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Abstract 

In this research we utilized complex structure in 𝑅3 to construct geometrical solutions for Laplace equation, wave 

equation and monopole equation. The complex space used is the so called mini – twistor space and the solutions in all 

the above cases is given by a contour integral of a twistor function over a bundle space of one – dimensional complex 

projective space. 

Keywords: Laplace equation, wave equation, monopole equation, the complex space, mini–twistor space, a twistor 
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1. Introduction 

Twistors were introduced by Sir Roger Penrose and his associates since 1960, as a new way of describing the geometry of 

space-time where the ordinary space – time concepts can be translated into twistor terms. The primary geometrical object 

is not a point in Minkowiski space but a null straight line (a twistor) or, more generally, a twisting congruence of null lines. 

It turns out that twitor algebra has the same type of universality in relation to the Lorentz group. Thus, twistor theory is a 

applicable to quantum field theory and free fields of zero- rest- mass. It also formulates other fields such as Yang Mills 

fields. Recently the twistor programme has been utilized in the integrability of differential equations. It was initiated by 

Atiyah and Ward (Ward, R. S., 1977; Ward, R. & Tabor, M., 1985) and further extended by Nick Woodhouse, Lionel 

Mason, George, Sparling and others (Murray, M. K., 2002; Hitchin, N., 1982).  

In this paper, we discuss the twistor space and some applications for differential equations representing the non Abielian 

monopole equation. The structure of this paper is as follows. In section (1) we introduced the basic concepts used in this 

paper, such as complex projective space CPn and holomorphic line bundle. Section (2) dealt with a complex structure on 

𝑅3. In this section we defined the twistor space to be the space of oriented lines in R3, it is infact the non- trivial tangent 

bundle T S2. Differential equations in R3 in terms of twistor functions have been treated in section (3). In this section we 

motivated Penrose transform by introducing the solution of the wave equation by a closed contour integral of a twistor 

function. Similarly integrating of an appropriate twistor function along a closed contour integral delivers a solution of a 

harmonic equation. The closed contour on both cases is in the one – dimensional complex projective space. The last 

section provided a twistor solution to the monopole equation. This equation is infact shown to be the itegrability 

conditions for linear Lax equations that were interpreted geometrically as null 2- planes that correspond to the points of 

the twistor space 𝑇 via the incidence relation given by equation (30) that yields two affine coordinates (𝜆 , 𝜂) where 

𝜆 = 𝜋0 𝜋1⁄  and 𝜂 = 𝜔/𝜋^2  correspond to the homogenous coordinates (𝜔 , 𝜋0 , 𝜋1 ) on the twistor space 𝑇. Thus we 

constructed holomorphic vector bundle over the twistor space 𝑇. 

2. Preliminaries 

2.1 Complex Projective Space 

Consider the set of all complex lines through the origin. It forms a complex differentiable manifold which is the n- 

dimensional complex projective space denoted by CPn. The complex line through z is denoted by [z]( Barth, W., et al., 

2015), and it is in fact 

[z] = [z0, . . . , zn] =  [λz0, . . . , λzn ]  ,   λ ∈ C − {0}                        (1) 

The numbers  (z0, . . . , zn) are called the homogeneous co-ordinates of the line. It can be shown that CPn is a complex 
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differentiable manifold.  

2.2 Holomorphic Line Bundle (Jacob, A. & Yau, S.-T., 2014) 

A holomorphic line bundle is defined by a triple (𝑀, 𝐿, 𝜋) such that π ∶  L →  M satisfies the following properties: 

(i) π−1(m) = Lm  is called a fiber over the base manifold. It is one-dimensional complex vector space 

(ii) M  is covered with open sets Uα, such that there exist a bi-holomorphic maps ψα ∶   π−1(Uα)  →  Uα  ×  C and 

ψα∣Lm
 is a linear isomorphism  

If L is holomorphic bundle then we define the holomorphic section of  L as a holomorphic map: 

ψ ∶   M  →  L  with ψ(m) ∈ Lm                              (2) 

for m ∈ Uα  ∩  Uβ and ψα(m), ψβ(m) in Lm . 

There are holomorphic maps  

gαβ ∶  Uα  ∩  Uβ →  C − {0}                                (3) 

Called the transition functions such that  

ψβ  =   gαβψα   on   Uα  ∩  Uβ.                             (4) 

3. Complex Structure on 𝐑𝟑  

The three-dimensional Euclidean space R3 may be represented as a two-dimensional complex manifold which in fact 

interpreted as a simple twistor space. To see this, consider the space of all oriented lines 𝐿 in R3 of the form 𝐿 = 

v +  su where s ∈  R, u is a unit vector in the direction of 𝐿 and v is orthogonal to u. Then let  

T =  {(u, v)  ∈  s2 ×  R3, u ·  v =  0}                          (5) 

 

It is a four –dimensional space which may be regarded as 𝑇𝑆2(Glover, R. & Sawon, J., 2014). 

Reversing the orientation of lines induces a map τ ∶  T →  T given by τ(u, v)  =  (−u, v). The points p =  (x, y, z) in 

R3 correspond to two spheres in T given by τ -invariant maps 

u →  (u, v(u)  =  p − (p ·  u)u)  ∈  T                           (6) 

which are sections of the projection T →  S2. 

4. Differential Equations and Twistor Functions 

On an open set U ⊂  T not containing the point (0, 0, 1) define a local holomorphic coordinates by  

λ =  
u1 + iu2

1 − u3
∈  CP1 =  S2, η =

v1 + iv2

1 − u3
+

u1 + iu2

(1 − u3)2 v3                     (7) 

the corresponding complex coordinates (λ ̃, η̃) in U ̃ containing  (0, 0, 1) may also be defined On the overlap region  

λ ̃ =  1/λ, 

η̃ =  −η/λ2                                        (8) 

Then  
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τ(λ, η) = (−
1

λ
, − 

η̅

λ̅2 ).                                  (9) 

From equation (6) we get the τ -invariant holomorphic map  

λ →  (λ, η =  (x +  iy)  +  2λz − λ2(x −  iy)).                       (10) 

This is map CP1 →  T CP1(Dunajski, M., 2009). For real valued function 𝑓 on 𝑅3, and an oriented line 𝐿 in 𝑅3  

We define  ϕ(L) as 

ϕ(L) =  ∫ 𝑓
𝐿

                                      (11) 

Equivalently  

ϕ(α1 , α2, β1 ,β2) = ∫ f(α1s + β1 ,α2s + β2, s)ds
∞

−∞
                        (12) 

so we have  

∂2∅

∂α1 ∂β2
−

∂2∅

∂α2 ∂β1
= 0                                    (13) 

We see that smooth solutions to above equation arise from some function on R3. In twistor theory a twistor function 

yields solution to a differential equation on space-time. After the change of coordinates 

α1 = x + y, 

α2 = t + z, 

β1 = t − z, 

β2 = x − y                                        (14) 

Produce the wave equation.  

4.1 Penrose Transforms 

The following formula for solutions to the wave equation in Minkowski space was provided by penrose  

ϕ(x, y, z, t) = ∮ f ((z +  t)  +  (x +  iy)λ, (x −  iy) − (z −  t)λ, λ) dλ
Γ⊂CP1                  (15) 

Here  Γ ⊂ CP1  is a closed contour and the function 𝑓  is holomorphic on CP1  except some number of poles. 

Differentiating the RHS verifies that 

∂2∅

∂t2 − 
∂2∅

∂x2 − 
∂2∅

∂y2 − 
∂2∅

∂z2 =  0.                                (16) 

One could modify a contour and add a holomorphic function inside the contour to f without changing the solution ∅. 

The proper description uses sheaf cohomology which considers equivalence classes of functions and contours(Baston, R. 

J. & M. G., 2015). 

4.2 Harmonic Functions(Karp, L., 2016) 

To find a harmonic function at P =  (x, y, z), restrict a twistor function f (λ, η) defined on 𝑈 ∩ 𝑈̃ to a line 𝑃 ̆ =
𝐶𝑃1 = 𝑆2 and Integrate along a closed contour integral we have  

∅(𝑥 , 𝑦 , 𝑧) = ∮ 𝑓(𝜆 , (𝑥 + 𝑖𝑦) + 2𝜆𝑧 − 𝜆2(𝑥 − 𝑖𝑦) )𝑑𝜆
Γ⊂𝑃 ̆

                       (17) 

Then Differentiate under the integral to verify 

𝜕2∅

𝜕𝑥2 +
𝜕2∅

𝜕𝑦2 + 
𝜕2∅

𝜕𝑧2 = 0                                       (18) 
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4. 3 Abelian Monopole Equation(Atiyah, M. F. & Hitchin, N., 2014) 

We can now consider the A belian monopole equation a function ∅  and a magnetic potential 𝐴 = (𝐴1, 𝐴2, 𝐴3 ) of the 

form 

∇∅ = ∇ ∧ 𝐴                                        (19)  

This a first order linear equation that is related to our above construction of the twistor contour integral  

Geometrically, the one-form 𝐴 = 𝐴𝑗𝑑𝑥𝑗 is a connection on a U(1)principal bundle over 𝑅3, and ∅ is a section of the 

adjoin bundle. Taking the curl of both sides of this equation implies that ∅ is harmonic, and conversely given a 

harmonic function ∅ locally one can always find a one-form A such that the Abelian monopole equation holds. 

4.4 Non-abelian Monopoles and Hitchin Correspondence(Shibata, A., et al., 2015) 

We can generalize equation (19) using a non Abelian lie group such as SU(n ). The generalized equations in 𝑅3 results 

if we consider the anti- Hermitian 𝑛 × 𝑛 matrices (𝐴𝑗 , ∅). The generalized non-abelian monopole equation is given by  

                               
𝜕∅

𝜕𝑥𝑗 + [𝐴𝑗 , ∅ ] =  
1

2
 𝜀𝑗𝑘𝑙𝐹𝑘𝑙                              (20) 

where 𝐹𝑘𝑙 is the non-abelian magnetic field 

 𝐹𝑘𝑙 =  
𝜕𝐴𝑙

𝜕𝑥𝑘 −
𝜕𝐴𝑘

𝜕𝑥𝑙 + [𝐴𝑘 , 𝐴𝑙 ],   𝑘, 𝑙 = 1,2 ,3                      (21) 

The pair ( 𝐴, ∅) transform as 

𝐴 → 𝑔𝐴𝑔−1 − 𝑑𝑔𝑔−1 , 

∅ → 𝑔∅𝑔−1 

for  

𝑔 = 𝑔(𝑥, 𝑦 , 𝑡) ∈ 𝑆𝑈(𝑛)                                  (22) 

 

5. Twistor Solution to the Monopole Equation 

A brief description of the twistor solution to the monopole equation goes as follows(Shibata, A., et al., 2015):  

For the potentials (𝐴𝑗(𝑋), ∅(𝑋)) we solve the matrix ODE along each line x(s) = v +  su  

𝑑𝑉

𝑑𝑠
+ (𝑢𝑗𝐴𝑗 + 𝑖∅)𝑉 = 0                               (23) 

The space of solutions at 𝑝 ∈ 𝑅3 is a complex vector space 𝐶𝑛, thus giving rise to a complex vector bundle over T 

with patching matrix (𝜆 , 𝜆,̅  𝜂, 𝜂̅) ∈ 𝐺𝐿(𝑛 , 𝐶). 

The monopole equation (20) on 𝑅3  holds if and only if this vector bundle is holomorphic, i.e. the  

Cauchy–Riemann equations 

𝜕𝐹

𝜕𝜆,̅
= 0 ,  

𝜕𝐹

𝜕𝜂̅
= 0                                          (24) 

hold. 

We now introduce a metric and a volume forms on 𝑅2,1 

ℎ = 𝑑𝑥2 − 4𝑑𝑢𝑑𝑣, 

  𝑣𝑜𝑙 = 𝑑𝑢 ∧ 𝑑𝑥 ∧ 𝑑𝑣                                    (25) 
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where the coordinates (x, u, v)are real  

With  𝐷𝜇 = 𝜕𝜇 + 𝐴𝜇we define 𝐷∅ = 𝑑∅ + [𝐴, ∅]. The monopole equations become  

𝐷𝑥∅ =  
1

2
 𝐹𝑢𝑣                             

𝐷𝑢∅ = 𝐹𝑢𝑥, 

𝐷𝑣∅ =   𝐹𝑥𝑣                                        (26) 

Where 𝐹𝜇𝑣 = [𝐷𝜇 , 𝐷𝑣] 

We notice that the above equations are the integrability conditions for an overdetermined system of linear Lax equations 

𝐿0Ψ = 0, 𝐿1Ψ = 0 

where  

𝐿0 = 𝐷𝑢 − 𝜆(𝐷𝑥 +  ∅),  𝐿1 = 𝐷𝑥 −  ∅ − 𝜆𝐷𝑣                       (27) 

And Ψ = Ψ(𝑥 , 𝑢 , 𝑣 , 𝜆) takes values in GL(n, C) 

For G =  U(n), equation (27) provide a gauge 𝐴𝑣 = 0, and 𝐴𝑥 = −𝜙, with matrix 𝐽 ∶ 𝑅2,1 → 𝑈(𝑛) such that 

𝐴𝑢 = 𝐽−1𝜕𝑢  𝐽, 

 𝐴𝑥 =  − ∅ =  
1

2
 𝐽−1𝜕𝑥 𝐽                                (28) 

The above gauge and (26) yield the integrable chiral model 

𝜕𝑣(𝐽−1𝜕𝑢  𝐽) − 𝜕𝑥(𝐽−1𝜕𝑥  𝐽) = 0                              (29) 

The Lax representation (27) can be interpreted geometrically: given a pair of real numbers (η, λ) the plane 

𝜂 = 𝑣 + 𝑥𝜆 + 𝑢𝜆2                                    (30)  

is null with respect to the Minkowski metric on 𝑅2,1, infact all null planes are of this form with λ = ∞. 

We see that M is the two-dimensional complex twistor space 𝑇 = 𝑇𝐶𝑃1 in which points of T are the 2-planes in M 

via the incidence relation 

𝑥𝐴𝐵𝜋𝐴𝜋𝐵 = 𝜔                                      (31) 

Here (𝜔 , 𝜋0 ,𝜋1)  are homogeneous coordinates on T  as (ω, πA) ∼ (c2w, cπA ) , where c ∈  C∗.  In the affine 

coordinates λ ∶=
π0

π1
, η ∶= ω (π)2⁄  equation (31) gives (30). 

The homogeneous coordinates are denoted by  πA = (π0 , π1 ), and the two-set covering of 𝐶𝑃1 lifts to a covering of 

the twistor space T 

𝑈 = {(𝑤, 𝜋𝐴), 𝜋1 ≠ 0} ,              

  𝑈̃ = {(𝑤, 𝜋𝐴), 𝜋0 ≠ 0}                                     (32) 

The functions 𝜆 = 𝜋0 𝜋1⁄  , 𝜆̃ = 1 𝜆⁄  are the inhomogeneous coordinates in U and 𝑈̃, respectively. It then follows that 

λ =  −π1/π0 

Conversely for a holomorphic vector bundle we can construct a monopole. The construction is as in the following 

theorm.  

5.1 Theorem 

There exists a one-to-one correspondence between the gauge equivalence classes of complex solutions to (26) in the 

complexified Minkowski space M with the gauge group  GL(n, C) and holomorphic rank n vector bundles E over 

the twistor space T which are trivial on the holomorphic sections of 𝑇𝐶𝑃1 → 𝐶𝑃1(𝐷𝑢𝑛𝑎𝑗𝑠𝑘𝑖, 𝑀., 2009).  

Proof 

We first outline how a holomorphic rank 𝑛  vector bundle with connection (A, ∅) can be constructed. Have (A, ∅) is a 
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solution to (26). Integrating the pair of linear PDEs 𝐿0𝑉 = 𝐿1 𝑉 = 0, where 𝐿0,  𝐿1  are given by (27), we get an n- 

dimensional vector space to each null plane Z in a complexified Minkowski space. The null plane Z corresponds to a 

point in T which is a fiber of a holomorphic vector bundle μ: E → T. The fibres of 𝐸 |  𝐿𝑝 at 𝑍0,  𝑍1  can be 

identified and therefore 𝐸 is trivial on each section.  

Conversely if E  is a vector bundle over 𝑇  which is trivial on each sectional 𝐿𝑝  ≅ 𝐶𝑃1  we can utilize 

Birkhoff–Grothendieck theorem to get 

𝐸 |  𝐿𝑝 = 𝑂  ⨁𝑂 … … … … … ⨁𝑂                            (33) 

where the space of sections restricted to 𝐿𝑝 is 𝐶𝑛. Let us now construct a pair (A, ∅) on this bundle that satisfies (26). 

First cover the twistor space with two open sets  U and 𝑈̂ so that we have local trivializations  

ℵ ∶  𝜇−1(𝑈) → 𝑈 × 𝐶𝑛,               

         ℵ̃ ∶  𝜇−1(𝑈̃) → 𝑈̃ × 𝐶𝑛                                    (34) 

The holomorphic patching is simply 𝐹 = ℵ ̃ ° ℵ ∶ 𝐶𝑛 →  𝐶𝑛  on U ∩ 𝑈̂ . F can be split: 

𝐹 = 𝐻̃ 𝐻−1,                                        (35) 

Then 𝛿𝐴𝐹 = 0 implies that  

𝐻−1𝛿𝐴𝐻 =  𝐻̃−1𝛿𝐴𝐻̃ = 𝜋𝐵Φ𝐴𝐵                                (36) 

Since both sides of the above equation are homogenous of degree 1 in 𝜋𝐴 and holomorphic around λ =  0 and 

λ =  ∞, respectively we see that the decomposing of Φ𝐴𝐵 as  

Φ𝐴𝐵 =  Φ(𝐴𝐵) + 𝜀𝐴𝐵∅                                     (37) 

gives a one-form Φ𝐴𝐵𝑑𝑥𝐴𝐵 and a scalar field 𝜙 = (1
2⁄ )𝜀𝐴𝐵Φ𝐴𝐵 on the complexified Minkowski space, i.e. 

Φ𝐴𝐵 = (
𝐴𝑢 𝐴𝑥 + ∅

𝐴𝑥 − ∅ 𝐴𝑣
)                                   (38) 

The Lax pair (27) becomes 

                               LA =  δA + H−1δA                                    (39) 

Where  𝛿𝐴 = 𝜋𝐵𝜕𝐴𝐵, so that 

                        LA(H−1) =  −H−1(δAH)H−1 + H−1(δAH)H−1 = 0                                              (40) 

and Ψ = 𝐻−1 is a solution to the Lax equations regular around λ = 0. Let us show explicitly that (26) holds. 

Differentiating (36) with respect to δA yields 

𝛿𝐴(H−1δAH) = − (H−1𝛿𝐴𝐻)(H−1δAH)                          (41) 

which holds for all πA if 

𝐷𝐴(𝐶Φ𝐵
𝐴) = 0                                       (42) 

Where 𝐷𝐴𝐶 =  𝜕𝐴𝐶 + Φ𝐴𝐶. Equation (42) is the Yang Mills spinor form equation. 

The vector bundle E need to be compatible with (10) and therefore detF =  1, this a mounts to Euclidean reality 

conditions for non abelian monopole. We shoud also have  

𝐹∗(𝑍) = 𝐹(𝜏(𝑍))                                     (43) 

Where Z ∈ T and * denotes the Hermitian conjugation. 

To determent  the Lorentzian reality conditions, the bundle must be invariant under the involution (41). Below we shall 

demonstrate how the gauge choices leading to the integrable chiral model (29) can be made at the twistor level. 

Let 

ℎ = 𝐻(𝑥𝜇 ,  𝜋𝐴 =  𝑂𝐴) , 

         ℎ̃ = 𝐻̃(𝑥𝜇, 𝜋𝐴 =  𝑙𝐴)                                     (44) 
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So that  

Φ𝐴0 =  ℎ−1 𝜕𝐴0 ℎ , 

         Φ𝐴1 =  ℎ̃−1 𝜕𝐴1 ℎ̃                                      (45) 

H is defined up to a multiple by an inverse of a non-singular matrix 𝑔 = 𝑔(𝑥𝜇) independent of  𝜋𝐴 

𝐻 = 𝐻𝑔−1 , 

                    𝐻̃ = 𝐻̃𝑔−1                                        (46) 

We choose g such that ℎ ̃ = 1 so 

 Φ𝐴1 =  𝑙𝐴 Φ𝐴𝐵  = 0                                    (47) 

And  

Φ𝐴𝐵 = −𝑙𝐵𝑂𝐶ℎ−1 𝜕𝐴𝐶  ℎ                                (48) 

i.e. 

𝐴𝑥 + ∅ =  𝐴𝑣 = 0                                   (49) 

giving the Ward gauge with  𝐽(𝑥𝜇) = ℎ. With respect to this gauge, the system (42) becomes 

𝜕1
𝐴Φ𝐴0 = 0                                      (50) 

which is (29). The solution is given by 

𝐽 (𝑥𝜇) = Ψ−1 (𝑥𝜇 , 𝜆 = 0)                              (51) 

Where Ψ =  𝐻−1 is a solution of the Lax pair. 

Setting F =  exp(f ) for some f, the nonlinear splitting (35) reduces to the additive splitting of 𝑓. This can be done 

using Cauchy integral formula, taking  as a real contour in a rational curve 𝑤 =  𝑥𝐴𝐵𝜋𝐴 𝜋𝐵. The Higgs field satisfies 

the wave equation and given by  

𝜙 =  ∫
𝜕𝑓

𝜕𝑤
 𝜌 . 𝑑𝜌

Γ
                                  (52) 
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