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Abstract  

Student t distribution has been widely applied in the course of statistics. In this paper, we focus on finding a geodesic 

equation of the two parameter student t distributions. To find this equation, we applied both the well-known Darboux 

Theorem and a triply of partial differential equations taken from Struik D. J. (Struik, D. J., 1961) or Grey A (Grey A., 

1993), As expected, the two different approaches reach the same type of results. The solution proposed in this paper could 

be used as a general solution of the geodesic equation for the student t distribution.  
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Keywords: Darboux theorem, geodesic equation, small sample, size, student t distribution, triply partial differential 
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1. Introduction 

The student t distribution was first discovered by W.S. Gosset. Since the Irish brewery for which Gosset was working did 

not want the other breweries to know the statistical method they were using, Gosset published under the pseudonym of a 

student. Most statistical textbooks describe the t distribution in the following way: If n21 X,......X,X  are  

independent, identically distributed, random variables, each having the same normal distribution with the expected value 

u  and standard deviation v , then v/)uX(n   has a unit normal distribution. This statistic can be used in the 

construction of tests and confidence intervals relating to the value of u  , provided that v  is known. If v  is not known, 

it is reasonable to replace it by the sample estimator “ s ”, given the statistic s/)uX(nT  . This process has been 

used for some time without allowing for differences between the distribution of v/)uX(n   and s/)uX(n  . 

Statisticians realized that the two distributions are not identical, but the determination of the actual distribution had 

difficulties. Gosset obtained the distribution of 1n/T'T   and gave a short table of it’s cumulative distribution 

function. We can show that T’ is distributed as a ratio of a unit normal variable, z , and Chi, )1n(  , where the two 

variables are mutually independent. The divisor 1n   was introduced by Fisher(1925a) who defined t with   degree 

of freedom as the distribution of .)(zt 2

12 





  This quantity is usually called student t and the corresponding 

distribution is called the student t distribution. In this paper, we used two different algorithms to find the geodesic equation 

of the student t distribution. 

2. List the Fundamental Tensor 

The probability density function for the student t distribution is given by: 


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where u  is a location parameter, v  is a scale parameter and r is defined as the degree of freedom. 
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Then, 
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f x c b a v
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                    (2.1) 

From above equation (2.1), we derive the first and second partial derivatives: 
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Then we take the expected values of (2.2),(2.3)and (2.4) to derive the metric tensor components for the student t 

distribution: 
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More detailed proof for equation (2.5), (2.6) and (2.7) can be found in Chen W.W.S.[3]. Using the above results we can 

further derive their derivatives and six well known Christoffel Symbols as follows: 
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3. The Geodesic Equation 

To find the geodesic equation of the student t distribution, we solve a triply of partial differential equations, given in the 

appendix I. We seek its solution in the following section. 

2
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We only need two out of above three equations to find the student t model geodesic equation. We will choose the first (3.1) 

and the third (3.3) equations. To simplify the notation, we let 

du dp 2
      then  ( ) 0  

ds ds
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p p
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Integrate (3.5) on both sides with respect to p, to get 
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Where 1C  is an arbitrary constant and tA  is a temperary constant. We will define its value later. Finally, we derive: 
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Substitute equation (3.6) into equation (3.3) 
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Then take the square root of equation (3.7), to get 
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Integrate the equation on both sides to derive the geodesic equation of the student t distribution as follows: 

2 2

2
  

( 3) ( 1)

t

t

r A vdv
u B

r A v r
  

  
                        (3.8) 

Where tA  and B are an arbitrary constant. 

Alternatively, we can find the geodesic equation of the student t distribution by solving one partial differential equation. 

This idea originated from the French mathematician Darboux and is now known as Darboux’s theory. 
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From (3.9), we derive  
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Then (3.10) separated into two parts as follows; 

Part 1: 
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We put (3.11) and (3.12) together to find one general solution for equation (3.9): 
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Now, to find the Geodesic equation of the student t distribution we only need to differentiate equation (3.13) by the 

constant A.  

.B
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3
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We found that equations (3.8) and (3.14) are of the same type. The difference is only by a constant. The difference may be 

adjusted by using the constant tA . 

4. Concluding Remarks 

Rao(1945) presented a “geodesic distance” (or “Rao distance”), which has outstanding theoretical properties.  

However,it was based on a demanding differential geometrical approach. This “geodesic distance” concept, a 

generalization of the well-known Mahalanobis distance, had to wait until more interest in differential geometry was raised 

by Efron.  This paper uses a simple econometric problem to demonstrate the reason the student t geodesic equation is 

useful. Let A be a stock represented by its yield ),(N~y 2
0 , with the unknown expected yield   and the known risk 

2
0 . Assume we  

want to test 0a00   H  versus   H    where 0  is some specified value with a sample size of one. The optimal 

test in this situation has a critical region 02/10  tx /:xH   . The test seeks to answer the question: Is the 

distance between the two normal populations ),(N 2
00   and ),x(N 2

0 , big enough to reject ?H0  The answer 

depends on   and on the distributional assumption. If we let   tend to infinitely large,then the distance between 

),(N 2
0   and ),x(N 2  should converge to zero. For   to tend to zero,then the distance will become infinitely 

large. For this reason, the family of t distribution should not be identified with a flat plane but with a curved surface. This 

is why the geodesic equation should be used instead of the t distribution. 
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Appendix I 

We list the six well known Christoffel Symbols as follows. For detail derivation see Struik or Grey. 
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In general, the solution of the geodesic equation depends upon a pair of partial differential equations as below.  
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