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Abstract

In this paper, we focus on lattice covering of centrally symmetric convex body on R2. While there is no constraint on
the lattice in many other results about lattice covering, in this study, we only consider lattices congruent to a given lattice
to retain more information on the lattice. To obtain some upper bounds on the infimum of the density of such covering,
we will say a body is a coverable body with respect to a lattice if such lattice covering is possible, and try to suggest a
function of a given lattice such that any centrally symmetric convex body whose area is not less than the function is a
coverable body. As an application of this result, we will suggest a theorem which enables one to apply this to a coverable
body to suggesting an efficient lattice covering for general sets, which may be non-convex and may have holes.
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1. Introduction

The covering problem of centrally symmetric convex bodies, especially related to the density of covering, is a famous
problem in discrete geometry. In this paper, we will deal with lattice coverings, which is fundamental when we deal with
centrally symmetric convex bodies. For a body A and a lattice Λ, C = {A + λ|λ ∈ Λ} is called a lattice arrangement. If the
members of C cover the whole plane, C is called a lattice covering. The density of a lattice covering can be expressed as
S (A)
detΛ (Pach & Agarwal, 2011), where S (A) is the area of A and detΛ is the area of the smallest lattice parallelogram of Λ.
There are many studies about the upper bounds on the infimum of the density of lattice covering when A is a given body
and Λ is any lattice. Because we may choose an appropriate Λ for minimizing the density of covering, the upper bounds
are near 1(Fary, 1950). Especially when A is a centrally symmetric convex body, it is well known that it is 2π√

27
≃ 1.2092

(Pach & Agarwal, 2011). In this study, we will consider the same problem when A is a given centrally symmetric convex
body and Λ is any lattice congruent with a given lattice Λ0. Since the condition of Λ is stronger, this upper bound is a lot
bigger than 1.2092. This cannot be a constant, since it can be arbitrarily big depending on the given lattice. Thus, we aim
to suggest a function of Λ0 and S (A) which is always less than or equal to

inf
A+Λ=R2,Λ≡Λ0

S (A)
detΛ

This is equivalent to suggesting a function f of lattice Λ such that for every centrally symmetric convex body A whose
area is not less than f (Λ), there exists Λ′ ≡ Λ such that A+Λ′ = R2. We will call A a coverable body with respect to Λ if
A is a centrally symmetric convex body and there exists a lattice Λ′ ≡ Λ such that A + Λ′ = R2.

To suggest the function f , we will first prove some properties of centrally symmetric convex bodies. Then, we will define
several new functions related to Λ and prove some properties of them. Using these, we will prove the main result of this
paper, which gives the function f .

The condition that the lattice is congruent to a given lattice can be used to suggesting an efficient lattice covering of
general sets which need not be convex and may have holes. This will be discussed in the application chapter of this paper.

2. Results

2.1 Geometric Properties of Centrally Symmetric Convex Bodies

In this section, some properties of centrally symmetric convex bodies, which are important lemmas for the main results,
are suggested.

The next lemma states a method to determine whether a given set A satisfies A + Λ = R2.

Lemma 1. Given a lattice Λ ⊂ R2, the followings hold:
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(i) Given a closed connected set A, if A + Λ = R2, there exists Λ′ ≡ Λ and a lattice triangle XYZ of Λ′ such that
X,Y,Z ∈ A.

(ii) Given a centrally symmetric convex set A, if there exists a lattice triangle XYZ ⊂ A, A + Λ = R2.

Proof. (i) For any set S , denote its boundary by ∂S . For any two distinct points P,Q,
←→
PQ denotes the line containing

both of them, and PQ may denote either the segment connecting P,Q or the length of such segment.

Since A is closed, there exist λ1, λ2 ∈ Λ such that (A + λ1) ∩ (A + λ2) , ∅. Let L be
←−→
λ1λ2 ∩ Λ. Let A1 be a

connected component of A + L which includes A + {λ1, λ2}. Since A + {λ1, λ2} ⊂ A1 and ∂A1 ⊂ ∂(A + L) ⊂ ∂A + L,
it can be shown that there exist u, v ∈ L such that (∂A + u) ∩ (∂A + v) ∩ ∂A1 , ∅. Let p be an element of the
intersection. Then since p ∈ ∂A1 ⊂ ∂(A+ L), any neighborhood of p contains a point p′ such that p′ < A+ L, while
p′ ∈ R2 = A + Λ. Then p ∈ A + (Λ \ L), there exists w ∈ Λ \ L such that p ∈ A + w. Then p ∈ A + u, A + v, A + w,
thus −u + p,−v + p,−w + p ∈ A. Also, since w < L =←→uv ∩Λ, u, v,w form a triangle. Thus, −u + p,−v + p,−w + p
form a lattice triangle of −Λ + p ≡ Λ.

(ii) Since A is centrally symmetric, it can be shown that there exists a hexagon H = XY ′ZX′YZ′ such that H ⊂ A,
XYZ ≡ X′Y ′Z′ and XY ∥ X′Y ′, which shall be degenerated. Then R2 = H + Λ ⊂ A + Λ can be shown as the
following figure.

�

Figure 1. H + Λ = R2

The following is a corollary of Lemma 1 (ii).

Corollary 2. If A is a centrally symmetric convex body and there exists a triangle in A which is congruent to a lattice
triangle of a lattice Λ, A is a coverable body with respect to Λ.

From now, we will denote Ω as a centrally symmetric convex body.

Lemma 3. There exist polar coordinates such that the origin O is the center of Ω and the four rays θ = πk
2 , k = 0, 1, 2, 3

divide Ω into four parts of the same area.

Proof. First consider polar coordinates whose origin is O. For ϕ ∈ R, let f (ϕ) be S (Ω ∩ {(r, θ)|θ ∈ (ϕ, ϕ + π
2 )}) − S (Ω ∩

{(r, θ)|θ ∈ (ϕ − π
2 , ϕ)}). Since Ω is centrally symmetric, f (0) = − f ( π2 ). Thus there exists t ∈ [0, π2 ] such that f (t) = 0.

Therefore, by rotating the polar coordinates through t, we obtain the polar coordinates satisfying this lemma. �

In this section, we will always use the polar coordinates suggested in Lemma 3.

Lemma 4. If S (Ω) = π
2 , there exists an inscribed rhombus PQRS such that PQ = 1.

Proof. Since Ω is centrally symmetric,

π

2
= S (Ω) =

1
2

Z 2π

0
r(θ)2dθ =

Z π
2

0
r(θ)2 + r(θ +

π

2
)
2
dθ ,
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thus there exists ϕ such that r(ϕ)2 + r(ϕ + π
2 )2 = 1. Let W, X,Y,Z the intersections of the boundary of Ω and the rays

θ = ϕ + πk
2 , k = 0, 1, 2, 3. Then WX = XY = YZ = ZW = 1, sincer

r(ϕ)2 + r(ϕ +
π

2
)
2
=

r
r(ϕ +

π

2
)
2
+ r(ϕ + π)2 = 1

�

The following lemma is a key theorem in showing the existence of a certain inscribed parallelogram.

Lemma 5. For any function f : [0, π8 ] → (0, π) such that its derivative f ′ exists and is continuous on [0, π8 ], and
f (0) = f ( π8 ) = π

2 , the following holds: Z π
8

0

È
64sin2 f (x) + f ′(x)2dx ≥ π

Proof. SinceZ π
8

0

È
64sin2 f (x) + f ′(x)2dx =

Z π
16

0

È
64sin2 f (x) + f ′(x)2dx +

Z π
16

0

r
64sin2 f

�π
8
− x
�
+ f ′
�π

8
− x
�2

dx ,

it is sufficient to prove
R π

16
0

È
64sin2 y + y′2dx ≥ π

2 for all function y : [0, π
16 ]→ (0, π) such that its derivative y′ exists and

is continuous on [0, π
16 ] and y(0) = π

2 .

Let y0(x) be π
2 −
R x

0 |y′(t)|dt. If
R π

16
0 |y′(t)|dt ≥ π

2 ,
R π

16
0

È
64sin2 y + y′2dx ≥ π

2 also holds, thus we will suppose
R π

16
0 |y′(t)|dt <

π
2 . Then for all x ∈ [0, π

16 ], ���π
2
− y0(x)

��� = Z x

0
|y′(t)|dt ≥

����Z x

0
y′(t)dt

���� = ���π2 − y(x)
��� ,

thus sin y(x) ≥ sin y0(x). For all x, since |y′(x)| = |y0
′(x)|,

È
64 sin2 y + y′2 ≥

È
64 sin2 y0 + y0

′2. Therefore, it is sufficient

to prove
R π

16
0

È
64sin2 y0 + y0

′2dx ≥ π
2 . Suppose that this y0 doesn’t satisfy this inequality.

For any t, let yt be yt(x) = y0(x) − tx. Since

lim
t→0

Z π
16

0

È
64 sin2 yt + yt

′2dx =
Z π

16

0

È
64 sin2 y0 + y0

′2dx <
π

2

there exists a > 0 such that Z π
16

0

È
64 sin2 ya + ya

′2dx <
π

2

Since y0 is a decreasing function, ya is a strictly decreasing function.

Let z be π
2 − ya and let h be z( π

16 ). Since z is a strictly increasing function and z(0) = π
2 − ya(0) = π

2 − y0(0) = 0,Z π
16

0

Ê
64sin2 ya +

�
dya

dx

�2

dx =
Z π

16

0

Ê
64cos2 z +

�
dz
dx

�2

dx =
Z h

0

Ê
64
�

dx
dz

�2

cos2 z + 1dz

Define a function v of z as
q

64
�

dx
dz

�2
cos2 z + 1. Since dz

dx = −
�

dy0
dx − a

�
is bounded and continuous, v is bounded,

continuous and infz∈[0,h] v ≥ 1.

Since
R h

0 sec z
√

v2 − 1dz = 8
R h

0

�
dx
dz

�
dz = π

2 , it is sufficient to prove the following statement for bounded continuous
function v whose infimum is at least 1. Z h

0
sec z

√
v2 − 1dz =

π

2
⇒
Z h

0
vdz ≥ π

2

Then, it is sufficient to prove the following:Z h

0
vdz <

π

2
⇒
Z h

0
sec z

√
v2 − 1dz <

π

2
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Since
R h

0 vdz < π
2 and v ≥ 1, h < π

2 . Thus there exists τ ∈
�

max
¦

h,
R h

0 vdz
©
, π2

�
. For all n ∈ N, let

Dn :=

(
(a1, ..., an)|h

n

nX
k=1

ak ≤ τ, a1, ..., an ≥ 1

)
Since Dn is a compact set, there exists a pair (b1, ..., bn) ∈ Dn such that for all (a1, ..., an) ∈ Dn,

nX
k=1

sec
hk
n

È
b2

k − 1 ≥
nX

k=1

sec
hk
n

È
a2

k − 1

It can be easily shown that h
n

Pn
k=1 bk = τ. If there exist i, j ∈ {1, ..., n} such that

d sec hi
n

È
b2

i − 1

dbi
>

d sec h j
n

È
b2

j − 1

db j

then for sufficiently small ϵ > 0, it can be shown that
nX

k=1

sec
hk
n

È
b2

k − 1 <
X

k<n,k,i, j

sec
hk
n

È
b2

k − 1 + sec
hi
n

È
(bi + ϵ)2 − 1 + sec

h j
n

È
(b j − ϵ)2 − 1

Therefore, the values of d sec hk
n

√
b2

k−1
dbk

, 1 ≤ k ≤ n should be a constant cn(possibly infinite). If cn = ∞, then b1 = ... = bn = 1,
h = τ. Thus cn is a finite constant.

Solving the equation we obtain bk =
cn√

c2
n−sec2 hk

n

, where cn is the solution of h
n

Pn
k=1

cn√
c2

n−sec2 hk
n

= τ.

As n goes to infinity, cn converges to the solution c of
R h

0
c√

c2−sec2 z
dz = τ. Here since τ < π

2 , c > sec h. Thus

lim
n→∞

h
n

nX
k=1

sec
hk
n

È
b2

k − 1 =
Z h

0
sec z

Ê�
c√

c2 − sec2 z

�2

− 1dz <
π

2

can be shown.

Meanwhile, since
R h

0 vdz < τ, h
n

Pn
k=1 v( hk

n ) ≤ τ holds for sufficiently big n. ThereforeZ h

0
sec z

√
v2 − 1dz = lim

n→∞

h
n

nX
k=1

sec
hk
n

Ê
v
�

hk
n

�2

− 1 ≤ lim
n→∞

h
n

nX
k=1

sec
hk
n

È
b2

k − 1 <
π

2

�

Theorem 6. If S (Ω) = π
2 , there exists an inscribed parallelogram PQRS such that S (PQRS ) ≥ 1 and PR,QS divide Ω

into four parts of the same area.

Proof. Let f (x) be 1
2

R x
0 r2(θ)dθ, let g be its inverse, let ψ(x) be the parallelogram whose vertices are the intersections of

the lines whose directions are g(x), g(x + π
8 ) and the boundary of Ω, and let s(x) be S (ψ(x)).

Suppose that s(x) < 1 holds for all x. Define functions p, q as p(x) = g(x) + g(x + π
8 ) , q(x) = g(x + π

8 ) − g(x). Then since

s(x) = 4 · 1
2

sin
�

g(x +
π

8
) − g(x)

�
· 1È

1
2 g′(x + π

8 )
· 1È

1
2 g′(x)

=
8 sin q(x)p

p′(x)2 − q′(x)2
,

È
64 sin2 q(x) + q′(x)2 < p′(x) always holds. Therefore,Z π

2

0

È
64 sin2 q(x) + q′(x)2dx <

Z π
2

0
p′(x)dx = p(

π

2
) − p(0) = 4π

Since q( nπ
8 ) = π

2 holds by Lemma 3 for all n ∈ Z, by Lemma 5, the following inequality holds:Z π
2

0

È
64 sin2 q(x) + q′(x)2dx =

3X
n=0

Z (n+1)π
8

nπ
8

È
64 sin2 q(x) + q′(x)2dx ≥ 4π

This is a contradiction, thus there exists x such that s(x) ≥ 1. It can be easily shown that ψ(x) satisfies the theorem. �
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As it is proved above that there exists an inscribed parallelogram ψ such that S (ψ) ≥ 1 and the two diagonals of ψ divide
a given centrally symmetric convex body Ω into four parts of equal areas, we will try to constrict ψ to satisfy S (ψ) = 1.
However, not all Ω satisfy such property, thus we will call Ω admissible if there exists an inscribed parallelogram ψ such
that S (ψ) = 1 and the two diagonals of ψ divideΩ into four parts of equal areas. From now, we will focus on the properties
of the bodies which are not admissible.

Let S (XY) denote the area of the arc XY for any chord XY of Ω and let X∗ denote the reflection of X with respect to O for
any point X. By Theorem 4 and Theorem 6, there exists an inscribed rhombus P1Q1P1

∗Q1
∗ such that P1Q1 = 1 and an

inscribed parallelogram P2Q2P2
∗Q2

∗ such that S (P2Q2P2
∗Q2

∗) ≥ 1, S (P2Q2) = S (Q2P2
∗).

In the following lemmas, for all t, the intersection of the boundary of Ω and the ray θ = t is denoted by X(t).

Lemma 7. If S (Ω) = π
2 and Ω is not admissible, for all chord PQ such that S (PQ) ≥ π

8 −
1
4 , S (P∗Q) < π

8 −
1
4 .

Proof. Suppose that S (P∗Q) ≥ π
8 −

1
4 . Let T be a point on öPQ ∪øQP∗ such that S (PT ) = S (P∗T ). Since S (PT ) ≥

S (PQ) or S (P∗T ) ≥ S (P∗Q), S (PT ) = S (P∗T ) ≥ π
8 −

1
4 , thus S (PT P∗T ∗) ≤ 1. For all t, let Y(t) be the point on the

boundary of Ω such that S (X(t)Y(t)) = S (X∗(t)Y(t)), then let ψ(t) be X(t)Y(t)X∗(t)Y∗(t). Let α, β be the angles such that
ψ(α) = PT P∗T ∗, ψ(β) = P2Q2P2

∗Q2
∗. Since S (ψ(α)) ≤ 1 ≤ S (ψ(β)), there exists γ such that S (ψ(γ)) = 1, thus Ω is

admissible. �

Lemma 8. If S (Ω) = π
2 and Ω is not admissible, there exists an inscribed parallelogram PQP∗Q∗ such that PQ = 1 and

S (PQP∗Q∗) ≥ 1.

Proof. Without loss of generality, suppose ∠P1Q1P1
∗ ≥ π

2 . Since P1Q1 = P1
∗Q1 = 1, S (P1Q1P1

∗Q1
∗) ≤ 1, thus without

loss of generality we may assume S (P1Q1) ≥ π
8 −

1
4 . By Lemma 7, S (P1

∗Q1) < π
8 −

1
4 . Let α, β be the angles such that

X(α) = P1, X(β) = Q1. For θ between α and β, since ∠P1Q1P1
∗ ≥ π

2 , there exists Y(θ) ∈úP1
∗Q1 such that X(θ)Y(θ) = 1.

Let ψ(θ) be X(θ)Y(θ)X∗(θ)Y∗(θ). Since S (X(α)Y(α)) ≥ π
8 −

1
4 ≥ S (X(β)Y(β)), there exists ϕ such that S (X(ϕ)Y(ϕ)) = π

8 −
1
4 .

By Lemma 7, S (X(ϕ)Y∗(ϕ)) ≤ π
8 −

1
4 , thus S (ψ(ϕ)) ≥ 1. Therefore, ψ(ϕ) satisfies this lemma. �

Lemma 9. If S (Ω) = π
2 , there exists an inscribed parallelogram PQP∗Q∗ such that P∗Q ≥ 1, S (PQP∗Q∗) ≥ 1, S (PQ)

S (PQP∗Q∗) =
π
8 −

1
4 .

Proof. If Ω is admissible, there exists ABA∗B∗ such that S (AB) = S (BA∗) = π
8 −

1
4 . Since AB · A∗B ≥ S (ABA∗B∗) = 1,

without loss of generality assume that A∗B ≥ 1. Then ABA∗B∗ satisfies this lemma. Therefore, we will suppose that Ω is
not admissible.

Without loss of generality, suppose S (P1Q1) ≥ S (P1
∗Q1). Since S (P1Q1P1

∗Q1
∗) ≤ P1Q1 · P1

∗Q1 = 1, S (P1Q1) ≥ π
8 −

1
4 .

By Lemma 7, S (P1
∗Q1) < π

8 −
1
4 . Let α be the angle such that X(α) = P1. For all t, let Y(t) be the point on the boundary

of Ω such that X∗(t)Y(t) ∥ P1
∗Q1 and let ψ(t) be the parallelogram X(t)Y(t)X∗(t)Y∗(t). Since S (X∗(α)Y(α)) < π

8 −
1
4 , there

exists β such that S (X∗(β)Y(β)) = π
8 −

1
4 , ýX∗(α)Y(α) ⊂ýX∗(β)Y(β). Then by Lemma 7, S (X(β)Y(β)) < π

8 −
1
4 , S (ψ(β)) ≥ 1.

Since S (X(α)Y(α))
S (ψ(α)) ≥ π

8 −
1
4 ≥

S (X(β)Y(β))
S (ψ(β)) , there exists γ between α, β such that S (X(γ)Y(γ))

S (ψ(γ)) =
π
8 −

1
4 . Since S (X∗(β)Y(β)) = π

8 −
1
4

and ýX∗(γ)Y(γ) ⊂ ýX∗(β)Y(β), S (X∗(γ)Y(γ)) ≤ π
8 −

1
4 . Then 2S (X(γ)Y(γ)) + S (ψ(γ)) ≥ π

4 +
1
2 , S (ψ(γ)) ≥ 1. SinceýX∗(α)Y(α) ⊂ýX∗(γ)Y(γ) and X∗(α)Y(α) ∥ X∗(γ)Y(γ), X∗(γ)Y(γ) ≥ X∗(α)Y(α) = 1. Thus ψ(γ) satisfies all conditions of

this lemma. �

2.2 Upper Bounds on the Area of Non-coverable Set

In this section, we will suggest a function f such that for any given lattice Λ, any centrally symmetric convex body Ω is
a coverable body with respect to Λ if S (Ω) ≥ f (Λ). Also, for more efficient covering, we will suggest a certain lattice Λ∗

such that detΛ∗ = 1 and any centrally symmetric convex body Ω is a coverable body with respect to Λ∗ if S (Ω) ≥ π
2 .

The followings are definitions related to the lattice, which are required to construct the function f .

Definition 10. An elementary segment is a segment connecting two lattice points X,Y such that no lattice point exists on
XY \ {X,Y}. An elementary triangle is a triangle whose vertices are lattice points X,Y,Z such that no lattice point exists
on XYZ \ {X,Y,Z}.
For any lattice Λ, define elementary segments d1, d2, ... as follows:
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For all i ∈ N, di is a shortest segment among all the elementary segments which are not parallel with d1, ..., di−1.

Definition 11. For any lattice Λ, D(Λ) is the set of the lengths of d2, d3, d4, d5....

For any set S of positive real numbers, if S = {s1, s2, ...} and s1 < s2 < ..., µ(S ) := sup si+1
si

.

The length of d1 is excluded from D(Λ) to make µ(D(Λ)) be bounded. The next theorem shows an upper bound of
µ(D(Λ)).

Theorem 12. For all lattice Λ, µ(D(Λ)) ≤
√

3.

Proof. Let X,Y be the points such that OX = d1,OY = d2,OX ∥ d1,OY ∥ d2, 0 < ∠XOY ≤ π
2 . For all k, denote Yk

as Y + kX. Since OY ≤ OY−1 ≤ OY1 ≤ OY−2 ≤ OY2 ≤ ... and all these segments are in D, it is sufficient to show
OYk

OY−k
, OY−k

OYk−1
≤
√

3 for every k ∈ N. Let Y ′ be the midpoint of YY−1. Let W,W′ be the points such that WW′Y ′Y is a

rectangle and W ∈ OX. Since W′Y ′2 = WY2
= OY2 sin2 ∠XOY ≥ 3

4 OX2, the followings can be shown:

OYk

OY−k
≤ W′Yk

W ′Y−k
=

È
(k + 1

2 )2OX2
+W′Y ′2È

(k − 1
2 )2OX2

+W′Y ′2
≤

È
(k + 1

2 )2 + 3
4È

(k − 1
2 )2 + 3

4

≤
√

3

OY−k

OYk−1
≤ WY−k

WYk−1
=

È
k2OX2

+WY2È
(k − 1)2OX2

+WY2
≤

È
k2 + 3

4È
(k − 1)2 + 3

4

≤
√

3

�

Figure 2. Proof of Theorem 12

Lemma 13. Let O be a point and let l be a line such that O < l. Let H be the foot of the perpendicular from O to l. Let
A, B,C,D ∈ l be the points in order A, B,H,C,D, such that AB = CD, AH ≤ DH. If ∠BOD ≥ π

2 , OD
OA
≤ OC

OB
.

Proof. Let a, b, c, d, h be AH, BH,CH,DH,OH, respectively. Since ∠BOD ≥ π
2 , h2 ≤ bd. Also, a − b = d − c and

b ≤ c ≤ a ≤ d hold by the given conditions. Thus (h2 + b2)(h2 + d2) ≤ (h2 + a2)(h2 + c2) can be shown, and this is
equivalent to OD

OA
≤ OC

OB
. �

The following theorem shows how to find µ(D(Λ)) in finite steps.
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Theorem 14. Let center O be a lattice point and let OX,OY be the shortest two elementary segments such that OX ≤ OY
and ∠XOY ≤ π

2 . Let D′(Λ) = D(Λ) ∩ {OP|OP < 12d2}. Then µ(D(Λ)) = µ(D′(Λ)).

Proof. For k ∈ N, let Y2k−1 be Y−kX and Y2k be Y+kX. Let Z be Y+Y1. Let n be the integer such that OYn ≤ OZ < OYn+1.

Suppose there exists k ≥ max{4, n} such that ∠Yk−2OYk+1 < π
2 . Since OYk+1 > OZ ≥ 2OH, ∠OYk+1H < π

6 . Then
∠OYk−2H > π

3 , thus Yk+1H > 3Yk−2H. This contradicts Yk+1H ≤ k+2
2 YY1 and Yk−2H ≥ k−2

2 YY1. Thus ∠Yk−2OYk+1 ≥ π
2 ,

and by Lemma 13, OYk+1

OYk
≤ OYk−1

OYk−2
holds for all k ≥ max{4, n}.

Meanwhile, it can be shown that d1, d2, d3, d4, d5 are OX,OY ,OY1,OY2,OY3, respectively. Thus we only need to consider
the following cases.

(i) n ≥ 4 : Since OY1, ...,OYn are the smallest elements of D(Λ) and OYn

OYn−1
≥ OYn+2

OYn+1
≥ ... and OYn−1

OYn−2
≥ OYn+1

OYn
≥ ... hold,

µ(D(Λ)) = µ({OY1, ...,OYn}). Since OYn ≤ OZ ≤ 2d2 + d1 < 12d2, µ(D′(Λ)) = µ(D(Λ)).

(ii) n = 3 : OY5

OY4
≤ OY3

OY2
≤ µ(D(Λ)). Also, it can be easily shown that d5 = OY3, d6 = OZ, d7 = OY4. Thus

OY5

OY3
= OY5

OY4

OY4

OZ
OZ
OY3
≤ µ(D(Λ))3. Since HY5

2
= OY5

2 − OH2
> OZ2 − OH2 ≥ 3OH2 and HY5 ≥ 3

2 HY3,

µ(D(Λ)) ≥ 3

Ê
OY5

OY3
=

6

Ì
HY5

2
+ OH2

HY3
2
+ OH2 ≥

6

Ì
HY5

2
+ 1

3 HY5
2

HY3
2
+ 1

3 HY5
2 ≥

6

r
12
7
>

12
11

Let S be {OY2k |k ≥ 11}. Then since S ⊂ D(Λ), S ∩ D′(Λ) , ∅ and µ(S ) ≤ 12
11 < µ(D(Λ)), µ(D′(Λ)) = µ(D(Λ)).

�

Figure 3. Arrangement of O, X,Y1,Y2,Y3...

Example 15. Let Λ3 be {m[1, 0] + n[ 1
2 ,
√

3
2 ]|m, n ∈ Z} and let Λ4 be Z2. Then µ(D(Λ3)) =

√
3, µ(D(Λ4)) =

√
5√
2

can be
shown using Theorem 14.

The next lemma shows two inequalities related to the chords of Ω. For any two sets X,Y ⊂ R2 we will denote d(X,Y) as
the distance between X,Y .

Lemma 16. Suppose S (Ω) = π
2 . Let PQRS be an inscribed parallelogram such that S (PQRS ) ≥ 1, S (PQ)

S (PQRS ) =
π
8 −

1
4 .

Given α ∈ [1, π4 +
1
2 ] and β ∈ [ 1

2 , 1], let U1V1 be a chord between
←→
PQ and

←−→
MN such that U1V1 ∥ PQ, U1V1 = αPQ and let

XY be a chord such that XY ∥ PQ, XY = βPQ, which is nearer to
←→
RS than

←→
PQ. Then the followings hold:

d(
←−−→
U1V1,

←→
PQ) ≤ α − 1

π − 2
S (PQRS ) · 1

PQ
, d(
←→
XY ,
←→
RS ) ≥ (1 − β)

�
π

2
−
�
π

4
+

1
2

�
S (PQRS )

�
· 1

PQ

Proof. Let l0 be the line such that l0 ∥ PQ and O ∈ l0. Let UV be a chord between
←→
PQ and l0 such that UV ∥ PQ,

d(
←→
UV ,
←→
PQ) = α−1

π−2 d(
←→
PQ,
←→
RS ). Let L,M,N be

←→
RX ∩←→S Y , l0 ∩

←→
PU, l0 ∩

←→
QV , respectively.
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Figure 4. Proof of Lemma 16

Let u, v, x, y be the tangent lines of Ω at U,V, X,Y , respectively. Let M′,N′, P′,Q′,R′, S ′, L′ be u ∩ ←−→MN, v ∩ ←−→MN, u ∩
←→
PQ, v ∩←→PQ, x ∩←→QR, y ∩←→PS , x ∩ y, respectively. Since d(

←→
PQ,
←→
UV) ≤ d(

←→
UV ,
←−→
MN),

1
2

(MN+PQ)d(
←→
PQ,
←−→
MN) = S (MNQP) ≥ S (M′N′Q′P′) ≥ S (Ω)

2
−S (PQ) =

�
π

8
+

1
4

�
S (PQRS ) =

�
π

4
+

1
2

�
PQ·d(

←→
PQ,
←−→
MN)

Thus MN ≥ π
2 PQ. Then since

UV =
2(α − 1)
π − 2

MN +
�

1 − 2(α − 1)
π − 2

�
PQ ≥ αPQ = U1V1 ,

d(
←−−→
U1V1,

←→
PQ) ≤ d(

←→
UV ,
←→
PQ) = α−1

π−2 d(
←→
PQ,
←→
RS ) = α−1

π−2 S (PQRS ) · 1
PQ

.

Meanwhile, since 2XY ≥ RS ,

RS · d(L,
←→
RS ) = 2S (S LR) ≥ 2S (S S ′L′R′R) ≥ 2S (RS ) =

π

2
− S (PQRS )

�
π

4
+

1
2

�
,

d(
←→
RS ,
←→
XY) = (1 − β)d(L,

←→
RS ) ≥ (1 − β)

�
π

2
− S (PQRS )

�
π

4
+

1
2

��
· 1

RS
�

Definition 17. Given an elementary segment XY of a lattice Λ, let l be a line such that l ∥ XY and d(l, XY) = 1
XY

detΛ.
Let T be the union of l∩Λ and its reflection with respect to the orthogonal bisector of XY. Let k be the maximum distance
between two adjacent points in T . Then the lattice rate of XY is k

XY
.

Remark 18. Let Z be a point on l∩Λ such that ∠ZXY ,∠ZYX ≤ π
2 and let H be the point on XY such that ZH ⊥ XY. Let

H′ be the reflection of H with respect to the midpoint of XY. Then since the projection of T onto
←→
XY is {H + i(Y − X)|i ∈

Z} ∪ {H′ + i(Y − X)|i ∈ Z}, the lattice rate of XY is

max{HH′, XY − HH′}
XY

Theorem 19. For any latticeΛ,Ω is a coverable body if S (Ω) is not less than f (Λ) = π
2 max

n�
detΛ

d1

�2
, d1

2,
�

d2
τµ

�2
, detΛ
τ2µ

o
,

where µ := µ(D(Λ)), τ := π
π−2+2µ .

Proof. Consider a scaling which transforms the area of Ω to π
2 . It is sufficient to prove that Ω is a coverable body with

respect to Λ if S (Ω) = π
2 and max

n�
detΛ

d1

�2
, d1

2,
�

d2
τµ

�2
, detΛ
τ2µ

o
≤ 1.

Suppose that Ω is not admissible. Then by Lemma 8, there exists a parallelogram P0Q0R0S 0 ⊂ Ω such that P0Q0 = 1 and
S (P0Q0R0S 0) ≥ 1. Since d1 ≤ 1 and d1 ≥ detΛ, it can be shown that there exists a parallelogram WXYZ ⊂ P0Q0R0S 0
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such that S (WXYZ) = detΛ and WX = d1. Since the lattice rate of d1 is at most 1 and d(
←−→
WX,

←→
YZ) = 1

d1
detΛ, there exists

a point T ∈ YZ such that WXT is congruent to a lattice triangle. Then by Corollary 2, Ω is a coverable body, thus we will
now suppose Ω is admissible.

Since Ω is admissible, there exists an inscribed parallelogram PQRS such that S (PQRS ) = 1 and S (PQ) = S (QR).
Without loss of generality, suppose PQ ≥ QR. Since PQ · QR ≥ S (PQRS ) = 1, PQ ≥ 1. Since d2

τµ
≤ 1 ≤ PQ, there exists

u ∈ D(Λ) such that α := u
PQ
∈ [τ, τµ]. We will consider two cases : when α ≥ 1 and when α < 1.

(i) When α ≥ 1 : Since 1 < µ <
√

3, α ≤ τµ < 1
2 +

π
4 . Thus by Lemma 16, there exists a chord X1Y1 such that

X1Y1 ∥ PQ, X1Y1 = u, d(
←−−→
X1Y1,

←→
PQ) ≤ α−1

π−2 ·
1

PQ
. Then S (X1Y1X1

∗Y1
∗) = X1Y1d(

←−−→
X1Y1,

←−−−→
X1
∗Y1
∗) = αPQ(d(

←→
PQ,
←→
RS ) −

2d(
←−−→
X1Y1,

←→
PQ)) ≥ α

�
1 − 2 · α−1

π−2

�
= α(π−2α)

π−2 ≥ τµ(π−2τµ)
π−2 = τ2µ ≥ detΛ.

(ii) When α < 1 : Since 1 < µ <
√

3, 1
2 < τ ≤ α. Thus by Lemma 16, there exists a chord X2Y2 such that

X2Y2 ∥ PQ, X2Y2 = u, d(
←−−→
X2Y2,

←→
RS ) ≥ (1 − α)

�
π
4 −

1
2

�
· 1

PQ
. Then S (X2Y2X2

∗Y2
∗) = X2Y2d(

←−−→
X2Y2,

←−−−→
X2
∗Y2
∗) =

αPQ(d(
←→
PQ,
←→
RS ) + 2d(

←−−→
X2Y2,

←→
RS )) = α

�
1 + (1 − α)

�
π
2 − 1

��
≥ τ
�

1 + (1 − τ)
�
π
2 − 1

��
= τ2µ ≥ detΛ.

Therefore, there exists a parallelogram XYX′Y ′ ⊂ Ω such that XY = u, S (XYX′Y ′) = detΛ. Since XY ∈ D(Λ), d(
←→
XY ,
←−→
X′Y ′) =

1
XY

detΛ and the lattice rate of XY is at most 1, there exists a point W ∈ X′Y ′ such that WXY is congruent to a lattice
triangle. Therefore, by Corollary 2, Ω is a coverable body. �

Figure 5. Proof of Theorem 19

The following example shows how we apply this theorem and the theorem’s accuracy.

Example 20. If S (Ω) ≥ (π−2+2
√

3)2

4π ≃ 1.69, by Theorem 19 and Example 15, Ω is a coverable body with respect to Λ3.

Similarly, if S (Ω) ≥ (π−2+
√

10)2
√

10π
≃ 1.86, by Theorem 19 and Example 15, Ω is a coverable body with respect to Λ4.

Let Ω3 be
¦

(x, y)|x2 + y2 < 3
4 , y

2 < 3
16

©
and let Ω4 be

¦
(x, y)|x2 + y2 < 1

2

©
. Then it can be shown that no lattice triangle

can be inscribed in each of these, thus Ω3, Ω4 are not coverable bodies. Since S (Ω3) = π
4 +

3
√

3
8 > 1.43 and S (Ω4) = π

2 >
1.57, S (Ω) should be at least 1.43, 1.57 to certify that Ω is always a coverable body with respect to Λ3, Λ4, respectively,
while the constants we obtained from Theorem 19 were 1.69 and 1.86.

To find out an efficient covering, we may apply Theorem 19 to an appropriate lattice. However, there exists a certain
lattice which enables us get a more efficient covering. The followings are the processes of suggesting such lattice, denoted
by Λ∗, and showing that Ω whose area is π

2 is always a coverable body with respect to Λ∗.

Definition 21. Λ∗ is a lattice such that detΛ∗ = 1, d2 =
√

2 d1 and ∥d1 + d2∥ = 4√2 ∥d1 − d2∥, where d1, d2 are the
vectors satisfying d1 ∥ d1, ∥d1∥ = d1, d2 ∥ d2, ∥d2∥ = d2, d1 · d2 > 0.

Theorem 22. A centrally symmetric convex body Ω is a coverable body with respect to Λ∗ if S (Ω) = π
2 .

Proof. Let Φ be A ∪ B, where A, B are the following sets :

A := {pd1 + qd2|0 ≤ p ≤ 6, q = ±1, p, q ∈ Z} ∪ {4d2 + (4p ± 1)d1|1 ≤ p ≤ 3, p ∈ Z} ,
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B := {4d2 + (4p ± 1)d1|p ≥ 3, p ∈ Z}
For all t ≥ 6, since ∥4d2 + (2t + 1)d1∥−∥4d2 + (2t − 1)d1∥ ≤ 2 ∥d1∥ < 1

5 ∥4d2 + 11d1∥, ∥4d2 + (2t + 1)d1∥ < 6
5 ∥4d2 + (2t − 1)d1∥.

Thus µ(B) < 6
5 . Also, µ(A) < 6

5 can be shown by checking all elements. Therefore, µ(Φ) < 6
5 .

For any p ≥ 3, let X,Y,Z be the lattice points such that
←→
XY = 4d2+ (4p±1)d1,

←→
XZ = d2+ pd1 and let H be the point on XY

such that ZH ⊥ XY . Let H′ be the reflection of H with respect to the midpoint of XY . Since S (XYZ) = 1
2 , d(Z,

←→
XY) = 1

XY
.

Since ����14 − XH
XY

���� = ����14 − (4d2 + (4p ± 1)d1) · (d2 + pd1)
∥4d2 + (4p ± 1)d1∥2

���� = (4d2 + (4p ± 1)d1) · d1

4 ∥4d2 + (4p ± 1)d1∥2
≤ ∥d1∥

4 ∥4d2 + (4p ± 1)d1∥
≤ 1

16
,

max{HH′, XY −HH′} ≤ 3
4 XY . Also, since

←→
XZ ·←→ZY ≥ (d2 + pd1) · (3d2 + (3p± 1)d1) ≥ 0, ∠XYZ ≥ π

2 , ∠ZXY ,∠ZYX ≤ π
2 .

Thus the lattice rate of XY is at most 3
4 . Also, it can be shown that the lattice rate of any element of A is at most 3

4 by
checking all elements. Therefore, every element of Φ has lattice rate not bigger than 3

4 .

By Lemma 9, there exists an inscribed parallelogram PQRS such that S (PQRS ) ≥ 1, S (PS )
S (PQRS ) =

π
8 −

1
4 and PQ ≥ 1. Let s

be S (PQRS ). Since 5
6 d2 < 1 ≤ PQ and d2 ∈ Φ and µ(Φ) < 6

5 , there exists di ∈ Φ such that PQ ≤ di <
6
5 PQ.

Let XY be a chord between
←→
PQ and O such that XY ∥ PQ and XY = di. Let X′Y ′ be a chord such that X′Y ′ ∥ PQ and

X′Y ′ = 3
4 di. Let t be di

PQ
. Then by Lemma 16,

d(
←→
XY ,
←−→
X′Y ′) = d(

←−→
X′Y ′,

←→
RS ) + d(

←→
PQ,
←→
RS ) − d(

←→
XY ,
←→
PQ) ≥

�
1 − 3

4
t
��

π

2
−
�
π

4
+

1
2

�
s
�

1
PQ
+

s
PQ
− t − 1
π − 2

· s
PQ

Thus, d(
←→
XY ,
←−→
X′Y ′)di ≥ t

�
(1 − 3

4 t)
�
π
2 −
�
π
4 +

1
2

�
s
�
+ s − t−1

π−2 s
�

and this is always bigger than 1, since t ∈ [1, 6
5 ) and s ≥ 1.

Since Ω is convex, there exists X1Y1 ⊂ Ω such that d(
←−−→
X1Y1,

←→
XY)di = 1, X1Y1 ∥ XY and X1Y1 = X′Y ′ = 3

4 di. Since the
lattice rate of di is at most 3

4 and X1Y1 =
3
4 XY , it can be shown that there exists a point Z ∈ X1Y1 such that XYZ is

congruent to a lattice triangle. Since XYZ ⊂ Ω, by Corollary 2, Ω is a coverable body. �

Figure 6. Proof of Theorem 22

2.3 Application

An interesting property of the coverable body is that we can suggest a reasonable upper bound on the infimum of the
density of lattice covering with the minkowski sum of a coverable body and an uniformly coverable set with respect to the
same lattice. Here, the uniformly coverable set is a new definition, which indicates any bounded closed set A ⊂ R2 such
that for all Λ′ ≡ Λ, A + Λ′ = R2.

Theorem 23. Let A be a coverable body and let B be an uniformly coverable set with respect to the same given lattice Λ.
Then there exists a lattice covering of A + B whose density is S (A+B)

3 detΛ .

Proof. Since A is a coverable body with respect toΛ, there existsΛ′ ≡ Λ such that A+Λ′ = R2. By Lemma 1, there exists
Λ1 ≡ Λ such that A includes a lattice triangle of Λ1. Since A is convex, there also exists an elementary triangle LMN ⊂ A.
Let T be the lattice {pL + qM + rN |p + q + r = 0, p ≡ q ≡ r mod 3}. Then since Λ1 = {pL + qM + rN |p + q + r = 1},
Λ1 = T + {L,M,N}, thus Λ1 ⊂ T + A. Therefore, R2 = B +Λ1 ⊂ B + T + A = (A + B) + T , {A + B + t|t ∈ T } is a covering
whose density is S (A+B)

det T =
S (A+B)
3 detΛ1

. �
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This theorem is beneficial to general sets, since the uniformly coverable set needs not be connected and may have holes.
The following is an example of this.

Example 24. Let A be Γ \ Γ′, where Γ :=
¦

P|OP ≤ 2√
3

©
, Γ′ :=

¦
P|OP <

√
3

2

©
. We will show that A is an uniformly

coverable body with respect to Λ3. Let X be any point on the plane. For i, j ∈ {0, 1}, let Λ(i, j) be the lattice {(2m +
i)[1, 0] + (2n + j)[ 1

2 ,
√

3
2 ] |m, n ∈ Z}. Since a right triangle congruent to a lattice triangle of Λ(i, j) can be inscribed in

Γ, by Corollary 2, there exists λ ∈ Λ(i, j) such that X ∈ Γ + λ. Meanwhile, since the diameter of Γ′ is
√

3, it can be
shown that there are at most three elements of {λ|X ∈ Γ′ + λ, λ ∈ Λ3}. Therefore, there exists a lattice point λ such that
X ∈ (Γ \ Γ′) + λ = A + λ. Thus A + Λ3 = R2. Since A is the region between two concentric circles, A + Λ′ = R2 holds for
all Λ′ ≡ Λ3, thus A is an uniformly coverable set with respect to Λ3.

Let B be any centrally symmetric convex body whose area is bigger than (π−2+2
√

3)2

4π . B is a coverable body with respect
to Λ3, as it was shown in Example 20. Thus by Theorem 23, there exists a lattice covering of A + B whose density is
S (A+B)
3 detΛ3

= 2
3
√

3
S (A + B).

Figure 7. Covering by Γ′

3. Conclusion

In this paper, we suggested a function f such that any centrally symmetric convex bodyΩ is a coverable body with respect
to a lattice Λ if S (Ω) ≥ f (Λ). Also, we discovered a lattice Λ∗ such that any centrally symmetric convex body Ω is a
coverable body with respect to Λ∗ if S (Ω) ≥ π

2 . To apply the coverable body to more general problems, we also suggested
a method to prove the existence of an efficient lattice covering using a coverable body.
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