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Abstract

We study the absolute valued algebras containing a central element non necessary idempotent. We determine the absolute
valued algebras containing a central element if we add some requirements. Also we gives a classification of finite-
dimensional absolute valued algebras containing a generalized left unit and central element.
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1. Introduction

The absolute valued algebras are introduced by Ostrowski in 1918. It’s the normed algebra A such that ∥xy∥ = ∥x∥∥y∥ for all
x, y in A. An algebra is called division if and only if Rx and Lx are bijective for all x in A. The category of finite-dimensional
absolute valued algebra is a full subcategory of the category of division algebra. If A is a finite dimensional absolute valued
algebra, then A has dimension 1, 2, 4 or 8 (Bott, et al., 1958; Kervaire, 1958), A is isotopic to R, C, H or O and the norm
of A comes from an inner product(Albert, 1947). We have in

(
Beslimane & Moutassim, 2011; Diankha, et al., 2013) a

classification of absolute valued algebras with left unit and containing a central element. The norm of absolute valued
algebra containing a central idempotent c, comes from to an inner product and the isometric map x 7→ x⋆ := 2(x|c)c − x
is an involution (El-Mallah, 1990). For ∥u∥ = 1, we recall the following notations Hu := HTu,u , and Ou := OTu,u . Let
a, b ∈ H such that ∥a∥ = ∥b∥ = 1, we recall that H(a, b) := (H, ⋆1), with x ⋆1 y = axyb and ⋆H(a, b) := (H, ⋆2), with
x ⋆2 y = xayb (Ramirez, 1999). Let A be an algebra, we note that Z(A) = {a ∈ A : ax = xa f or all x ∈ A}. In this work
we give a characterization of finite dimensional absolute valued algebra containing a central element. We determine the
finite-dimensional absolute algebra containing a genaralized left unit and central element. We classify the absolute valued
algebra containing a central element if we add some conditions.

2. Preliminary

Let f , g, f ′, g′ be linear isometries of euclidean space A ∈ {R,C,H,O} fixing 1, and let Φ : A → A be a linear mapping.
Then it is easy to see that Φ : A f ,g → A f ′,g′ is an algebra isomorphism fixing 1 if and only if Φ : A → A is an algebra
automorphism and ( f ′, g′) = (Φ ◦ f ◦ Φ−1,Φ ◦ g ◦ Φ−1) (Calderon, et al., 2011).

Let A be one of the unital absolute valued algebras R, C, H of dimension m. Consider the caley dickson product ⊙ in
A × A, we define on the space A × A the product

(x, y) ⋆ (x′, y′) = ( f1(x), f (x)) ⊙ (g1(x′), g(y′)).

With f1, g1, f , g be linear isometries of A and f1(1) = g1(1) = 1. We obtain a 2m-dimensional absolute valued real algebra
A × A( f1, f ),(g1,g). The process is called the duplication process (Calderon, & et al., 2011). Note that the algebra is left unit
if g1 = g = IA and this case we note the algebra by A × A( f1, f ) (Rochdi, 2003).

Theorem 1 The finite-dimensional absolute valued real algebras with left unit are precisely those of the form Aφ, where
A ∈ {R, C, H, O} and φ is an isometric of the euclidien espace A fixed 1, and Aφ denotes the absolute valued real
algebra obtained by endowing the normed space of A with the product x ⊙ y := φ(x)y. Moreover, given linear isometries
φ, ϕ : A→ A fixing 1, the algebras Aφ and Aϕ are isomorphic if and only if there exists an algebra automorphism ψ of A
satisfying ϕ = ψ ◦ φ ◦ ψ−1 ((Rochdi, 2003)).

123



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

3. Finite Dimensional Absolute Valued Algebra Containing a Central Element

An element c in A is called central if Lc = Rc. In this paragraph, the central element is non necessary idempotent. As A
isalternative, Artin’s theorem (Schafer, 1996) shows that for any x, y ∈ A, the set {x, y, x, y} is contained in an associative
subalgebra of A.

Theorem 2 Let A be an finite dimensional absolute valued algebra with nonzero central element c. Then A is precisely R,

C,
⋆

C or of the form Aφ,ψ, with A = {H,O}, φ a linear isometry of the euclidien space A fixing 1 and ψ = Lφ(c) ◦ Rφ(c) ◦ φ.
Moreover for dim(A) ≥ 4, if ψ = IA, then A is isomorphic to H(c, 1) or Oc.

Proof. If dim(A) ≤ 2, the result is clear. Assume now dim(A) ≥ 4. Then the algebra A is of the form Aφ,ψ, where ψ, φ
are the linear isometries of the euclidien space A ∈ {H,O} such that ψ(1) = φ(1) = 1 (Calderon, at al., 2011). Using now
x ⊙ c = c ⊙ x, for all x in A⇔ φ(x)ψ(c) = φ(c)ψ(x), for all x in A.
For x = 1, we have ψ(c) = φ(c).

φ(x)ψ(c) = φ(c)ψ(x), f or all x in A ⇒ φ(x)φ(c) = φ(c)ψ(x), f or all x in A
⇒ ψ(x) = φ(c)φ(x)φ(c), f or all x in A
⇒ ψ(x) =

(
Lφ(c) ◦ Rφ(c) ◦ φ

)
(x), f or all x in A

⇒ ψ = Lφ(c) ◦ Rφ(c) ◦ φ.

Moreover if ψ = IA, then A is left unit and φ = Lc ◦ Rc (Diankha, et al., 2013). For the algebra Hc, we have the following
isomorphism of algebra Φ : H(c, 1)→ Hc x 7→ xc.�
Theorem 3 Let A be an finite-dimensional absolute valued algebra containing a central idempotent c. Then c ∈ {1} ∪
{− 1

2 + u: u ∈ Im(A) and ∥u∥ =
√

3
2 }.

Proof. Using Theorem 3.3., A is of the form Aφ,ψ, where φ is a linear isometric of A fixing 1 and ψ = Lφ(c) ◦Rφ(c) ◦ φ. We
remark also φ(c) = ψ(c), hence c⊙ c = φ(c)ψ(c) = φ(c)2. Assume now c = α+ u ∈ S (A) (with A = R⊕ Im(A): Frobenius
decomposition). We note that if u ∈ 1⊥ = Im(A), < 1, φ(u) >=< φ(1), φ(u) >=< 1, u >= 0. Hence we have φn(1⊥) ⊆ 1⊥,
with n ∈ N and φ(1⊥)n ∈ R if and only if n ∈ 2N.

Hence c ⊙ c = c and ∥c∥ = 1 are equivalent to


α2 + φ(u)2 = α (1)

2αφ(u) = u (2)
∥φ(c)∥ = 1 (3)

The assertions (2) and (3) imply that 1
4α2 u2 = α2 − 1 (4). Otherwise the assertions (1) and (2) implies that α2 + ( 1

2αu)2 = α

(5). The equality between (4) and (5) gives α = 1 or − 1
2 .

If α = 1, this is equivalent to c = 1.
Assume now α = − 1

2 , hence c = − 1
2 + u. Then

∥c∥2 = < −1
2
+ u,−1

2
+ u >

= < −1
2
,−1

2
> + < u, u >

=
1
4
+ ∥u∥2

= 1

This implies that ∥u∥ =
√

3
2 .�

Lemma 1 Let A be an absolute valued algebras containing a nonzero central element c. The following assertions are
equivalent:

1. x2c = x2, for all x ∈ A

2. A is finite dimensional and is isomorphic to R, C, H or O.

Proof. 2)⇒ 1) is clear.
Now assume 1), Using the equality (x+c)2c = (x+c)2 for all x in A, we have (xc−x)c = 0 for all x in A. Then Lc = Rc = IA

and A is isomorphic to R, C, H or O (Urbanik & Wright, 1960).
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The group G2 acts transitively on the sphere S (Im(O)) := S 6, that is the mapping G2 → S 6 Φ 7→ Φ(i) is surjective
(Postnikov, 1985).

Definition 1 An element e ∈ A is called strongly left unit, if it’s left unit and square root of right unit: Le = R2
e = IA (Diouf,

2017).

Theorem 4 Let A be an absolute valued algebra with strongly left unit and containing a central element c. Then c ∈
S (R) ∪ 1⊥ and A is finite dimensional and isomorphic to R, C, H, H(i, 1), O or Oi.

Proof. It’s clear that A is of finite dimensional. If dim(A) ≤ 2, the result is clear that A is isomorphic to R or C. Assume
now dim(A) ≥ 4 and A contains a central element c (Diankha, et al., 2013) proves that A is of the form Aφ, where
A ∈ {H,O}, c ∈ S (A) and φ = Lc ◦ Rc.
Otherwise we have R2

e = IA ⇔ (x ⊙ 1) ⊙ 1 = x. Hence

x = (x ⊙ 1) ⊙ 1
= c(cxc)c
= c2xc2 Artin′s theorem

The equality c2x = xc2, implies that c2 ∈ S (R) = {−1, 1}.
If c2 = 1, then c = ±1 and A is isomorphic to H or O.
If c2 = −1, then c ∈ S (Im(A)).
There exists u ∈ S (Im(A)) such that ucu = i and let the automorphism Φ := Tu,u of A = {H,O}, with Φ−1 = Tu,u. We have

Φ ◦ Tc,c ◦ Φ−1 = Tu,u ◦ Tc,c ◦ Tu,u

= Tucu,ucu

= Ti,i

Then ATc,c and ATi,i
are isomorphic (Theorem 2.1) and (Diouf, 2017), we have HTi,i

is isomorphic to H(i, 1).
I’s clear that if dim(A) ≥ 2, theirs algebras can be obtained by using the duplication process.

Corollary 1 Let A be an absolute valued algebra containing two elements e and c. The following assertions are equivalent:

1. e is left unit and c central orthogonal to e,

2. A is isomorphic to C, Hi or Oi.�

Definition 2 An element e is called generalyzed left unit if it satisfies to [Le, Lx] = 0, for all x in A (Chandid & Rochdi,
2008).

We give a generalisation of the papier (Diankha, et al., 2013).

Theorem 5 Let A be an finite dimensional absolute valued algebra contains generalized left unit e and central element c.
Then A is precisely R, C, H(a, b) or Oc.

Proof. If dim(A) ∈ {1, 2, 8}, then A is isomorphic to R, C, Oc
(
(Diankha & all, 2013), (Chandid & Rochdi, 2008)

)
. The

algebras H(a, b) and ⋆H(a, b) are the unique four-dimensional absolute valued algebras containing a generalized left unit
(Diouf, 2014). Without loss of generality, assume that ∥c∥ = 1.
For the algebra H(a, b),

c is central ⇔ x ⋆1 c = c ⋆1 x, f or all x in H
⇔ axcb = acxb, f or all x in H
⇔ xc = cx, f or all x in H
⇔ c ∈ Z(H) ∩ S (R) = {−1, 1}.

Then the algebra H(a, b) contains a central element.
For the algebra ⋆H(a, b),

c is central ⇔ x ⋆2 c = c ⋆2 x, f or all x in H
⇔ xacb = caxb, f or all x in H
⇔ xac = cax (∗), f or all x in H
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For x = 1, we have ac = ca and (∗) imply xac = acx (∗∗), f or all x in H.
New put x = ac, we have (ac)2 = ∥ac∥2 = ∥a∥2∥c∥2 = 1. Hence ac = ±1 and (∗∗) imply x = x, for all x in H, which is
absurd. Then the algebra ⋆H(a, b) does not contain a central element.�
Proposition 1 Let A be an absolute valued algebra containing a generalized left unit e and a central idempotent element
c such that e ∈ c⊥. Then A(e, c) is finite dimensional and isomorphic to C.

Proof. The norm ∥.∥ of A comes from an inner product and x 7→ x⋆ := 2 < c, x > c− x is an involution (El-Mallah, 1990).
Without loss of generality, assume that ∥e∥ = 1. We have ce = ec = ec2 = c(ec). This implies ec = ce = e. The element e
is orthogonal to c, then e2 = −∥e∥2c = −c (El-Mallah, 1990).

Problem 1 Let A be an absolute valued algebra containing a generalized left unit e and a central element c. Is A a finite
dimensional? This problem is solved partialy if e is idempotent (Calderon, et al., Preprint).�
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