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Abstract

The present article is motivated by the theorem of Cartan-Dieudonné which states that every orthogonal transformation is
a product of reflections. Its purpose is to determine, for each orthogonal transformation, the minimal number of factors
in a decomposition into a product of reflections, and to propose an effective algorithm giving such a decomposition. With
the orthogonal transformations g of a quadratic space (V, q), it associates couples (S , ϕ) where S is a subspace of V , and
ϕ an non-degenerate bilinear form on S such that ϕ(y, y) = q(y) for every y in S . In general, the minimal decompositions
of g into a product of reflections correspond to the bases of S in which the matrix of ϕ is lower triangular. Therefore, we
need an algorithm of triangularization of bilinear forms. Affine isometries are also taken into consideration.
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Let V be a vector space of finite dimension n over a field K, q a quadratic form on V which is momentarily assumed to
be non-degenerate, and O(V, q) the group of its orthogonal transformations. Since the characteristic of K may be 2, the
associated bilinear form bq is defined in this way:

∀x, y ∈ V, bq(x, y) = q(x + y) − q(x) − q(y) ;

thus bq(x, x) = 2q(x) for all x. Every non-isotropic vector v ∈ V determines a reflection R(v):

∀x ∈ V, R(v)(x) = x −
bq(x, v)

q(v)
v .

The theorem of Cartan-Dieudonné (see (Dieudonné, 1958)) states that every g ∈ O(V, q) is a product of reflections, where
the number of reflections is ≤ n. Nevertheless, there are exceptions when the field K is isomorphic to Z/2Z. When q is
anisotropic (for instance when K = R and q is euclidean), it is easy to prove that the minimal number of reflections for a
particular g is the dimension of im(g − 1), the image of g − 1V (where 1V is the identity mapping of V , also denoted by 1
if this short notation is clear enough). The determination of this minimal number is much more difficult when there are
non-zero isotropic vectors x (such that q(x) = 0). Here this minimal number proves to be the dimension of im(g−1) when
it is not totally isotropic, and dim(im(g − 1)) + 2 when it is totally isotropic; because of the above mentioned exceptions,
K is assumed not to be isomorphic to Z/2Z.

I first tackled this problem with the Clifford algebra Cl(V, q) (the associative and unital algebra generated by the elements
x of V with the relations x2 = q(x)); but in this article, contrary to (Helmstetter 2017), I present only the part of my
research that can be explained without mentioning Clifford algebras. Nevertheless, the Clifford algebras suggested new
points of view and new definitions that I shall explain at once. Firstly, the hypothesis that q is non-degenerate has been
removed, because it causes a dreadful loss of effectiveness in the treatment of Clifford algebras. We must pay attention
to ker(bq), the subspace of all x ∈ V such that bq(x, y) = 0 for all y ∈ V , and to ker(q), the subspace of all x ∈ ker(bq)
such that q(x) = 0; since bq(x, x) = 2q(x), the equality ker(q) = ker(bq) holds whenever the characteristic of K is , 2.
When ker(q) , ker(bq), q is said to be defective. Secondly, we must distinguish Iso(V, q), the group of isometries of (V, q),
and its subgroup O(V, q), the group of orthogonal transformations; a linear transformation g of V is an isometry if (by
definition) q(g(x)) = q(x) for all x ∈ V; an isometry g is an orthogonal transformation if ker(g−1) ⊃ ker(bq). For instance,
every reflection R(v) is an orthogonal transformation, and im(R(v)−1) is the line spanned by v (except when q is defective
and v ∈ ker(bq)). A linear transformation g is an isometry if and only if it extends to an automorphism of Cl(V, q); it
is an orthogonal transformation if and only if it extends to a twisted inner automorphism of Cl(V, q) according to this
definition which involves the parity gradation of Cl(V, q): the twisted inner automorphism determined by an invertible,
even or odd element a ∈ Cl(V, q) is b 7−→ aba−1 if a or b is even, b 7−→ −aba−1 if a and b are odd. Thirdly, every
orthogonal transformation g can be determined by a couple (S , ϕ) where S is a subspace of V containing im(g − 1), and ϕ
is a non-degenerate bilinear form on S such that ϕ(y, y) = q(y) for all y ∈ S . Since we shall meet plenty of such couples
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(S , ϕ), I propose to call them transformers of (V, q). When q is non-degenerate (in other words, ker(bq) = 0), then g
admits only one transformer (S , ϕ), and S = im(g − 1). But in other cases, there may be plenty of transformers over each
g ∈ O(V, q), sometimes of various dimensions; therefore, the determination of their minimal dimension is important:

minimal dim(S ) = dim(im(g − 1)) + dim(im(g − 1) ∩ ker(q)) .

This minimal dimension s gives the minimal number of factors in a decomposition of g into a product of reflections; it is
s when q admits a minimal-dimensional transformer (S , ϕ) that is not totally isotropic; in the other cases, it is s + 2 (only
s + 1 if q is defective).

The quadratic space (V, q) is said to be embedded in (W, q̃) if there is an injective linear mapping f : V → W such
that q̃( f (x)) = q(x) for all x; for convenience, V will be treated as a subspace of W, and q̃ as an extension of q. Such
an embedding is especially interesting if q̃ is non-degenerate; indeed, we shall realize that an isometry g of (V, q) is an
orthogonal transformation if and only if it extends to an orthogonal transformation g̃ of (W, q̃) such that im(g̃ − 1W ) ⊂ V;
in other words, O(V, q) is the image of the subgroup of all g̃ ∈ O(W, q̃) such that im(g̃ − 1W ) ⊂ V; the image of each g̃ is
its restriction to V; moreover, the suitable extensions g̃ of g are in bijection with the transformers (S , ϕ) over g.

Example. When q is the null quadratic form on V , then Iso(V, q) is the linear group GL(V) whereas O(V, q) is the trivial
group {1V }. There is a non-degenerate embedding (W, q̃) where W is the direct sum of V and the dual space V∗, and where
q̃(x, ℓ) = ℓ(x) for all x ∈ V and all ℓ ∈ V∗. Every g ∈ GL(V) has extensions g̃ in O(W, q̃), and there is a canonical extension
(x, ℓ) 7−→ (g(x), ℓ ◦ g−1); but im(g̃ − 1W ) is not contained in V if g , 1V ; indeed, Lemma 1.2 (here below) shows that the
conditions im(g̃−1W ) ⊂ V is equivalent to ker(g̃−1W ) ⊃ V . When g = 1V , the extensions g̃ are well known: see (Chevalley,
1954), section III.1.7; they are in bijection with the elements ω of

∧2(V); if ω =
∑r

i=1 yi ∧ zi, the associated orthogonal
transformation F(ω) maps each (x, ℓ) to (x +

∑
i(ℓ(yi) zi − ℓ(zi) yi), ℓ). Thus F(ω) ◦ F(ω′) = F(ω + ω′). The calculation

of the transformer (S , ϕ) associated with F(ω) (according to Theorem 2.2 below) is easy when (y1, z1, y2, z2, . . . , yr, zr) is
linearly independant: S is the subspace with basis (y1, z1, . . . , yr, zr), and ϕ is the alternate bilinear form on S such that
ϕ(yi, zi) = 1, ϕ(yi, z j) = 0 if i , j, and ϕ(yi, y j) = ϕ(zi, z j) = 0 for all i and j. Thus we obtain a bijection between the
elements of

∧2(V) and the transformers (S , ϕ) of (V, 0).

Let us suppose that the orthogonal transformation g is a product of reflections R(v1)R(v2) · · · R(vs) involving s linearly
independent vectors; then g admits the transformer (S , ϕ) where S is the subspace with basis (v1, . . . , vs), and where ϕ has
a lower triangular matrix in this basis; in other words, ϕ(vi, v j) = 0 whenever i < j; since ϕ(y, y) = q(y) for all y ∈ S , this
property completely determines ϕ. Conversely, if (S , ϕ) is a transformer for g, and if the matrix of ϕ is lower triangular in
some basis (v1, . . . , vs) of S , then g = R(v1) · · · R(vs). Thus we are led to the problem which shall be the subject of the
second part of this article: if ϕ is a bilinear form on a vector space S (of finite dimension s), are there bases of S where
the matrix of ϕ is lower triangular, and how can we calculate one of them?

Although every transformer (S , ϕ) involves a non-degenerate bilinear form ϕ, I will solve the problem of triangularization
even when ϕ is degenerate; in the frame of Clifford algebras, there are at least two problems that require triangularisation
even for degenerate bilinear forms. When ϕ is a non-zero alternate bilinear form, its matrix is alternate in every basis of S ;
therefore, it cannot be triangularized. All other bilinear forms can be triangularized, except when K is isomorphic to Z/2Z.
Bilinear forms over Z/2Z are outside the scope of this article; here, I do not more than showing (just below) a bilinear
form over Z/2Z that cannot be triangularized although it is not alternate. I shall present an algorithm of triangularization
where every phase is almost trivial, except the “correction procedure”; this procedure is the only phase that requires K not
to be isomorphic to Z/2Z; therefore, the presence of this unpleasant procedure is not the result of a clumsiness.

Example. Here, exceptionally, K is the field Z/2Z. Let us consider the following non-degenerate bilinear form ϕ on K3:

ϕ((ξ1, ξ2, ξ3), (ζ1, ζ2, ζ3)) = (ξ1ζ2 − ξ2ζ1) + (ξ2 + ξ3)ζ3 .

If the matrix of ϕ is triangular in a basis (v1, v2, v3), then ϕ(v1, v1), ϕ(v2, v2) and ϕ(v3, v3) are all , 0 because ϕ is non-
degenerate. Unfortunately, only two vectors of K3 are not isotropic for the quadratic form v 7−→ ϕ(v, v): (0, 0, 1) and
(1, 0, 1). Therefore, ϕ cannot be triangularized.

1. Preliminary Lemmas

The first lemma is useful only in characteristic 2.

Lemma 1.1. For every g ∈ Iso(V, q) we have im(g − 1) ∩ ker(bq) ⊂ ker(q); in other words, im(g − 1) ∩ ker(bq) =
im(g − 1) ∩ ker(q).

Proof. If g(x) − x is in ker(bq), then

q(x) = q(g(x)) = q(x) + q(g(x) − x) + bq(x, g(x) − x) = q(x) + q(g(x) − x),
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whence q(g(x) − x) = 0. �
Lemma 1.1 implies that O(V, q) = Iso(V, q) if and only if ker(q) = 0.

For every subspace U of V , U⊥ is the subspace of all x ∈ V such that bq(x, u) = 0 for all u ∈ U.

Lemma 1.2. For every g ∈ Iso(V, q), the subspaces ker(g − 1) and im(g − 1) are orthogonal. When ker(q) = 0, then
ker(g − 1) = (im(g − 1))⊥.

Proof. For all x, y ∈ V we have
bq(x, g(y) − y) = −bq(g(x) − x, g(y)) ;

therefore, every x in ker(g − 1) is orthogonal to every g(y) − y in im(g − 1). Conversely, if x is orthogonal to all g(y) − y,
then g(x) − x is in ker(bq), therefore in ker(q); and x ∈ ker(g − 1) if ker(q) = 0. �
When q is non-degenerate, the orthogonal group O(V, q) contains a normal subgroup SO(V, q) of index 2 which no reflec-
tion R(v) can belong to. The same holds true when q is degenerate but non-defective; indeed, q induces a non-degenerate
quadratic form q′′ on the quotient V ′′ = V/ ker(q), every g ∈ O(V, q) gives a transformation g′′ ∈ O(V ′′, q′′), and SO(V, q)
is the inverse image of SO(V ′′, q′′) by the homomorphism g 7−→ g′′. If g is a product of reflections, the parity of the num-
ber of reflections depends on whether g is, or not, in the subgroup SO(V, q). All this is null and void when q is defective;
in this case, ker(bq) contains vectors v such that q(v) , 0 and R(v) = 1V .

Now we consider a bilinear form ϕ on some vector space S , and we define the quadratic form q by q(y) = ϕ(y, y) for all
y ∈ S . Consequently,

∀x, y ∈ S , ϕ(x, y) + ϕ(y, x) = bq(x, y) . (1.1)

Let RKer(ϕ) (resp. LKer(ϕ)) be the subspace of all x ∈ S such that ϕ(v, x) = 0 (resp. ϕ(x, v) = 0) for all v ∈ S . If U is a
subspace of S , we denote by R⊥ϕ (U) (resp. L⊥ϕ (U)) the subspace of all x ∈ S such that ϕ(u, x) = 0 (resp. ϕ(x, u) = 0) for
all u ∈ U. When U ⊂ ker(bq), then R⊥ϕ (U) = L⊥ϕ (U), and the notation LR⊥ϕ (U) is allowed.

Lemma 1.3. Let U1 and U3 be two subspaces of S such that ϕ(U1,U3) = 0 and such that the restrictions of ϕ to U1 and
U3 are non-degenerate. Then we have S = U1 ⊕ U2 ⊕ U3 if U2 = R⊥ϕ (U1) ∩ L⊥ϕ (U3).

Proof. For every x ∈ S , there is a unique x1 ∈ U1 (resp. x3 ∈ U3) such that ϕ(u, x) = ϕ(u, x1) for all u ∈ U1 (resp.
ϕ(x, u) = ϕ(x3, u) for all u ∈ U3). If we set p1(x) = x1 and p3(x) = x3, then p1 and p3 are projectors such that
im(p1) = U1, ker(p1) = R⊥ϕ (U1), im(p3) = U3, ker(p3) = L⊥ϕ (U3). Since ϕ(U1,U3) = 0, we have p1 p3 = p3 p1 = 0. Thus,
if we set p2 = 1 − p1 − p3, we obtain a projector on ker(p1) ∩ ker(p3) = U2. �.

Lemma 1.3 can be applied when U1 = 0 or U3 = 0, because the unique bilinear form on {0} is non-degenerate.

The next lemma, motivated by the frequent presence of g− 1, does not require V to be a vector space; it holds true already
for an additive group.

Lemma 1.4. Let g1 and g2 be homomorphisms from an additive group V into itself, and g = g1g2 their product. Let us
consider these four assertions:

(im) : im(g1 − 1) ∩ im(g2 − 1) = 0 ;
(Im) : im(g1 − 1) + im(g2 − 1) = im(g − 1) ;

(ker) : ker(g1 − 1) + ker(g2 − 1) = V ;
(Ker) : ker(g1 − 1) ∩ ker(g2 − 1) = ker(g − 1) .

The following four implications hold true:

(im)⇒ (Ker) , (ker)⇒ (Im) ; (1.2)
(im) & (Im)⇐⇒ (ker) & (Ker) . (1.3)

Proof. I will prove only (1.2) because we shall never use (1.3) which is mentioned here only because it would be a pity to
mutilate Lemma 1.4; yet the proof of (1.3) is more difficult. The two inclusions

im(g1 − 1) + im(g2 − 1) ⊃ im(g − 1) and ker(g1 − 1) ∩ ker(g2 − 1) ⊂ ker(g − 1)

are obvious consequences of

g − 1 = (g1 − 1) g2 + (g2 − 1) = g1 (g2 − 1) + (g1 − 1) .
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Let us prove (im) ⇒ (Ker). If (im) is true and g(x) = x, then (g1 − 1)g2(x) = (g2 − 1)(x) = 0, whence g2(x) = x = g1(x);
this means that (Ker) is true. Now let us prove that (ker) implies im(g1 − 1) ⊂ im(g − 1); since im(g2 − 1) ⊂ im(g − 1)
for the same reasons, (Im) follows. Let us consider y = (g1 − 1)(x) and let us write x = x1 + x2 where g1(x1) = x1 and
g2(x2) = x2; thus y = (g1 − 1)(x2) = g1(g2 − 1)(x2) + (g1 − 1)(x2) = (g − 1)(x2). �
Remark. When dim(V) is infinite, which properties of an isometry g ensure that it extends to a twisted inner automorphism
of Cl(V, q)? The necessary condition ker(g−1) ⊃ ker(bq) is no longer sufficient. Indeed, an isometry g extends to a twisted
inner automorphism (and is called an orthogonal transformation) if and only if the codimension of ker(g− 1) is finite, and
if ker(g − 1) is orthogonally closed according to this definition: a subspace U of V is orthogonally closed if U⊥⊥ = U.
I recall that U⊥⊥ ⊃ U and U⊥⊥⊥ = U⊥ for every subspace U. When the codimension of ker(bq) is infinite, the property
ker(g − 1) ⊃ ker(bq) is much weaker. When ker(q) = 0, then ker(g − 1) is orthogonally closed for every isometry g
because Lemma 1.2 is always valid. But if ker(q) contains a vector u , 0, then every ℓ ∈ V∗ determines an isometry
g : x 7−→ x + ℓ(x) u such that ker(g − 1) = ker(ℓ); and g is an orthogonal transformation if and only if there is v ∈ V
such that ℓ(x) = bq(v, x) for all x ∈ V; even when ker(ℓ) ⊃ ker(bq), the existence of v is exceptional. Besides, for every
orthogonal transformation g, there is an orthogonal decompostion V = V1 ⊕ V2 such that dim(V1) is finite, im(g − 1) ⊂ V1
and ker(g − 1) ⊃ V2; it reduces the study of g to the finite-dimensional case. Nothing interesting will occur as long as no
other concept and no other hypothesis (for instance, the presence of a topology) is introduced.

2. The Main Theorems for Transformers

A transformer of (V, q) is a couple (S , ϕ) where ϕ is a non-degenerate bilinear form on a subspace S of V , and satisfies the
condition ϕ(y, y) = q(y) for all y ∈ S . The following two theorems justify this definition.

Theorem 2.1. Let (S , ϕ) be a transformer of (V, q). There is a unique linear endomorphism g of V such that im(g−1) ⊂ S ,
and such that

∀x ∈ V, ∀y ∈ S , ϕ(g(x) − x, y) = −bq(x, y) ; (2.1)

it is an orthogonal transformation of (V, q). Moreover,

ker(g − 1) = S ⊥ , (2.2)
im(g − 1) = LR⊥ϕ (S ∩ ker(bq)) ; (2.3)

dim(S ) ≥ dim(im(g − 1)) + dim(im(g − 1) ∩ ker(q)) ; (2.4)
∀y, z ∈ S , ϕ(g(y), g(z)) = ϕ(y, z) . (2.5)

The reverse transformer (S , ϕ†), where ϕ† is defined by ϕ†(x, y) = ϕ(y, x), gives the inverse transformation g−1.

Proof. Since ϕ is non-degenerate, it is clear that (2.1) determines an endomorphism g. Every x ∈ ker(g) must be in S , and
ϕ(x, y) = bq(x, y) for all y ∈ S , whence ϕ(y, x) = 0 because of (1.1), and x = 0 since ϕ is non-degenerate. Therefore, g is
bijective. Let us prove that it is an isometry; for all x ∈ V , we have g(x) = x + (g(x) − x), whence

q(g(x)) − q(x) = q(g(x) − x) + bq(x, g(x) − x)
= q(g(x) − x) − ϕ(g(x) − x, g(x) − x) = q(y) − ϕ(y, y) if y = g(x) − x ;

thus q(g(x)) = q(x) as expected. From (2.1) we deduce that g(x) − x = 0 if and only if x ∈ S ⊥; consequently, (2.2) holds
true, and g is an orthogonal transformation. If ℓ is a linear form on S , there is x ∈ V such that ℓ(y) = −bq(x, y) for all y ∈ S
if and only if ℓ vanishes on S ∩ ker(bq). On another side, a vector z of S belongs to im(g− 1) if and only if the linear form
y 7−→ ϕ(z, y) is equal to y 7−→ −bq(x, y) for some x ∈ V; this occurs if and only if z ∈ L⊥ϕ (S ∩ ker(bq)); this proves (2.3).
Since ϕ is non-degenerate,

dim(S ) = dim(S ∩ ker(bq)) + dim(L⊥ϕ (S ∩ ker(bq)))

≥ dim(im(g − 1) ∩ ker(q)) + dim(im(g − 1)) ,

in accordance with (2.4). The fact that g−1 can be derived from (S , ϕ†) is equivalent to the following fact:

∀y ∈ S , ∀x ∈ V, ϕ(y, g(x) − x) = bq(y, g(x)) ; (2.6)

this formula (2.7) is a consequence of (1.1) and (2.1):

ϕ(y, g(x) − x) = bq(g(x) − x, y) − ϕ(g(x) − x, y) = bq(g(x) − x, y) + bq(x, y) = bq(g(x), y) .

Finally, we derive (2.5) from (2.1) and (2.6); for all y, z ∈ S ,

ϕ(g(y), g(z)) − ϕ(y, z) = ϕ(g(y) − y, g(z)) + ϕ(y, g(z) − z) = −bq(y, g(z)) + bq(y, g(z)) = 0.
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The proof of Theorem 2.1 is complete. �
When q is non-degenerate, the equality (2.3) means that im(g − 1) = S . A transformer (S , ϕ) gives the transformation 1
if and only if S ⊂ ker(bq). The trivial transformer (0, 0) (on the null subspace {0}) always gives 1. Now we come to the
reciprocal theorem.

Theorem 2.2. Every g ∈ O(V, q) admits a transformer (S , ϕ) such that

dim(S ) = dim(im(g − 1)) + dim(im(g − 1) ∩ ker(q)) . (2.7)

We can require S not to be totally isotropic, except in these two cases:

if im(g − 1) ∩ ker(q) = 0 and im(g − 1) is totally isotropic;

if im(g − 1) ∩ ker(q) , 0 and (ker(g − 1))⊥ is totally isotropic.

Proof. There is an easy case and a difficult case.

The easy case: im(g − 1) ∩ ker(q) = 0. In this case, (2.7) means that S = im(g − 1). Let us prove that the equation
(2.1) determines a bilinear form ϕ; we must verify that every equality g(x) − x = g(x′) − x′ implies bq(x, y) = bq(x′, y)
for all y ∈ S ; indeed, this equality means x − x′ ∈ ker(g − 1); therefore, x − x′ is orthogonal to im(g − 1) = S and
bq(x − x′, y) = 0. This bilinear form ϕ is non-degenerate; indeed, if ϕ(z, y) = 0 for all z ∈ S , then bq(x, y) = 0 for all
x ∈ V , therefore y ∈ ker(bq), whence y ∈ S ∩ ker(bq) = im(g − 1) ∩ ker(q) = 0. When y = g(x) − x, we can prove that
q(g(x)) − q(x) = q(y) − ϕ(y, y) as we did it in the proof of Theorem 2.1; and here, this equality implies ϕ(y, y) = q(y) for
all y ∈ S .

The difficult case: im(g−1)∩ker(q) , 0. Let (b1, . . . , bt) be a basis of S 0 = im(g−1)∩ker(q), and S ′ a subspace such that
im(g − 1) = S 0 ⊕ S ′. Moreover, let V ′ be a subspace such that V = ker(bq) ⊕ V ′ and V ′ ⊃ S ′. Since q is non-degenerate
on V ′, there is an orthogonal transformation g′ of V ′ and there is (c1, . . . , ct) in V ′ such that

∀x ∈ V ′, g(x) = g′(x) +
t∑

i=1

bq(x, ci) bi . (2.8)

In V ′ we can find a linearly independent sequence (a1, . . . , at) such that g(ai) − ai = bi for i = 1, 2, . . . , t. Consequently,
g′(ai) = ai and bq(ai, ci) = 1 for i = 1, 2, . . . , t, but bq(ai, c j) = 0 if i , j. This proves that (c1, . . . , ct) spans a subspace
S 1 of dimension t which bq puts in duality with the space spanned by (a1, . . . , at). Moreover, S 1 ∩ (S 0 ⊕ S ′) = 0 because
S 0 ⊕ S ′ (that is im(g − 1)) is orthogonal to the subspace spanned by (a1, . . . , at); indeed, for all x ∈ V ,

bq(ai, g(x) − x) = −bq(g(ai) − ai, g(x)) = −bq(bi, g(x)) = 0 .

Let us set S = S 0 ⊕ S ′ ⊕ S 1. This subspace S is orthogonal to ker(g − 1); indeed, we already know that S 0 ⊕ S ′ (that is
im(g−1)) is orthogonal to ker(g−1); since ker(g−1) ⊃ ker(bq), it suffices to prove that S 1 is orthogonal to V ′∩ker(g−1);
this follows from (l2.8), where the equality g(x) = x implies implies bq(x, ci) = 0 for i = 1, 2, . . . , t.

Now we construct ϕ. The equation (2.1) involves only the restriction of ϕ to (S 0 ⊕ S ′) × S , and as in the previous easy
case, it actually determines this restriction, because every equality g(x)− x = g(x′)− x′ implies that x− x′ is in ker(g− 1),
therefore orthogonal to S . Since S 0 ⊂ ker(bq), it is clear that ϕ vanishes on (S 0 ⊕ S ′) × S 0. Since the vectors ai are
orthogonal to S 0 ⊕ S ′ (see above), ϕ vanishes on S 0 × (S 0 ⊕ S ′) too:

ϕ(bi, y) = ϕ(g(ai) − ai, y) = −bq(ai, y) = 0 if y ∈ S 0 ⊕ S ′.

Since ϕ(bi, c j) = ϕ(g(ai) − ai, c j) = −bq(ai, c j), we have ϕ(bi, ci) = −1, but ϕ(bi, c j) = 0 if i , j. On another side, the
restriction of ϕ to S ′ is non-degenerate; indeed, if y is an element of S ′ such that ϕ(z, y) = 0 for all z ∈ S ′, then ϕ(z, y) = 0
for all z ∈ S 0 ⊕ S ′; therefore, bq(x, y) = −ϕ(g(x) − x, y) = 0 for all x ∈ V , whence y ∈ S ′ ∩ ker(bq) = 0. Since the
equation (2.1) is now satisfied, we can deduce the equality q(g(x)) − q(x) = q(y) − ϕ(y, y) from y = g(x) − x as above, and
claim that ϕ(y, y) = q(y) for all y ∈ S 0 ⊕ S ′. To complete the construction of ϕ, we have only to worry about the equalities
ϕ(y, y) = q(y) and ϕ(y, z) + ϕ(z, y) = bq(y, z) when y is in S 1. Since S 0 and S 1 are orthogonal, we realize that ϕ(ci, bi) = 1
for i = 1, 2, . . . , t, but ϕ(ci, b j) = 0 if i , j. Let us choose a basis (d1, . . . , dr) of S ′, and consider the matrix Φ of ϕ in the
basis (b1, . . . , bt, d1, . . . , dr, c1, . . . , ct) of S :

Φ =

0 0 −1t

0 M N
1t N′ P

 ;
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the submatrix M is invertible since it gives the restriction of ϕ to S ′; consequently the matrixΦ is invertible. The submatrix
N′ is determined by N and the restriction of bq to S 1 × S ′; but when t ≥ 2, the submatrix P is not completely determined
by the condition ϕ(y, y) = q(y) for all y ∈ S 1.

It remains to prove that there are non totally isotropic choices of S if and only if ker(g− 1)⊥ is not totally isotropic. When
q is defective, there is u ∈ ker(bq) such that q(u) , 0; since ker(g − 1)⊥ contains u, it is never totally isotropic, and we
must prove that there is always a non totally isotropic choice of S ; indeed, the equality (2.8) remains true if we replace c1
with c1 + u; since q(c1 + u) = q(c1) + q(u) , q(c1), we can choose c1 in such a way that q(c1) , 0. Now let us suppose
that ker(q) = ker(bq). Since (2.2) implies S ⊂ ker(g − 1)⊥, every choice of S is totally isotropic if ker(g − 1)⊥ is totally
isotropic. Conversely, let the above constructed subspace S be totally isotropic, and let us prove that V ′ ∩ ker(g − 1)⊥ is
totally isotropic (therefore, ker(g − 1)⊥ too). From (2.8) we deduce that V ′ ∩ ker(g − 1) is the intersection of V ′ ∩ S ⊥1 and
ker(g′−1V ′ ), and also that im(g′−1′V ′ ) = S ′. Since q is non-degenerate on V ′, ker(g′−1V ′ ) = V ′∩S ′⊥. Thus V ′∩ker(g−1)
is the intersection of V ′ ∩ S ′⊥ and V ′ ∩ S ⊥1 , whence V ′ ∩ ker(g − 1)⊥ = S ′ ⊕ S 1. If S is totally isotropic, the same is true
for S ′ ⊕ S 1 and ker(g − 1)⊥. �

When q is non-degenerate, the correspondance between transformers and orthogonal transformations is bijective. In
Section 4, it is explained that the same is true for a non-defective q such that dim(ker(q)) = 1. Whatever q may be,
if (V, q) → (W, q̃) is an embedding such that V ⊂ W, every transformer (S , ϕ) of (V, q) is also a transformer of (W, q̃);
consequently, every g ∈ O(V, q) has an extension g̃ ∈ O(W, q̃) such that im(g̃−1W ) ⊂ V . Conversely, if q̃ is non-degenerate,
every g̃ ∈ O(W, q̃) such that im(g̃ − 1W ) ⊂ V admits a transformer (S , ϕ) such that S ⊂ V; thus there is a bijection between
the transformers of (V, q) and the elements g̃ ∈ O(W, q̃) such that im(g̃ − 1W ) ⊂ V . This fact gives a structure of group
on the set of transformers of (V, q). This structure does not depend on the choice of the embedding; indeed, if (V, q) is
embedded in (W, q̃) and in (W′, q̃′) (with non-degenerate q̃ and q̃′), then (W, q̃) and (W ′, q̃′) can be embedded in the same
non-degenerate space (W′′, q̃′′) in such a way that we get twice the same embedding (V, q) → (W ′′, q̃′′); it is easy to
construct (W ′′, q̃′′) (despite a little difficulty when q is defective).

When K is the field R of real numbers, the groups under consideration are Lie groups. The dimension of the group of
transformers is always n(n − 1)/2; indeed, there is canonical bijection from

∧2(W) onto the Lie algebra of O(W, q̃) which
maps every y ∧ z to the operator x 7−→ bq̃(x, y) z − bq̃(x, z) y, and the image of

∧2(V) is actually the Lie algebra of the
subgroup determined by the condition im(g̃ − 1W ) ⊂ V . The dimension of O(V, q) depends on k = dim(ker(q)); it is
(n(n − 1) − k(k − 1))/2 = (n − k)(n + k − 1)/2. The group Iso(V, q) is isomorphic to a semi-direct product of O(V, q) and
GL(ker(q)).

Theorem 2.3 gives an example of a product of transformers.

Theorem 2.3. Let (S 1, ϕ1) and (S 2, ϕ2) be two transformers of (V, q) such that S 1 ∩ S 2 = 0, and let g1 and g2 be the
associated orthogonal transformations. Their product g = g1g2 admits the following transformer (S , ϕ): S = S 1 ⊕ S 2 ;
ϕ coincides with ϕ1 on S 1, with ϕ2 on S 2, and for all y1 ∈ S 1 and y2 ∈ S 2 we have ϕ(y1, y2) = 0 (whence ϕ(y2, y1) =
bq(y1, y2)).

Proof. Since (V, q) can be embedded in a non-degenerate space (W, q̃), it suffices to prove Theorem 2.3 when q is non-
degenerate. This hypothesis implies im(g1−1) = S 1 and ker(g1−1) = S ⊥1 , and similarly im(g2−1) = S 2 and ker(g2−1) =
S ⊥2 . Since S 1 ∩ S 2 = 0 , we have S ⊥1 + S ⊥2 = V , consequently, ker(g1 − 1) + ker(g2 − 1) = V , and Lemma 1.4 implies that
im(g − 1) = im(g1 − 1) + im(g2 − 1). It follows that S = S 1 ⊕ S 2.

Let us consider vectors x, y1 and y2 respectively in V , S 1 and S 2. Let us calculate ϕ(g(x) − x, y2) when g(x) − x is in S 2;
from g − 1 = (g1 − 1)g2 + (g2 − 1) and S 1 ∩ S 2 = 0, we deduce g(x) − x = g2(x) − x; consequently,

ϕ(g(x) − x, y2) = −bq(x, y2) = ϕ2(g2(x) − x, y2) = ϕ2(g(x) − x, y2) ;

therefore, ϕ coincides with ϕ2 on S 2. Now we suppose that g(x) − x is in S 1; for the same reasons as above, this implies
g2(x) = x and g(x) − x = g1(x) − x; consequently,

ϕ(g(x) − x, y1) = −bq(x, y1) = ϕ1(g1(x) − x, y1) = ϕ1(g(x) − x, y1) ,
ϕ(g(x) − x, y2) = −bq(x, y2) = ϕ2(g2(x) − x, y2) = 0 ;

therefore, ϕ coincides with ϕ1 on S 1, and ϕ(S 1, S 2) = 0. �
Corollary 2.4. Let (S 1, ϕ1) and (S 2, ϕ2) be two transformers of (V, q) such that S 1 ⊂ S 2, and ϕ1(y, z) = ϕ2(z, y) for all
y, z ∈ S 1. Let g1 and g2 be the associated orthogonal transformations. Their product g = g1g2 admits the following
transformer (S , ϕ): S = R⊥ϕ2

(S 1) and ϕ is the restriction of ϕ2 to S . And their product g′ = g2g1 admits the following
transformer (S ′, ϕ′): S ′ = L⊥ϕ2

(S 1) and ϕ′ is the restriction of ϕ2 to S ′.
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Proof. The equalities g = g1g2 and g′ = g2g1 are equivalent to g2 = g−1
1 g and g2 = g′g−1

1 , and g−1
1 is given by the

reverse transformer (S 1, ϕ
†
1) where ϕ†1 coincides with the restriction of ϕ2 to S 1. Since ϕ1 is non-degenerate, we have

S 2 = S 1 ⊕ R⊥ϕ2
(S 1) and S 2 = L⊥ϕ2

(S 1) ⊕ S 1 (see Lemma 1.3). With Theorem 2.3, it is easy to verify that g2 = g−1
1 g and

g2 = g′g−1
1 if g and g′ are determined by the transformers described in Corollary 2.4. �

3. Products of Reflections

Let (S , ϕ) be a transformer of (V, q) such that dim(S ) = 1; thus S is spanned by a non-zero vector v and ϕ(v, v) = q(v);
since ϕ is non-degenerate, we have q(v) , 0 and v determines a reflection R(v); and since ϕ(R(v)(x) − x, v) = −bq(x, v)
for all x ∈ V , we realize that R(v) admits (S , ϕ) as a transformer. Thus the reflections are the orthogonal transformations
determined by the one-dimensional transformers. The following theorem is an immediate consequence of Theorem 2.3
and Corollary 2.4.

Theorem 3.1. Let us consider a reflection R(v) and the orthogonal transformation h determined by a transformer (T, ψ).
The products g = R(v) h and g′ = h R(v) admit the following transformers (S , ϕ) and (S ′, ϕ′):

if v is outside T , then S = S ′ = T ⊕ Kv, the restrictions of ϕ and ϕ′ to T coincide with ψ, and ϕ(v, y) = ϕ′(y, v) = 0 for
all y ∈ T (whence ϕ(y, v) = ϕ′(v, y) = bq(v, y); and of course, ϕ(v, v) = ϕ′(v, v) = q(v));

if v belongs to T , then S = R⊥ψ (v) and S ′ = L⊥ψ (v), and ϕ and ϕ′ are the restrictions of ψ to S and S ′ respectively.

Corollary 3.2. For every g ∈ O(V, q) and for every sequence (v1, v2, . . . , vs) of linearly independent vectors in V, these
two assertions are equivalent:

g = R(v1) R(v2) · · · R(vs) ;

g admits the transformer (S , ϕ) where (v1, . . . , vs) is a basis of S , and ϕ has a lower triangular matrix in this basis.

Theorem 3.1 and its corollary provide an effective method to calculate the product (S , ϕ) of two transformers (S 1, ϕ1) and
(S 2, ϕ2) when a triangularizing basis is known for one factor. Since S ⊂ S 1 + S 2, the product can be calculated in the
subspace S 1 + S 2 without worrying about the non-degenerate embeddings that were previously necessary to prove that it
is well defined. For instance, if (S , ϕ) is the transformer for a product of reflections R(w1) · · ·R(wk), then S is contained
in the subspace spanned by (w1, . . . ,wk).

Section 5 shall be devoted to the proof of the next theorem, and to the construction of an effective algorithm of triangular-
ization; this theorem requires the hypotheses that K is not isomorphic to Z/2Z.

Theorem 3.3. If ϕ is a bilinear form on some space S , and if ϕ is not alternate, there are bases of S where the matrix of
ϕ is lower triangular.

In Theorem 3.3, it is clear that ϕ is alternate if and only if S is totally isotropic for the quadratic form y 7−→ ϕ(y, y).

The previous statements enable us to prove that every g ∈ O(V, q) can be decomposed into a product of reflections, and
to evaluate the minimal number of reflections in such a decomposition. The minimal dimension of a transformer for g is
given by (2.7); as in the proof of Theorem 2.2, we consider two cases (and we suppose g , 1V ).

In the easy case im(g− 1)∩ ker(q) = 0, the unique minimal transformer involves S = im(g− 1), and we set s = dim(S ). If
S is not totally isotropic, the minimal number of reflections is s. If S is totally isotropic, the minimal number of reflections
is > s; if v is any non-isotropic vector (therefore, outside S ), the transformer for R(v) g (or g R(v)) involves the subspace
S ⊕ Kv which is not totally isotropic; consequently, it is a product of s + 1 reflections, and g itself is a product of s + 2
reflections. If q is non-defective, g cannot be a product of s+ 1 reflections, because the parity of the number of reflections
is determined by g. On the contrary, if q is defective, we have R(w) = 1V for every non-isotropic w ∈ ker(bq), and the
equality g = R(w) g proves that g is a product of s + 1 reflections.

In the difficult case im(g−1)∩ker(q) , 0, the dimension s of a minimal transformer (S , ϕ) is dim(im(g−1))+dim(im(g−
1) ∩ ker(q)), and we can require S not to be totally isotropic if and only if ker(g − 1)⊥ is not totally isotropic; if it is not,
the minimal number of reflections is s. On the contrary, if ker(g− 1)⊥ is totally isotropic, the same is true for its subspace
ker(bq); this means that q is non-defective; and the same argument (involving R(v) g or g R(v)) proves that the minimal
number of reflections is s + 2.

Remark. When the support S of a transformer (S , ϕ) is totally isotropic, the dimension s of S is even, because ϕ is a non-
degenerate and alternate bilinear form on S . There is a basis (y1, z1, . . . , yr, zr) of S (where r = s/2) such that ϕ(yi, zi) = 1
for i = 1, 2, . . . , r, but ϕ(yi, z j) = 0 whenever i , j, and ϕ(yi, y j) = ϕ(zi, z j) = 0 for all i and j; and it is convenient to
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consider ω =
∑r

i=1 yi ∧ zi in
∧2(S ) because the transformation determined by (S , ϕ) is the transformation F(ω) such that

∀x ∈ V, F(ω)(x) = x +
r∑

i=1

(
bq(x, yi) zi − bq(x, zi) yi

)
. (3.1)

If q is non-degenerate, then 4r = 2s ≤ n; therefore, a totally isotropic S (such that S , 0) can appear only when n ≥ 4.
This explains that s+2 ≤ n. Nevertheless, when q is degenerate, it may happen that s+2 > n, as in the following example.

Example. Let (V, q) be the space with basis (u1, u2, u3) over R, provided with the quadratic form q such that q(ξ1u1+ξ2u2+

ξ3u3) = ξ1ξ2; thus ker(q) is the line Ru3. Let g be the orthogonal transformation such that

g(ξ1u1 + ξ2u2 + ξ3u3) = ξ1(u1 + u3) + ξ2u2 + ξ3u3 . (3.2)

It is determined by the transformer (S , ϕ) such that (u2, u3) is a basis of S , ϕ is alternate and ϕ(u2, u3) = 1; this agrees
with (3.1). Therefore, when g is expressed as a product of reflections, the minimal number of reflections is 4. Let us
calculate the transformer (T, ψ) for h = R(u1 + u2) g. Since T = R(u1 + u2) ⊕ S , we have T = V; since ψ(u1 + u2, u2) =
ψ(u1 + u2, u3) = 0, we have ψ(u1, u2) = 0 and ψ(u1, u3) = −1; the matrix Ψ of ψ in the basis (u1, u2, u3) is written below.
In this example, it is easy to find a basis (v1, v2, v3) where the matrix Ψ′ of ψ is lower triangular; for instance,

v1 = u1 + u2 + u3 ,
v2 = u1 + 2u2 ,
v3 = u1 + 2u2 − 2u3 ,

Ψ =

0 0 −1
1 0 1
1 −1 0

 , Ψ′ =

1 0 0
3 2 0
3 4 2

 .
The result of this calculation is

g = R(u1 + u2) R(u1 + u2 + u3) R(u1 + 2u2) R(u1 + 2u2 − 2u3) . (3.3)

There is an non-degenerate embedding (W, q̃) with a basis (u1, . . . , u4) such that q̃(
∑4

i=1 ξiui) = ξ1ξ2 + ξ3ξ4. The extension
g̃ maps u4 to u4 − u2; and (3.3) gives a decomposition of g̃ if the reflections operate on W.

Remark. When K = Z/2Z, the group O(V, q) is different from the subgroup OR(V, q) generated by the reflections in the
following two exceptional cases (see (Helmstetter & Micali, 2008), section 5.7). Dieudonné’s exceptional case occurs
when V is the direct sum of ker(q) (perhaps reduced to 0) and a hyperbolic subspace of dimension 4 (with a basis
(u1, . . . , u4) such that q(

∑
i ξiui) = ξ1ξ2 + ξ3ξ4); in this case, the quotient O(V, q)/OR(V, q) is a group of order 2. The other

case occurs when V is the direct sum of ker(q) and a hyperbolic space of dimension 2; in this case, O(V, q)/OR(V, q) is
isomorphic to the additive group ker(q); it is exceptional only if ker(q) , 0 (an eventuality which Dieudonné did not
accept in (Dieudonné, 1958)). If we use (3.2) to define an orthogonal transformation g over Z/2Z, then g is not a product
of reflections; and neither is its extension g̃ to a hyperbolic space of dimension 4.

4. The Non-defective Case dim(ker(q)) = 1

It is sensible to ask whether an orthogonal transformation g of (V, q) may admit several transformers. By means of a non-
degenerate embedding (W, q̃), this question is easily reduced to the following one: does 1V admit several transformers,
in other words, are there non-trivial transformers (S , ϕ) such that S ⊂ ker(bq)? When q is defective, the answer is
obviously “yes” because the reflection associated with each non-isotropic v ∈ ker(bq) is equal to 1V , and it admits the one-
dimensional transformer spanned by v. When q is not defective, the condition S ⊂ ker(bq) implies that dim(S ) is even,
and it can be satisfied by a non-trivial transformer if and only if dim(ker(bq)) ≥ 2. Thus we have proved the following
theorem.

Theorem 4.1. The correspondance between the orthogonal transformations and the transformers is bijective (only) in
these two cases:

when q is non-degenerate (in other words, ker(bq) = 0);

when q is non-defective and dim(ker(q)) = 1.

The non-defective case dim(ker(q)) = 1 deserves some attention because it can be used in the study of the affine isometries
of an affine space E provided with a non-degenerate quadratic form χ. An affine space E is a set on which a vector space
E⃗ operates in a simply transitive way (by translations); the non-degenerate quadratic form χ is defined on E⃗; every affine
transformation g of E has a linear part g⃗ in GL(E⃗), and g is an affine isometry if and only if g⃗ ∈ O(E⃗, χ); the set of all
affine isometries is the group Af.Iso(E, χ). For convenience, we set n = dim(E) + 1, and we suppose that E = E⃗; thus
O(E, χ) is the subgroup of all g ∈ Af.Iso(E, χ) such that g(0) = 0. For every a ∈ E, let a♯ be the linear form on E such
that a♯(b) = bχ(a, b) for all b ∈ E; the mapping a 7−→ a♯ is a linear bijection E → E∗, and the inverse bijection is denoted
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by ℓ 7−→ ℓ♭; moreover, we define a dual quadratic form χ∗ on E∗ by setting χ∗(ℓ) = χ(ℓ♭). Let V be the space of all affine
forms x : E → K; thus E∗ is the subspace of all ℓ ∈ V such that ℓ(0) = 0, and every x ∈ V has a linear part x⃗ ∈ E∗ such that
x⃗(a) = x(a) − x(0). Let q be the quadratic form on V defined by q(x) = χ∗(x⃗) = χ(x⃗ ♭). Thus V is a space of dimension n
provided with a non-defective quadratic form q such that dim(ker(q)) = 1; indeed, ker(q) is the set of all constant functions
E → K. Every affine transformation g of E determines a linear transformation g♯ of V which maps every x ∈ V to the
affine form a 7−→ x(g(a)). From this definition, it follows that (g1g2)♯ = g♯2g♯1. Besides, ker(g♯ − 1) ⊃ ker(q) because g♯

leaves invariant every constant function E → K. It is easy to prove that the mapping g 7−→ g♯ induces an anti-isomorphism
from Af.Iso(E, χ) onto O(V, q). The inverse anti-isomorphism is denoted by h 7−→ h♭.

By this anti-isomorphism ♭, the reflections in (V, q) are in bijection with the affine reflections in (E, χ); if v is a non-
isotropic element of V , the set of all a ∈ E such that v(a) = 0 is an affine hyperplane of E, and (R(v))♭ is the affine
reflection determined by this affine hyperplane:

∀a ∈ E, (R(v))♭(a) = a − v(a)
q(v)

v⃗ ♭ . (4.1)

Thus the decomposition into products of affine reflections in Af.Iso(E, χ) is reduced to the decomposition into products
of reflections in O(V, q).

Let g be an element of Af.Iso(E, χ) (other than 1E). We must find out whether im(g♯ −1)∩ker(q) is reduced to 0 or not. If
it is, there is a hyperplane H of V that contains im(g♯ − 1) but not ker(q); since H does not contain ker(q), there is a point
p ∈ E such that H is the subset of all x ∈ V such that x(p) = 0; and since H contains im(g♯ − 1), we have g♯(H) = H and
g(p) = p. Conversely, if g(p) = p for some p ∈ E, then g♯(x)(p) = x(g(p)) = x(p) for all x ∈ V , and (g♯ − 1)(x) cannot be
a constant function , 0. Therefore, the easy case im(g♯ − 1) ∩ ker(q) = 0 occurs if and only if g(p) = p for some p ∈ E.
If g(p) = p, then g = T g⃗ T−1 where T is the translation a 7−→ a + p, and the decomposition of g into a product of affine
reflections is reduced to the decomposition of g⃗ into a product of reflections in O(E, χ).

Now we consider the difficult case im(g♯ − 1) ⊃ ker(q). We have g(a) = g⃗(a) + g(0) for all a ∈ E, and g(0) is not in
im(g⃗−1E) because the equality g(0) = g⃗(b)−b is equivalent to g(−b) = −b, which is only possible in the above easy case.
According to Theorem 2.2, we must find out whether ker(g♯ − 1)⊥ is totally isotropic or not; since it contains ker(q), it is
determined by its image by the mapping x 7−→ x⃗ ♭. For all x ∈ V and all a ∈ E, we have:

(g♯ − 1)(x)(a) = bχ
(
x⃗ ♭, (g⃗ − 1E)(a) + g(0)

)
;

therefore, x is in ker(g♯ − 1) if and only if x⃗ ♭ is orthogonal to im(g⃗− 1E) and g(0); and y is in ker(g♯ − 1)⊥ if and only if y⃗ ♭

is in the direct sum of im(g⃗ − 1E) and the line Kg(0). Consequently, ker(g♯ − 1)⊥ is totally isotropic in (V, q) if and only if
im(g⃗ − 1E) ⊕ Kg(0) is totally isotropic in (E, χ).

We must also know how to deduce s = dim(S ) from d = dim(im(g⃗ − 1E)). The dimensions of im(g⃗ − 1E) ⊕ Kg(0)
and ker(g♯ − 1)⊥ are d + 1 and d + 2. The dimension of im(g♯ − 1) is d + 1 because of this fact: the sum of the
dimensions of ker(g♯ − 1) and im(g♯ − 1) is n, but the sum of the dimensions of ker(g♯ − 1) and ker(g♯ − 1)⊥ is n + 1
because ker(g♯ − 1) ⊃ ker(q). From (2.7) we deduce s = d + 2. Since s ≤ n, we have d ≤ n − 2, in agreement with
g(0) < im(g⃗ − 1E).

When im(g⃗ − 1E) ⊕ Kg(0) is totally isotropic, may it occur that s + 2 > n? The example below shows that it occurs when
n = 3 and d = 0. But other occurences are only possible with d > 0. Since χ is non-degenerate, we have 2(d + 1) ≤ n − 1
when im(g⃗ − 1E) ⊕ Kg(0) is totally isotropic; moreover, d is even like s; consequently, n ≥ 7 if d > 0; and it is easy to
realize that s + 2 < n when n ≥ 7 and 2(d + 1) ≤ n − 1.

Example. Let (E, χ) be the vector space with basis (e1, e2) over R, where χ(ξ1e1 + ξ2e2) = ξ1ξ2; and let g be the translation
of vector e1. In general, a translation is a product of two reflections; but here we shall need four reflections because e1 is
isotropic. With the notation used just above, we have n = 3, d = 0 because g⃗ = 1E , and s = 2; but since S will prove to
be totally isotropic in (V, q), we need s + 2 reflections. Let u1, u2 and u3 be the affine forms that map every ξ1e1 + ξ2e2
respectively to ξ1, ξ2 and 1; thus (u1, u2, u3) is a basis of V . The mapping x 7−→ x⃗ ♭ maps u1, u2, u3 respectively to e2, e1, 0;
consequently, q(ξ1u1 + ξ2u2 + ξ3u3) = ξ1ξ2. An easy calculation shows that g♯ maps u1, u2, u3 respectively to u1 + u3, u2,
u3; thus g♯ coincides with the orthogonal transformation defined by (3.2). We already know that S is spanned by (u2, u3),
and we translate (3.3) here in this way:

g = (R(u1 + 2u2 − 2u3))♭(R(u1 + 2u2))♭(R(u1 + u2 + u3))♭(R(u1 + u2))♭ ;

(R(u1 +2u2 −2u3))♭(R(u1 +2u2))♭ is the translation of vector 2e1 + e2, and (R(u1 +u2 +u3))♭(R(u1 +u2))♭ is the translation
of vector −e1 − e2.
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5. An Algorithm of Triangularization

Theorem 3.3 states that there are bases (v1, . . . , vs) of S where the matrix of ϕ is lower triangular, provided that ϕ is not
alternate; this must be proved when s ≥ 2, and to prove it, I propose an algorithm of triangularization. There are two
standard versions of this algorithm; the left side version calculates the vectors vi in the increasing order of the indices i; as
a by-product, it gives a basis of RKer(ϕ). When the dimension t of LKer(ϕ) and RKer(ϕ) is , 0, it gives a triangularizing
basis (v1, . . . , vs) where ϕ(vi, vi) , 0 for i = 1, 2, . . . , s− t, and (vs−t+1, . . . , vs) is a basis of RKer(ϕ). The right side version
calculates the vectors vi in the decreasing order of the indices, and when t , 0, then (v1, . . . , vt) is a basis of LKer(ϕ). Each
version requires s − 1 steps if t = 0, and s − t steps if t ≥ 1.

The space (S , ϕ) is given by a basis (u1, . . . , us) and the matrix of ϕ in this basis. When the k-th step of the left side
algorithm begins, we know a sequence (v1, . . . , vk−1, v̇k) such that ϕ(vi, vi) , 0 for i = 1, 2, . . . , k − 1, ϕ(v̇k, v̇k) , 0,
ϕ(vi, v j) = 0 whenever i < j, and ϕ(vi, v̇k) = 0 for i = 1, 2, . . . , k − 1. In particular, the first step begins with a vector v̇1
such that ϕ(v̇1, v̇1) , 0; such a vector v̇1 exists because ϕ is not alternate. In general, the instructions of this algorithm order
to set vk = v̇k; but sometimes, the vector v̇k must be “corrected” (replaced by a suitable vk); the “correction procedure”
(the instruction ((8)) below) is the only phase that may fail when K � Z/2Z. The k-th step is performed according to the
following eight instructions.

((1)) In the basis (u1, u2, . . . , us) we choose a subsequence (x1, x2, . . . , xs−k) such that (v1, . . . , vk−1, v̇k, x1, . . . , xs−k) is
a basis of S .

((2)) For j = 1, 2, . . . , s− k, and as long as the “stop rule” (written just below) does not interrupt the calculations, we
calculate the scalars ξ1, . . . , ξk that let the vector y j = ξ1v1 + · · · + ξk−1vk−1 + ξkv̇k + x j satisfy the following conditions:

ϕ(v1, y j) = ϕ(v2, y j) = · · · = ϕ(vk−1, y j) = ϕ(v̇k, y j) = 0 ; (5.1)

the properties of the sequence (v1, . . . , v̇k) show that (5.1) is a regular system of k linear equations with a lower triangular
matrix; therefore, the calculation of ξ1, . . . , ξk is easy. When k = s − 1, we have to calculate only one vector y1, and then
we go to ((3)). When k ≤ s − 2, the stop rule interrupts the calculations in these two cases:

when we find a vector y j such that ϕ(y j, y j) , 0, we go to ((4));

when we find two vectors yi and y j such that ϕ(yi, yi) = ϕ(y j, y j) = 0 and ϕ(yi, y j) + ϕ(y j, yi) , 0, we go to ((5)).

When the stop rule never interrupts the calculations, we go to ((6)).

((3)) When k = s − 1, we set vs−1 = v̇s−1 and vs = y1. Thus we have found a triangularizing basis (v1, . . . , vs). If
ϕ(vs, vs) , 0, then ϕ is non-degenerate. If ϕ(vs, vs) = 0, then RKer(ϕ) is the line spanned by vs.

In the next instructions, we have k ≤ s − 2.

((4)) When ϕ(y j, y j) , 0, we set vk = v̇k and v̇k+1 = y j, and we start the (k + 1)-th step (we return to ((1)) where we
replace k with k + 1).

((5)) When ϕ(yi, yi) = ϕ(y j, y j) = 0 and ϕ(yi, y j) + ϕ(y j, yi) , 0, we set vk = v̇k and v̇k+1 = yi + y j, and we start the
(k + 1)-th step.

((6)) When the stop rule never interrupts the calculations, the restriction of ϕ to the subspace spanned by (y1, . . . , ys−k)
(that is R⊥ϕ (v1, . . . , v̇k)) is alternate. If there is a couple (i, j) such that ϕ(yi, y j) , 0, we go to ((8)). If all ϕ(yi, y j) (with
i, j ∈ {1, 2, . . . , s − k}) vanish, we go to ((7)).

((7)) If all ϕ(yi, y j) vanish, then we set vk = v̇k, vk+1 = y1, vk+2 = y2, . . . , vs = ys−k. Thus we have found a
triangularizing basis (v1, . . . , vs), where (vk+1, . . . , vs) is a basis of RKer(ϕ); therefore, t = s − k.

((8)) Let (i, j) be a couple (with i , j) such that

ϕ(yi, yi) = ϕ(y j, y j) = 0 and ϕ(yi, y j) = −ϕ(y j, yi) , 0. (5.2)

We look for scalars κ, λ, µ that ensure the three properties required from the vectors vk = v̇k+κyi and v̇k+1 = v̇k+λyi+µy j.
Here are these properties:

ϕ(vk, v̇k+1) = ϕ(v̇k, v̇k) + κ ϕ(yi, v̇k) + κµ ϕ(yi, y j) = 0 , (5.3)
ϕ(vk, vk) = ϕ(v̇k, v̇k) + κ ϕ(yi, v̇k) , 0 , (5.4)

ϕ(v̇k+1, v̇k+1) = ϕ(v̇k, v̇k) + λ ϕ(yi, v̇k) + µ ϕ(y j, v̇k) , 0 . (5.5)

(8a) If ϕ(yi, v̇k) = 0, the condition (5.4) is void. We set λ = 0, we choose an invertible µ compatible with (5.5), and we
calculate κ by means of (5.3). When vk and v̇k+1 have been calculated, we start the (k + 1)-th step.
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(8b) If ϕ(yi, v̇k) , 0, we choose an invertible κ compatible with (5.4), we calculate µ by means of (5.3), and we choose
λ compatible with (5.5); in general, the choice λ = 0 is correct. When vk and v̇k+1 have been calculated, we start the
(k + 1)-th step. If ϕ(yi, v̇k) , 0 and ϕ(y j, v̇k) = 0, it is preferable (but not indispensable) to permute i and j and to apply
(8a) instead of (8b).

These instructions involve the correction procedure ((8)) as rarely as possible (it is involved only when the restriction of
ϕ to R⊥ϕ (v1, . . . , v̇k) is alternate and , 0); this choice is suggested by an algorithm elaborated for a similar problem which
involves a very painful correction procedure. Since here the correction procedure is not so painful, it is acceptable to
modify the stop rule in such a way that ((8)) is involved as frequently as possible. When k ≤ s − 2, the new stop rule
interrupts the calculations in ((2)) as soon as we meet a non-zero ϕ(yi, y j); when i = j, we go to ((4)); when i , j and
ϕ(yi, yi) = ϕ(y j, y j) = 0, we go to ((5)), except when (5.2) is true; when (5.2) is true, we go to ((8)). Thus the instruction
((6)) becomes superfluous; if the new stop rule never interrupts the calculation, the restriction of ϕ to R⊥ϕ (v1, . . . , v̇k) is
completely null, and we go directly to ((7)).

The right side algorithm requires symmetric instructions. The k-th step starts with a sequence (v̇s−k+1, vs−k+2, . . . , vs)
satisfying obvious conditions. In the instruction ((2)), we set y j = x j + ξ1v̇s−k+1 + ξ2vs−k+2 + · · · + ξkvs, and the unknown
scalars ξ1, . . . , ξk are determined by a system of k liner equations with an upper triangular matrix. In the correction
procedure ((8)), we set vs−k+1 = κyi + v̇s−k+1 and v̇s−k = λyi + µy j + v̇s−k+1; and the unknown scalars κ, λ, µ must satisfy

ϕ(v̇s−k, vs−k+1) = κ ϕ(v̇s−k+1, yi) − κµ ϕ(yi, y j) + ϕ(v̇s−k+1, v̇s−k+1) = 0 ,
ϕ(vs−k+1, vs−k+1) = κ ϕ(v̇s−k+1, yi) + ϕ(v̇s−k+1, v̇s−k+1) , 0 ,

ϕ(v̇s−k, v̇s−k) = λ ϕ(v̇s−k+1, yi) + µ ϕ(v̇s−k+1, y j) + ϕ(v̇s−k+1, v̇s−k+1) , 0 .

The left and right side versions are the ordered versions. But there are plenty of disordered versions where the vectors
of a triangularizing basis are calculated in an arbitrary disorder; there is only one restriction in the choice of this disorder
when t ≥ 2: the last step produces simultaneously t isotropic vectors which give a connected subsequence in the resulting
basis (v1, . . . vs) (not necessarily at the beginning or at the end). Lemma 1.3 (which involves two subspaces U1 and U2
of S on which ϕ is non-degenerate) is the foundation of all these versions; the left side version uses it when U2 = 0, the
right side version when U1 = 0, and the disordered versions use it in its full generality. There is an example of disordered
algorithm in Section 7.

6. Orthogonal Transformations Inside (S , ϕ)

The notation is the same as in Section 5; here we emphasize the quadratic form q on S such that q(y) = ϕ(y, y) for all
y ∈ S . When T is a subspace of S , the notation (T, ϕ) means the subspace T provided with the restriction of ϕ to T . When
this restriction is non-degenerate, (T, ϕ) is a transformer for (S , q), and induces an orthogonal transformation g on S such
that im(g − 1S ) ⊂ T . Besides, Lemma 1.3 implies S = T ⊕ R⊥ϕ (T ) = L⊥ϕ (T ) ⊕ T .

Theorem 6.1. If the restriction of ϕ to T is non-degenerate, the orthogonal transformation g induced by (T, ϕ) maps
R⊥ϕ (T ) onto L⊥ϕ (T ); moreover,

∀x, y ∈ R⊥ϕ (T ), ϕ(g(x), g(y)) = ϕ(x, y) . (6.1)

Proof. When bq(x, y) = ϕ(x, y) + ϕ(y, x), the equation (2.1) gives

∀x ∈ S , ∀y ∈ T, ϕ(g(x), y) = −ϕ(y, x) ;

therefore, g(x) is in L⊥ϕ (T ) if and only if x is in R⊥ϕ (T ). For all x, y ∈ S ,

ϕ(x, g(y)) − ϕ(g−1(x), y) = ϕ(x, g(y) − y) − ϕ(g−1(x) − x, y) ;

both g(y) − y and g−1(x) − x belong to T ; when x and y belong respectively to L⊥ϕ (T ) and R⊥ϕ (T ), then ϕ(x, g(y) − y) and
ϕ(g−1(x) − x, y) vanish, and ϕ(x, g(y)) = ϕ(g−1(x), y) in accordance with (6.1). �
The equality (6.1) is also true when x and y belong to T : see Theorem 2.1, formula (2.5); in general, it is false when x and
y are arbitrary elements of S .

When ϕ is degenerate, Theorem 6.1 gives a property of LKer(ϕ) and RKer(ϕ); as in Section 5, their dimension is denoted
by t. The restriction of ϕ to a subspace T of dimension s−t is non-degenerate if and only if LKer(ϕ)∩T = T∩RKer(ϕ) = 0;
when it is non-degenerate, then LKer(ϕ) = L⊥ϕ (T ) and RKer(ϕ) = R⊥ϕ (T ); therefore, the orthogonal transformation induced
by (T, ϕ) maps RKer(ϕ) bijectively onto LKer(ϕ).

Theorem 6.1 also enables us to perform operations on a triangularizing basis (v1, . . . , vs) of (S , ϕ). Let us consider a
subsequence (vh+1, vh+2, . . . , vh+c+d) where h, c, d are integers such that c > 0, d > 0 and 0 ≤ h ≤ s − c − d. Let T1 be
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the subspace spanned by (vh+1, . . . , vh+c), T2 the subspace spanned by (vh+c+1, . . . , vh+c+d), and S ′ = T1 ⊕ T2. When v j is
never isotropic for h < j ≤ h + c, let g1 be the orthogonal transformation of (S ′, q) induced by the transformer (T1, ϕ);
it is equal to the product of the reflections R(v j) with j = h + 1, h + 2, . . . , h + c. And when v j is never isotropic for
h + c < j ≤ h + c + d, let g2 be the orthogonal transformation of (S ′, q) induced by the reverse transformer (T2, ϕ

†); it is
the product of the reflections R(v j) with j = h+ c+ d, h+ c+ d− 1, . . . , h+ c+ 1. We obtain another triangularizing basis
if we replace the subsequence (vh+1, . . . , vh+c+d) with

(g1(vh+c+1), . . . , g1(vh+c+d), vh+1, . . . , vh+c) or (vh+c+1, . . . , vh+c+d, g2(vh+1), . . . , g2(vh+c)) .

7. Examples

First example: a rotation in a euclidean plane

Let (V, q) be a euclidean plane over R, provided with a basis (e1, e2) such that q(ξ1e1 + ξ2e2) = ξ2
1 + ξ

2
2 , whence bq(ξ1e1 +

ξ2e2, ζ1e1 + ζ2e2) = 2(ξ1ζ1 + ξ2ζ2). Let g be the rotation of angle 2θ such that sin(θ) , 0 (so that g , 1); its matrix G
is written below. Since g − 1 is a bijection V → V , the formula (2.1) gives ϕ(x, y) = −bq((g − 1)−1(x), y); therefore, the
matix Φ of ϕ is obtained by transposition of −2(G − 1)−1:

G =
(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
, Φ =

1
sin(θ)

(
sin(θ) cos(θ)
− cos(θ) sin(θ)

)
.

Let us consider v1 = cos(λ)e1 + sin(λ)e2 and v2 = cos(µ)e1 + sin(µ)e2; which are the couples (λ, µ) for which g =
R(v1) R(v2) ? According to Corollary 3.2, this is true if and only if ϕ(v1, v2) = 0; let us verify that this equation agrees
with the answer that has been known for already more than 2000 years:

ϕ(v1, v2) =
(

cos(λ) sin(λ)
)
Φ

(
cos(µ)
sin(µ)

)
=

sin(θ − λ + µ)
sin(θ)

;

thus g = R(v1) R(v2) if and only if λ − µ = θ modulo π.

Second example with a correction procedure

Here (V, q) is given by the basis (e1, e2, e3, e4) over R, and the quadratic form q such that q(
∑4

i=1 ξiei) = ξ1ξ2 + ξ3ξ4. Let us
apply the left and right side algorithms to the orthogonal transformation g of (V, q) described by the matrix G just below.
This matrix G determines over the field Z/2Z an orthogonal transformation that is not a product of reflections (it belongs
to Dieudonné’s exceptional case). The image of g−1 is the subspace S spanned by (e1, e3, e4); g−1 maps e3 − e4, e2 − e3,
−e2 respectively to e1, e3, e4, and the matrix Φ of ϕ in the basis (e1, e3, e4) easily follows:

G =


1 0 0 −1
0 1 0 0
0 0 0 −1
0 −1 −1 0

 , Φ =

 0 1 −1
−1 0 1
1 0 0

 .
Let us begin the left side algorithm with v̇1 = e3 + e4. Since this choice of v̇1 is also acceptable for the field Z/2Z, we
are sure to need a correction; indeed, the predictable failure of the algorithm over Z/2Z can be explained only by its
failure during a correction procedure. By means of the basis (v̇1, e1, e3) of S , we start the calculation of a basis (y1, y2)
of R⊥ϕ (v̇1). For y1 = ξ1v̇1 + e1, the condition ϕ(v̇1, y1) = 0 gives ξ1 = 0, whence y1 = e1 and ϕ(y1, y1) = 0. Therefore,
we also calculate y2 = ξ1v̇1 + e3; the condition ϕ(v̇1, y2) = 0 gives again ξ1 = 0, whence y2 = e3, ϕ(y2, y2) = 0, and
ϕ(y1, y2) = −ϕ(y2, y1) = 1. Since this agrees with (5.2), a correction is necessary; since ϕ(y1, v̇1) = 0 and ϕ(y2, v̇1) = 1,
we follow (8a) in the instruction ((8)). We set v1 = v̇1 + κy1 (whence ϕ(v1, v1) = 1) and v̇2 = v̇1 + µy2; the condition
ϕ(v1, v̇2) = 0 gives 1 + κµ = 0, and the condition ϕ(v̇2, v̇2) , 0 gives 1 + µ , 0. As it was predictable, these two conditions
cannot be satisfied over the field Z/2Z. But over R, they are satisfied with µ = 1 and κ = −1. Consequently, we start the
second step of the algorithm with v1 = −e1 + e3 + e4 and v̇2 = 2e3 + e4.

Since (v1, v̇2, e4) is a basis of S , we set y1 = ξ1v1 + ξ2v̇2 + e4 and we calculate ξ1 and ξ2 with the equations ϕ(v1, y1) =
ϕ(v̇2, y1) = 0, which give ξ1 + 2 = 3ξ1 + 2ξ2 + 2 = 0, whence ξ1 = −2 and ξ2 = 2. According to the instruction ((3)), we
set v2 = v̇2 and v3 = y1 = −2v1 + 2v2 + e4. Here is the basis (v1, v2, v3) and the matrix Φ′ of ϕ in this basis:

v1 = −e1 + e3 + e4 ,
v2 = 2e3 + e4 ,
v3 = 2e1 + 2e3 + e4 ,

Φ′ =

1 0 0
3 2 0
3 4 2

 .
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The conclusion of this calculation is g = R(v1) R(v2) R(v3).

Now let us start the right side algorithm with v̇3 = e3 + e4 and the basis (e1, e3, v̇3) of S . The calculation of y1 = e1 + ξ1v̇3
such that ϕ(y1, v̇3) = 0 gives ξ1 = 0 and y1 = e1. Therefore, we also calculate y2 = e3+ξ1v̇3 such that ϕ(y2, v̇3) = 0; we find
ξ1 = −1 and y2 = −e4. Thus ϕ(y1, y1) = ϕ(y2, y2) = 0 and ϕ(y1, y2) = −ϕ(y2, y1) = 1; and a correction is necessary. Since
ϕ(v̇3, y1) = 0 and ϕ(v̇3, y2) = −1, we set v3 = κy1+ v̇3 (whence ϕ(v3, v3) = 1) and v̇2 = µy2+ v̇3. The conditions ϕ(v̇2, v3) = 0
and ϕ(v̇2, v̇2) , 0 give −κµ + 1 = 0 and −µ + 1 , 0; they are satisfied with µ = κ = −1. Thus we start the second step
with v̇2 = e3 + 2e4 and v3 = −e1 + e3 + e4, and with the basis (e4, v̇2, v3) of S . We must calculate y1 = e4 + ξ1v̇2 + ξ2v3
with the conditions ϕ(y1, v̇2) = ϕ(y1, v3) = 0; they give the equations 2ξ1 + 3ξ2 = −1 + ξ2 = 0, and determine ξ2 = 1 and
ξ1 = −3/2. Here is the final result of this calculation:

v1 = −e1 − 1
2 e3 − e4 ,

v2 = e3 + 2e4 ,
v3 = −e1 + e3 + e4 ,

Φ′ =

 1/2 0 0
−2 2 0
−3/2 3 1

 .
As above, g = R(v1) R(v2) R(v3).

Third example (an ordinary example)

Let (V, q) be the space over R determined by the orthogonal basis (e1, . . . , e6) such that q(ei) = 1 for i = 1, 2, 3, 4, and
q(ei) = −1 for i = 5, 6; and let g be the orthogonal transofrmation of (V, q) given by the following matrix:

G =



3/10 −3/5 −4/5 2/5 0 −1/2
−2/5 −1/5 2/5 4/5 0 0
−1 0 −1 0 0 −1
−1 −2 0 −1 2 −1
1/5 −2/5 4/5 −2/5 1 1
−11/10 −9/5 −2/5 −4/5 2 −3/2


.

The kernel of g − 1 is spanned by 2e1 − e2 − e3 and e1 − e2 − e4 + 2e5 − e6. There are well known algorithms to find a
convenient basis (u1, . . . , u4) of S = im(g − 1); then the matrix Φ of ϕ in this basis is calculated with (2.1):

u1 = (g − 1)(−2e1 − e4 − 2e5) = e1 + 2e3 − e6 ,

u2 =
1
2 (g − 1)(e3 + 2e4 + 2e5) = e2 − e3 + e6 ,

u3 =
1
2 (g − 1)(e5) = e4 + e6 ,

u4 =
1
2 (g − 1)(−2e2 − 3e4 − 5e5) = e5 − 2e6 .

Φ =


4 0 2 −4
−2 1 −2 2
0 0 0 1
0 2 3 −5

 .
Let us first experiment with the left side algorithm. We begin with v̇1 = u1, and the basis (v̇1, u2, u3, u4) of S . We calculate
y1 = ξ1v̇1 + u2 with the condition ϕ(v̇1, y1) = 0; immediately, we obtain y1 = u2. We begin the second step with v1 = u1,
v̇2 = u2, and the basis (v1, v̇2, u3, u4). We calculate y1 = ξ1v1 + ξ2v̇2 + u3 with the conditions ϕ(v1, y1) = ϕ(v̇2, y1) = 0,
which give the equations 4ξ1 + 2 = −2ξ1 + ξ2 − 2 = 0, whence ξ1 = −1/2, ξ2 = 1, and y1 = − 1

2 u1 + u2 + u3. Unfortunately,
ϕ(y1, y1) = 0 and we must calculate also y2 = ξ1v1 + ξ2v̇2 + u4; the equations 4ξ1 − 4 = −2ξ1 + ξ2 + 2 = 0 give ξ1 = 1,
ξ2 = 0 and y2 = u1 + u4. Since ϕ(y2, y2) = −5, we begin the third step with v1 = u1, v2 = u2 and v̇3 = u1 + u4. In this final
step, we calculate y1 = ξ1v1 + ξ2v2 + ξ3v̇3 + u3; the wanted conditions give the equations

4ξ1 + 2 = −2ξ1 + ξ2 − 2 = 4ξ1 + 2ξ2 − 5ξ3 + 5 = 0 ; (7.1)

consequently, ξ1 = −1/2 and ξ2 = ξ3 = 1. Here is the resulting basis (v1, . . . , v4) and the matrix Φ′ of ϕ in this basis:
v1 = u1 ,
v2 = u2 ,
v3 = u1 + u4 ,

v4 =
1
2 u1 + u2 + u3 + u4 ,

Φ′ =


4 0 0 0
−2 1 0 0
4 2 −5 0
0 3 2 1

 .
We have g = R(v1)R(v2)R(v3)R(v4) with v1 = e1 + 2e3 − e6, v2 = e2 − e3 + e6, v3 = e1 + 2e3 + e5 − 3e6, v4 =
1
2 e1 + e2 + e4 + e5 − 1

2 e6.

Now let us experiment with the disordered algorithm that gives the vectors of a triangularizing basis in the disorder
(v1, v4, v2, v3). To take advantage of the vanishing of ϕ(u4, u1), we begin with v̇1 = u4, the basis (v̇1, u1, u2, u3) and
y1 = ξ1v̇1 + u1; the condition ϕ(v̇1, y1) = 0 gives immediately y1 = u1. Therefore, we start the second step with v1 = u4,
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v̇4 = u1 and with the basis (v1, u2, u3, v̇4); we calculate y1 = ξ1v1 + u3 + ξ2v̇4 with the conditions ϕ(v1, y1) = ϕ(y1, v̇4) = 0.
The resulting equations −5ξ1 + 3 = 4ξ2 = 0 give ξ1 = 3/5, ξ2 = 0 and y1 = u3 +

3
5 u4, whence ϕ(y1, y1) = 3/5. Therefore,

we start the third (and last) step with v1 = u4, v̇2 = u3 +
3
5 u4, v4 = u1, and with the basis (v1, v̇2, u2, v4). We calculate

y1 = ξ1v1 + ξ2v̇2 + u2 + ξ3v4 with the conditions ϕ(v1, y1) = ϕ(v̇2, y1) = ϕ(y1, v4) = 0, which give the equations

−5ξ1 + 2 = −2ξ1 +
3
5
ξ2 +

6
5
= −2 + 4ξ3 = 0 ; (7.2)

consequently, ξ1 = 2/5, ξ2 = −2/3, ξ3 = 1/2. Here is the resulting basis (v1, v2, v3, v4), and the matrix of ϕ in this basis:
v1 = u4,

v2 = u3 +
3
5 u4,

v3 =
1
2 u1 + u2 − 2

3 u3,
v4 = u1,

Φ′ =


−5 0 0 0
−2 3/5 0 0
−2/3 −7/5 5/3 0
−4 −2/5 2/3 4

 .
Thus g = R(v1)R(v2)R(v3)R(v4) with v1 = e5 − 2e6, v2 = e4 +

3
5 e5 − 1

5 e6, v3 =
1
2 e1 + e2 − 2

3 e4 − 1
6 e6, v4 = e1 + 2e3 − e6.

To compare these two versions, we compare the square matrices associated with the systems of equations (7.1) and (7.2): 4 0 0
−2 1 0
4 2 −5

 and

−5 0 0
−2 3/5 0
0 0 4

 .
The first matrix is just a lower triangular matrix, with 6 meaningful entries. Along the diagonal of the second matrix, there
is a lower triangular submatrix of order 2, and a submatrix of order 1 which would appear to be upper triangular if it were
larger; the main fact is that the second matrix contains only 4 meaningful entries. For a space S of arbitrary dimension s,
the calculation is shorter if we calculate the vectors of a triangularizing basis (v1, . . . , vs) in this disorder: firstly v1 and vs

(either (v1, vs) or (vs, v1)), secondly v2 and vs−1 (either (v2, vs−1) or (vs−1, v2)), thirdly v3 and vs−2, and so forth. . .
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