' be linear isometries of euclidean space $\mathbb{A} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ fixing 1, and let $\Phi : \mathbb{A} \to \mathbb{A}$ be a linear mapping. Then it is easy to see that $\Phi : \mathbb{A}_{f,g} \to \mathbb{A}_{f',g'}$ is an algebra isomorphism fixing 1 if and only if $\Phi : \mathbb{A} \to \mathbb{A}$ is an algebra automorphism and $(f', g') = (\Phi \circ f \circ \Phi^{-1}, \Phi \circ g \circ \Phi^{-1})$ (Calderon, et al., 2011).

Let \mathbb{A} be one of the unital absolute valued algebras \mathbb{R} , \mathbb{C} , \mathbb{H} of dimension *m*. Consider the caley dickson product \odot in $\mathbb{A} \times \mathbb{A}$, we define on the space $\mathbb{A} \times \mathbb{A}$ the product

$$(x, y) \star (x', y') = (f_1(x), f(x)) \odot (g_1(x'), g(y')).$$

With f_1, g_1, f, g be linear isometries of \mathbb{A} and $f_1(1) = g_1(1) = 1$. We obtain a 2m-dimensional absolute valued real algebra $\mathbb{A} \times \mathbb{A}_{(f_1,f),(g_1,g)}$. The process is called the duplication process (Calderon, & et al., 2011). Note that the algebra is left unit if $g_1 = g = I_{\mathbb{A}}$ and this case we note the algebra by $\mathbb{A} \times \mathbb{A}_{(f_1,f_2)}$ (Rochdi, 2003).

Theorem 1 *The finite-dimensional absolute valued real algebras with left unit are precisely those of the form* \mathbb{A}_{φ} *, where* $\mathbb{A} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ *and* φ *is an isometric of the euclidien espace* \mathbb{A} *fixed* 1*, and* \mathbb{A}_{φ} *denotes the absolute valued real algebra obtained by endowing the normed space of* \mathbb{A} *with the product* $x \odot y := \varphi(x)y$ *. Moreover, given linear isometries* $\varphi, \phi : \mathbb{A} \to \mathbb{A}$ *fixing* 1*, the algebras* \mathbb{A}_{φ} *and* \mathbb{A}_{ϕ} *are isomorphic if and only if there exists an algebra automorphism* ψ *of* \mathbb{A} *satisfying* $\phi = \psi \circ \varphi \circ \psi^{-1}$ ((Rochdi, 2003)).

3. Finite Dimensional Absolute Valued Algebra Containing a Central Element

An element c in A is called central if $L_c = R_c$. In this paragraph, the central element is non necessary idempotent. As A isalternative, Artin's theorem (Schafer, 1996) shows that for any $x, y \in A$, the set $\{x, y, \overline{x}, \overline{y}\}$ is contained in an associative subalgebra of A.

Theorem 2 Let A be an finite dimensional absolute valued algebra with nonzero central element c. Then A is precisely \mathbb{R} , $\mathbb{C}, \mathbb{C} \text{ or of the form } \mathbb{A}_{\varphi,\psi}, \text{ with } \mathbb{A} = \{\mathbb{H}, \mathbb{O}\}, \varphi \text{ a linear isometry of the euclidien space } \mathbb{A} \text{ fixing } 1 \text{ and } \psi = L_{\overline{\varphi(c)}} \circ R_{\varphi(c)} \circ \varphi.$ Moreover for $\dim(A) \ge 4$, if $\psi = I_A$, then A is isomorphic to $\mathbb{H}(c, 1)$ or \mathbb{O}_c .

Proof. If $dim(A) \leq 2$, the result is clear. Assume now $dim(A) \geq 4$. Then the algebra A is of the form $\mathbb{A}_{\varphi,\psi}$, where ψ, φ are the linear isometries of the euclidien space $\mathbb{A} \in \{\mathbb{H}, \mathbb{O}\}$ such that $\psi(1) = \varphi(1) = 1$ (Calderon, at al., 2011). Using now $x \odot c = c \odot x$, for all x in $\mathbb{A} \Leftrightarrow \varphi(x)\psi(c) = \varphi(c)\psi(x)$, for all x in \mathbb{A} . For x = 1, we have $\psi(c) = \varphi(c)$.

$$\begin{split} \varphi(x)\psi(c) &= \varphi(c)\psi(x), \text{ for all } x \text{ in } \mathbb{A} \implies \varphi(x)\varphi(c) = \varphi(c)\psi(x), \text{ for all } x \text{ in } \mathbb{A} \\ \implies \psi(x) = \overline{\varphi(c)}\varphi(x)\varphi(c), \text{ for all } x \text{ in } \mathbb{A} \\ \implies \psi(x) = (L_{\overline{\varphi(c)}} \circ R_{\varphi(c)} \circ \varphi)(x), \text{ for all } x \text{ in } \mathbb{A} \\ \implies \psi = L_{\overline{\varphi(c)}} \circ R_{\varphi(c)} \circ \varphi. \end{split}$$

Moreover if $\psi = I_A$, then A is left unit and $\varphi = L_c \circ R_{\overline{c}}$ (Diankha, et al., 2013). For the algebra \mathbb{H}_c , we have the following isomorphism of algebra $\Phi : \mathbb{H}(c, 1) \to \mathbb{H}_c \ x \mapsto xc$.

Theorem 3 Let A be an finite-dimensional absolute valued algebra containing a central idempotent c. Then $c \in \{1\} \cup$ $\{-\frac{1}{2} + u: u \in Im(\mathbb{A}) \text{ and } ||u|| = \frac{\sqrt{3}}{2}\}.$

Proof. Using Theorem 3.3., A is of the form $\mathbb{A}_{\varphi,\psi}$, where φ is a linear isometric of \mathbb{A} fixing 1 and $\psi = L_{\overline{\varphi(c)}} \circ R_{\varphi(c)} \circ \varphi$. We remark also $\varphi(c) = \psi(c)$, hence $c \odot c = \varphi(c)\psi(c) = \varphi(c)^2$. Assume now $c = \alpha + u \in S(\mathbb{A})$ (with $\mathbb{A} = \mathbb{R} \oplus Im(\mathbb{A})$): Frobenius decomposition). We note that if $u \in 1^{\perp} = Im(\mathbb{A}), < 1, \varphi(u) > = <\varphi(1), \varphi(u) > = <1, u > = 0$. Hence we have $\varphi^n(1^{\perp}) \subseteq 1^{\perp}$, with $n \in \mathbb{N}$ and $\varphi(1^{\perp})^n \in \mathbb{R}$ if and only if $n \in 2\mathbb{N}$.

Hence $c \odot c = c$ and ||c|| = 1 are equivalent to $\begin{cases}
\alpha^2 + \varphi(u)^2 = \alpha & (1) \\
2\alpha\varphi(u) = u & (2) \\
||\varphi(c)|| = 1 & (3)
\end{cases}$ The assertions (2) and (3) imply that $\frac{1}{4\alpha^2}u^2 = \alpha^2 - 1$ (4). Otherwise the assertions (1) and (2) implies that $\alpha^2 + (\frac{1}{2\alpha}u)^2 = \alpha$

(5). The equality between (4) and (5) gives $\alpha = 1$ or $-\frac{1}{2}$.

If $\alpha = 1$, this is equivalent to c = 1.

Assume now $\alpha = -\frac{1}{2}$, hence $c = -\frac{1}{2} + u$. Then

$$||c||^{2} = \langle -\frac{1}{2} + u, -\frac{1}{2} + u \rangle$$

= $\langle -\frac{1}{2}, -\frac{1}{2} \rangle + \langle u, u \rangle$
= $\frac{1}{4} + ||u||^{2}$
= 1

This implies that $||u|| = \frac{\sqrt{3}}{2}$.

Lemma 1 Let A be an absolute valued algebras containing a nonzero central element c. The following assertions are equivalent:

- 1. $x^2c = x^2$, for all $x \in A$
- *2. A is finite dimensional and is isomorphic to* \mathbb{R} *,* \mathbb{C} *,* \mathbb{H} *or* \mathbb{O} *.*

Proof. 2) \Rightarrow 1) is clear.

Now assume 1), Using the equality $(x+c)^2 c = (x+c)^2$ for all x in A, we have (xc-x)c = 0 for all x in A. Then $L_c = R_c = I_A$ and *A* is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} or \mathbb{O} (Urbanik & Wright, 1960).

The group G_2 acts transitively on the sphere $S(Im(\mathbb{O})) := S^6$, that is the mapping $G_2 \to S^6 \Phi \mapsto \Phi(i)$ is surjective (Postnikov, 1985).

Definition 1 An element $e \in A$ is called strongly left unit, if it's left unit and square root of right unit: $L_e = R_e^2 = I_A$ (Diouf, 2017).

Theorem 4 Let A be an absolute valued algebra with strongly left unit and containing a central element c. Then $c \in S(\mathbb{R}) \cup 1^{\perp}$ and A is finite dimensional and isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{H} , $\mathbb{H}(i, 1)$, \mathbb{O} or \mathbb{O}_i .

Proof. It's clear that *A* is of finite dimensional. If $dim(A) \le 2$, the result is clear that *A* is isomorphic to \mathbb{R} or \mathbb{C} . Assume now $dim(A) \ge 4$ and *A* contains a central element *c* (Diankha, et al., 2013) proves that *A* is of the form \mathbb{A}_{φ} , where $\mathbb{A} \in \{\mathbb{H}, \mathbb{O}\}, c \in S(\mathbb{A})$ and $\varphi = L_c \circ R_{\overline{c}}$.

Otherwise we have $R_e^2 = I_A \Leftrightarrow (x \odot 1) \odot 1 = x$. Hence

$$x = (x \odot 1) \odot 1$$

= $c(cx\overline{c})\overline{c}$
= $c^2 x\overline{c}^2 \operatorname{Artin's theorem}$

The equality $c^2 x = xc^2$, implies that $c^2 \in S(\mathbb{R}) = \{-1, 1\}$. If $c^2 = 1$, then $c = \pm 1$ and *A* is isomorphic to \mathbb{H} or \mathbb{O} . If $c^2 = -1$, then $c \in S(Im(\mathbb{A}))$.

There exists $u \in S(Im(\mathbb{A}))$ such that $uc\overline{u} = i$ and let the automorphism $\Phi := T_{u,\overline{u}}$ of $\mathbb{A} = \{\mathbb{H}, \mathbb{O}\}$, with $\Phi^{-1} = T_{\overline{u},u}$. We have

$$\Phi \circ T_{c,\overline{c}} \circ \Phi^{-1} = T_{u,\overline{u}} \circ T_{c,\overline{c}} \circ T_{\overline{u},u}$$

$$= T_{uc\overline{u},u\overline{c}\overline{u}}$$

$$= T_{i,\overline{i}}$$

Then $\mathbb{A}_{T_{c,\bar{c}}}$ and $\mathbb{A}_{T_{i,\bar{i}}}$ are isomorphic (Theorem 2.1) and (Diouf, 2017), we have $\mathbb{H}_{T_{i,\bar{i}}}$ is isomorphic to $\mathbb{H}(i, 1)$. I's clear that if $dim(A) \ge 2$, theirs algebras can be obtained by using the duplication process.

Corollary 1 Let A be an absolute valued algebra containing two elements e and c. The following assertions are equivalent:

- 1. e is left unit and c central orthogonal to e,
- 2. A is isomorphic to \mathbb{C} , \mathbb{H}_i or \mathbb{O}_i .

Definition 2 An element e is called generalyzed left unit if it satisfies to $[L_e, L_x] = 0$, for all x in A (Chandid & Rochdi, 2008).

We give a generalisation of the papier (Diankha, et al., 2013).

Theorem 5 Let A be an finite dimensional absolute valued algebra contains generalized left unit e and central element c. Then A is precisely \mathbb{R} , \mathbb{C} , $\mathbb{H}(a, b)$ or \mathbb{O}_c .

Proof. If $dim(A) \in \{1, 2, 8\}$, then *A* is isomorphic to \mathbb{R} , \mathbb{C} , \mathbb{O}_c ((Diankha & all, 2013), (Chandid & Rochdi, 2008)). The algebras $\mathbb{H}(a, b)$ and $*\mathbb{H}(a, b)$ are the unique four-dimensional absolute valued algebras containing a generalized left unit (Diouf, 2014). Without loss of generality, assume that ||c|| = 1. For the algebra $\mathbb{H}(a, b)$,

$$c \text{ is central} \iff x \star_1 c = c \star_1 x, \text{ for all } x \text{ in } \mathbb{H}$$
$$\Leftrightarrow axcb = acxb, \text{ for all } x \text{ in } \mathbb{H}$$
$$\Leftrightarrow xc = cx, \text{ for all } x \text{ in } \mathbb{H}$$
$$\Leftrightarrow c \in Z(\mathbb{H}) \cap S(\mathbb{R}) = \{-1, 1\}.$$

Then the algebra $\mathbb{H}(a, b)$ contains a central element. For the algebra $*\mathbb{H}(a, b)$,

 $c \text{ is central} \iff x \star_2 c = c \star_2 x, \text{ for all } x \text{ in } \mathbb{H}$ $\Leftrightarrow \overline{x}acb = \overline{c}axb, \text{ for all } x \text{ in } \mathbb{H}$ $\Leftrightarrow \overline{x}ac = \overline{c}ax(*), \text{ for all } x \text{ in } \mathbb{H}$

For x = 1, we have $ac = \overline{c}a$ and (*) imply $\overline{x}ac = acx$ (**), for all x in \mathbb{H} .

New put x = ac, we have $(ac)^2 = ||ac||^2 = ||a||^2 ||c||^2 = 1$. Hence $ac = \pm 1$ and (**) imply $\overline{x} = x$, for all x in \mathbb{H} , which is absurd. Then the algebra $*\mathbb{H}(a, b)$ does not contain a central element.

Proposition 1 Let A be an absolute valued algebra containing a generalized left unit e and a central idempotent element c such that $e \in c^{\perp}$. Then A(e, c) is finite dimensional and isomorphic to \mathbb{C} .

Proof. The norm ||.|| of A comes from an inner product and $x \mapsto x^* := 2 < c, x > c - x$ is an involution (El-Mallah, 1990). Without loss of generality, assume that ||e|| = 1. We have $ce = ec = ec^2 = c(ec)$. This implies ec = ce = e. The element e is orthogonal to c, then $e^2 = -||e||^2c = -c$ (El-Mallah, 1990).

Problem 1 Let *A* be an absolute valued algebra containing a generalized left unit *e* and a central element *c*. Is *A* a finite dimensional? This problem is solved partially if *e* is idempotent (Calderon, et al., Preprint).

References

- Albert, A. A. (1947). Absolute valued real algebras. Ann. Math., 48, 495-501. https://doi.org/10.2307/1969182
- Benslimane, M., & Moutassim, A. (2011). Some new class of absolute valued algebras with left unit. Adv. appl. Clifford alg., 21, 31-40. https://doi.org/10.1007/s00006-010-0246-4
- Bott, R., & Milnor, J. (1958). On the parallelizability of the spheres. Bull. Amer. Math. Soc., 64, 87-89. https://doi.org/10.1090/S0002-9904-1958-10166-4
- Calderón, A., Diouf, A., ..., & Rochdi, A. Absolute valued algebras with slightly one sided unit. Preprint.
- Calderon, A., Calderon, A., ..., & Rochdi, A. (2011). Finite dimensional absolute valued algebras. israel journal of mathematics 184, 193 - 220.https://doi.org/10.1007/s11856-011-0065-x
- Chandid, A., & Rochdi, A. (2008). Mutations of absolute valued algebras. Int. J. Algebra, 2, 357-368.
- Cuenca, J. A., Darpo, E., & Dieterich, E. Classification of the finite dimentional absolute valued algebras having a non-zero central idempotent or a one-sided unity. To appear.
- Diankha, O., Diouf, A., & Rochdi, A. (2013). A brief statement on the absolute-valued algebras with one-sided Unit. *Int. J. Algebra.*, 7(17), 833 838. https://doi.org/10.12988/ija.2013.31092
- Diouf, A. (2014). *Algbres absolument values ?unit?gnralise ?gauche*. Thse Doctorale, Universit?Cheikh Anta Diop, Facult?des Sciences et Tchniques, Dakar.
- Diouf, A. (2017). Absolute Valued Algebras With Strongly One Sided Unit. *Journal Mathematics Research*, 9(1), 32 35. https://doi.org/10.5539/jmr.v9n1p32
- El-Mallah, M. L. (1990). Absolute valued algebras containing a central idempotent. J. Algebra128180-187.
- Kervaire, M. (1958). Non-parallelizability of the n-sphere for *n* > 7. Proc. *Nat. Acad. Sci. USA*, *44*, 280-283. https://doi.org/10.5539/jmr.v9n1p32
- Postnikov, M. (1985). Lecons de gomtrie. Groupes et algbres de Lie. Editions Mir, Moscow.
- Ramirez, M. I. (1999). On four absolute valued algebras. *Proceedings of the International Conference on Jordan Struc*tures (Malaga, 1997), 169-173.
- Rochdi, A. (2003). Eight-dimensional real absolute valued algebras with left unit whose automorphism group is trivial. *IJMMS*, 70, 4447-4454. https://doi.org/10.1155/s016117120320538x
- Rodriguez, A. (1992). One-sided division absolute valued algebras. Publ. Math., 36, 925-954.
- Rodriguez, A. (2004). Absolute valued algebras, and absolute valuable Banach spaces. *Advanced courses of mathematical analysis I*, 99-155, World Sci. Publ., Hackensack, NJ.
- Rodriguez, A. (1994). Absolute valued algebras of degree two. *In Nonassociative Algebra and its applications (Ed. S. González)*, 350-356, Kluwer Academic Publishers, Dordrecht-Boston-London.
- Schafer, R. (1996). An Introduction to Nonassociative Algebras. Academic Press.
- Urbanik, K., & Wright, F. B. (1960). Absolute valued algebras. Proc. Amer. Math. Soc., 11, 861-866. https://doi.org/10.1090/S0002-9939-1960-0120264-6

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).