On Commutativity of Semiprime Rings with Multiplicative (generalized)-derivations

Deepak Kumar ${ }^{1}$ \& Gurninder S. Sandhu ${ }^{1}$
${ }^{1}$ Department of Mathematics, Punjabi University, Patiala, Punjab, India
Correspondence: Gurninder S. Sandhu, Department of Mathematics, Punjabi University, Patiala. E-mail: sandhugurninder@gmail.com

Received: December 5, 2016
Accepted: January 18, 2017 Online Published: March 5, 2017
doi:10.5539/jmr.v9n2p9
URL: https://doi.org/10.5539/jmr.v9n2p9

Abstract

The aim of this paper is to explore the commutativity of semiprime rings admitting multiplicative (generalized)-derivations and satisfy certain hypotheses on appropriate subsets.

Keywords: semiprime ring, ideals, derivation, multiplicative (generalized)-derivation.

1. Introduction

Throughout this paper R denotes an associative ring with center $Z(R)$. Recall, a ring R is said to be prime ring if for any $a, b \in R, a R b=(0)$ implies either $a=0$ or $b=0$ and is semiprime ring if $a R a=(0)$ implies $a=0$. For any $x, y \in R$, we shall denote the commutator and anti-commutator by the symbols $[x, y]=x y-y x$ and $(x \circ y)=x y+y x$ respectively. We shall frequently use the basic commutator and anti-commutator identities : $[x y, z]=x[y, z]+[x, z] y,[x, y z]=y[x, z]+[x, y] z$ and $(x \circ y z)=(x \circ y) z-y[x, z]=y(x \circ z)+[x . y] z,(x y \circ z)=x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z]$. An additive map $f: R \rightarrow R$ is called a derivation of R if $f(x y)=f(x) y+x f(y)$ holds for all $x, y \in R$. Let $F: R \rightarrow R$ be a map together with another map $f: R \rightarrow R$ so that $F(x y)=F(x) y+x f(y)$ for all $x, y \in R$. If F is additive and f a derivation of R, then F is called generalized derivation of R and if $f=0$, then F is called left multiplier of R. The notion of generalized derivation was introduced by Brešar (Brešar, 1991). In (Havala, 1998), author gave an algebraic study of these mappings in prime rings. Obviously, every derivation is a generalized derivation. In this way generalized derivation covers both concepts of derivation and left multiplier of R. Let K be a nonempty subset of R, a map $f: K \rightarrow R$ is said to be centralizing on K, if $[f(x), x] \in Z(R)$ for all $x \in K$. In particular, if $[f(x), x]=0$ for all $x \in K$, then f is called commuting on K.
In the literature, a number of authors have discussed the commutativity of prime rings and semiprime rings admitting derivations and generalized derivations satisfying certain algebraic identities, see (Ali, Kumar \& Miyan, 2011), (Ali, Dhara \& Fos̆ner, 2011), (Andima \& Pajoohesh, 2010), (Ashraf et al, 2007, 2001), (Daif \& Bell, 1992), (Dhara \& Pattanayak, 2011), (Hongan, 1997), where further references can be found.

Let us swing to the foundation examination of multiplicative (generalized)-derivations of associative rings. Inspired by the work of Martindale III (Martindale, 1969), Daif (Daif, 1991) introduced the concept of multiplicative derivations. Accordingly, a map $f: R \rightarrow R$ is called multiplicative derivation of R if $f(x y)=f(x) y+x f(y)$ holds for all $x, y \in R$. Of course, these maps are not necessarily additive. Goldmann and Sěmrl (Goldmann \& Sěmrl, 1996) presented complete description of these maps. Further, Daif and Tammam-El-Sayiad (Daif \& Tammam-El-Sayiad, 1997) extended the notion of multiplicative derivation to multiplicative generalized derivation as follows: A map $F: R \rightarrow R$ is called multiplicative generalized derivation of R if $F(x y)=F(x) y+x f(y)$ holds for all $x, y \in R$, where f is a derivation of R. Recently, Dhara and Ali (Dhara \& Ali, 2013) made a slight generalization in above definition of multiplicative generalized derivation by relaxing the conditions on f. A map $F: R \rightarrow R$ (not necessarily additive) is said to be a multiplicative (generalized)derivation if $F(x y)=F(x) y+x f(y)$ holds for all $x, y \in R$, where f can be any map (not necessarily additive nor a derivation). For convenience we denote it by a pair (F, f). In the previous couple of years many outcomes has been gotten in prime and semi-prime rings involving multiplicative (generalized)-derivations, see (Ali et al, 2015), (Ali et al, 2014), (Dhara \& Ali, 2013), (Dhara et al, 2014) and (Khan, 2016). As multiplicative (generalized)-derivation is an extended notion of generalized derivation, so it is noteworthy to demonstrate the consequences of generalized derivations for multiplicative (generalized)-derivations.

The main objective of this paper is to take care of the issue raised by author in (Khan, 2016) and investigate the commutativity of R. Precisely, we concentrate on the following central-valued conditions: $f(x) F(y) \pm y x \in Z(R)$, $f(x) F(y) \pm x y \in Z(R), f(x) F(y) \pm(x \circ y) \in Z(R), f(x) F(y) \pm[x, y] \in Z(R), F(x y) \pm F(x) F(y) \in Z(R), F[x, y] \pm(x \circ y) \in Z(R)$, $F(x \circ y) \pm[x, y] \in Z(R), F[x, y] \pm x y \in Z(R), F(x \circ y) \pm x y \in Z(R), F[x, y] \pm f(x) \circ y \in Z(R), F(x \circ y) \pm[f(x), y] \in Z(R)$ where x and y are from an appropriate subset of R.

2. Main Results

Theorem 1. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $f(x) F(y) \pm y x \in Z(R)$ for all $x, y \in I$, then f is commuting on I and I is commutative.

Proof. We consider

$$
\begin{equation*}
f(x) F(y) \pm y x \in Z(R) \text { for all } x, y \in I . \tag{1}
\end{equation*}
$$

Replace y by $y z$ in (1) to get $(f(x) F(y) \pm y x) z+f(x) y f(z) \pm y[z, x] \in Z(R)$ for all $x, y, z \in I$. On commuting with z we obtain

$$
\begin{equation*}
[f(x) y f(z), z] \pm[y[z, x], z]=0 \text { for all } x, y, z \in I \tag{2}
\end{equation*}
$$

In particular, putting $x=z$ to obtain

$$
\begin{equation*}
[f(z) y f(z), z]=0 \text { for all } y, z \in I \tag{3}
\end{equation*}
$$

Which implies that

$$
\begin{equation*}
f(z) y f(z) z=z f(z) y f(z) \text { for all } x, y, z \in I \tag{4}
\end{equation*}
$$

Substituting $y f(z) w$ for y in (4), we have

$$
\begin{equation*}
f(z) y f(z) w f(z) z=z f(z) y f(z) w f(z) \text { for all } x, y, z, w \in I . \tag{5}
\end{equation*}
$$

Using (4) in (5), we obtain $f(z) y z f(z) w f(z)=f(z) y f(z) z w f(z)$ for all $x, y, z, w \in I$. That is $x f(z) y[f(z), z] w f(z)=0$ for all $x, y, z, w \in I$. It implies that $x[f(z), z] y[f(z), z] w[f(z), z]=0$ for all $x, y, z, w \in I$. Therefore, $(I[f(z), z])^{3}=(0)$ for all $z \in I$. But R has no nonzero nilpotent ideal, we conclude that $I[f(z), z]=(0)$ for all $z \in I$. Thus, $[f(z), z]=0$ for all $z \in I$ (See, (Herstein, 1976)).
Now, Replace y by $y z$ in (2) and we get

$$
\begin{equation*}
[f(x) y z f(z), z] \pm[y z[z, x], z]=0 \text { for all } x, y, z \in I \tag{6}
\end{equation*}
$$

Right multiply (2) by z and subtract (6) from it, we obtain $[f(x) y[f(z), z], z] \pm[y[[z, x], z], z]=0$ for all $x, y, z \in I$. Using the fact that $I[f(z), z]=(0)$ for all $z \in I$, we get

$$
\begin{equation*}
[y[[z, x], z], z]=0 \text { for all } x, y, z \in I . \tag{7}
\end{equation*}
$$

Replace y by $x y$ in (7), we obtain

$$
\begin{equation*}
x[y[[z, x], z], z]+[x, z] y[[z, x], z]=0 \text { for all } x, y, z \in I . \tag{8}
\end{equation*}
$$

Using (7), it reduces to

$$
\begin{equation*}
[x, z] y[[z, x], z]=0 \text { for all } x, y, z \in I . \tag{9}
\end{equation*}
$$

Replace y by $z y$ in (9), we get

$$
\begin{equation*}
[x, z] z y[[x, z], z]=0 \text { for all } x, y, z \in I \tag{10}
\end{equation*}
$$

Left multiply (9) by z and subtract from (10), we get $[[x, z], z] y[[x, z], z]=0$ for all $x, y, z \in I$. That is $[[x, z], z] I[[x, z], z]=$ (0) for all $x, z \in I$. Semiprimeness of I yields that

$$
\begin{equation*}
[[x, z], z]=0 \text { for all } x, z \in I \tag{11}
\end{equation*}
$$

Linearizing (11) with respect to z and using (11), we have

$$
\begin{equation*}
[[x, z], t]+[[x, t], z]=0 \text { for all } x, t, z \in I . \tag{12}
\end{equation*}
$$

Replace z by $z t$ in (12), we get $z[[x, t], t]+[z, t][x, t]+([[x, z], t]+[[x, t], z]) t+z[[x, t], t]=0$ for all $x, t, z \in I$. Using (11) and (12), we obtain

$$
\begin{equation*}
[z, t][x, t]=0 \text { for all } x, t, z \in I \tag{13}
\end{equation*}
$$

Replace x by $x y$ in (13) to get $[z, t] x[y, t]+[z, t][x, t] y=0$ for all $x, y, t, z \in I$. Using (13), we obtain $[z, t] x[y, t]=0$ for all $x, y, t, z \in I$. In particular, $[y, t] I[y, t]=(0)$ for all $y, t \in I$. It implies that $[y, t]=0$ for all $y, t \in I$. Hence, $[I, I]=(0)$ as desired.

Theorem 2. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $f(x) F(y) \pm x y \in Z(R)$ for all $x, y \in I$, then f is commuting on I.

Proof. We consider

$$
\begin{equation*}
f(x) F(y) \pm x y \in Z(R) \text { for all } x, y \in I \tag{14}
\end{equation*}
$$

Replace y by $y z$ in (14), we get

$$
\begin{equation*}
(f(x) F(y) \pm x y) z+f(x) y f(z) \in Z(R) \text { for all } x, y, z \in I \tag{15}
\end{equation*}
$$

On commuting with z in (15), we obtain $[f(x) y f(z), z]=0$ for all $x, y, z \in I$. In particular, put $x=z$, we get $[f(z) y f(z), z]$ for all $y, z \in I$. It coincides with (3), hence Theorem 1. insures the conclusion.

Theorem 3. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $f(x) F(y) \pm(x \circ y) \in Z(R)$ for all $x, y \in I$, then f is commuting on I and I is commutative.
Proof. We consider

$$
\begin{equation*}
f(x) F(y) \pm(x \circ y) \in Z(R) \text { for all } x, y \in I \tag{16}
\end{equation*}
$$

Replace y by $y z$ in (16) to obtain $(f(x) F(y) \pm(x \circ y)) z+f(x) y f(z) \mp y[x, z] \in Z(R)$ for all $x, y, z \in I$. On commuting both sides by z, we get $[f(x) y f(z), z] \mp[y[z, x], z]=0$ for all $x, y, z \in I$. It coincides with (2), hence Theorem 1. insure the conclusions.
Theorem 4. Let R be a semiprime ring and I a nonzero ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $f(x) F(y) \pm[x, y] \in Z(R)$ for all $x, y \in I$, then f is commuting on I and I is commutative.
Proof. We consider

$$
\begin{equation*}
f(x) F(y) \pm[x, y] \in Z(R) \text { for all } x, y \in I \tag{17}
\end{equation*}
$$

Replace y by $y z$ in (17) to obtain $(f(x) F(y) \pm[x, y]) z+f(x) y f(z) \pm y[x, z] \in Z(R)$ for all $x, y, z \in I$. On commuting both sides by z, we have

$$
\begin{equation*}
[f(x) y f(z), z] \pm[y[x, z], z]=0 \text { for all } x, y, z \in I \tag{18}
\end{equation*}
$$

Substituting $x=z$ and we get $[f(z) y f(z), z]=0$ this is same as (3) so by theorem 1 , we obtain $[f(z), z]=0$ for all $z \in I$. Replace y by $y z$ in (18), we get

$$
\begin{equation*}
[f(x) y z f(z), z] \pm[y z[x, z], z]=0 \text { for all } x, y, z \in I \tag{19}
\end{equation*}
$$

Right multiply (18) by z and subtract (19) from it and we get $[f(x) y[f(z), z], z] \pm[y[[x, z], z], z]=0$ for all $x, y, z \in I$. Using the fact that $I[f(z), z]=0$ for all $z \in I$, we obtain $[y[[x, z], z], z]=0$ for all $x, y, z \in I$. It coincides with (7), hence Theorem 1 . insures the conclusion.
Corollary 5. Let R be a semiprime ring. If (F, f) is a multiplicative (generalized) -derivation of R such that any one of the following
i. $f(x) F(y) \pm[x, y] \in Z(R)$
ii. $f(x) F(y) \pm(x \circ y) \in Z(R)$
iii. $f(x) F(y) \pm y x \in Z(R)$
holds for all $x, y \in R$, then R is commutative.
Theorem 6. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $F(x y) \pm F(x) F(y) \in Z(R)$ holds for all $x, y \in I$, then $I[f(z), z]=(0)$ for all $z \in I$.

Proof. We consider

$$
\begin{equation*}
F(x y) \pm F(x) F(y) \in Z(R) \text { for all } x, y, z \in I \tag{20}
\end{equation*}
$$

Replace y by $y z$ in (20), we get $(F(x y) \pm F(x) F(y)) z+x y f(z) \pm F(x) y f(z) \in Z(R)$ for all $x, y, z \in I$. On commuting with z and using (20), we obtain

$$
\begin{equation*}
[x y f(z), z] \pm[F(x) y f(z), z]=0 \text { for all } x, y, z \in I \tag{21}
\end{equation*}
$$

Replace x by $x z$ in (21) to get

$$
\begin{equation*}
[x z y f(z), z] \pm[F(x) z y f(z), z] \pm[x f(z) y f(z), z]=0 \text { for all } x, y, z \in I \tag{22}
\end{equation*}
$$

Replace y by $z y$ in (21) and subtract it from (22), we have

$$
\begin{equation*}
[x f(z) y f(z), z]=0 \text { for all } x, y, z \in I \tag{23}
\end{equation*}
$$

Substitute $f(z) x$ for x in (23), we get $f(z)[x f(z) y f(z), z]+[f(z), z] x f(z) y f(z)=0$ for all $x, y, z \in I$. Relation (23) reduce it to

$$
\begin{equation*}
[f(z), z] x f(z) y f(z)=0 \text { for all } x, y, z \in I . \tag{24}
\end{equation*}
$$

Replace x by $x z$ in (24) and we get

$$
\begin{equation*}
[f(z), z] x z f(z) y f(z)=0 \text { for all } x, y, z \in I \tag{25}
\end{equation*}
$$

Replace y by $y z$ in (24), we have

$$
\begin{equation*}
[f(z), z] x f(z) z y f(z)=0 \text { for all } x, y, z \in I \tag{26}
\end{equation*}
$$

Subtract (25) from (26)to obtain $[f(z), z] x[f(z), z] y f(z)=0$ for all $x, y, z \in I$. It implies that $(I[f(z), z])^{3}=(0)$ for all $z \in I$. Hence, we conclude that $I[f(z), z]=(0)$ for all $z \in I$.

Corollary 7. Let R be a semiprime ring and (F, f) a multiplicative (generalized)-derivation of R. If $F(x y) \pm F(x) F(y) \in$ $Z(R)$ holds for all $x, y \in R$, then f is a commuting map.
Theorem 8. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $F[x, y] \pm(x \circ y) \in Z(R)$ for all $x, y \in I$, then $I[x, f(x)]=(0)$ or $I[x, f(Z(R))]=(0)$ for all $x \in I$.
Proof. We consider

$$
\begin{equation*}
F[x, y] \pm(x \circ y) \in Z(R) \text { for all } x, y \in I \tag{27}
\end{equation*}
$$

If $Z(R)=(0)$ then

$$
\begin{equation*}
F[x, y] \pm(x \circ y)=0 \text { for all } x, y \in I \tag{28}
\end{equation*}
$$

Replace y by $y x$ in (28) and we get $(F[x, y] \pm(x \circ y)) x+[x, y] f(x)=0$ for all $x, y \in I$. It reduces to

$$
\begin{equation*}
[x, y] f(x)=0 \text { for all } x, y \in I \tag{29}
\end{equation*}
$$

Replace y by $f(x) y$ in (29), we have $f(x)[x, y] f(x)+[x, f(x)] y f(x)=0$ for all $x, y \in I$. Using (29), we obtain

$$
\begin{equation*}
[x, f(x)] y f(x)=0 \text { for all } x, y \in I . \tag{30}
\end{equation*}
$$

Replace y by $y x$ in (30) and we get

$$
\begin{equation*}
[x, f(x)] y x f(x)=0 \text { for all } x, y \in I \tag{31}
\end{equation*}
$$

Right multiply (30) by x and subtract from (31), to obtain $[x, f(x)] y[x, f(x)]=0$ for all $x, y \in I$. Since I is a left ideal of R , so we have $y[x, f(x)] R y[x, f(x)]=(0)$ for all $x, y \in I$. Semiprimeness of R yields that $y[x, f(x)]=0$ for all $x, y \in I$. Hence, we conclude that $I[x, f(x)]=(0)$ for all $x \in I$.
If $Z(R) \neq(0)$ then there exist $0 \neq t \in Z(R)$. Replace y by $y t$ in (27), we get $(F[x, y] \pm(x \circ y)) t+[x, y] f(t) \in Z(R)$ for all $x, y \in I$. Using (27), we get $[x, y] f(t) \in Z(R)$ for all $x, y \in I$. On commuting with $r \in R$, we have

$$
\begin{equation*}
[[x, y] f(t), r]=0 \text { for all } x, y \in I \text { and } r \in R . \tag{32}
\end{equation*}
$$

Replace x by $y x$ in (32), we get $[y[x, y] f(t), r]=y[[x, y] f(t), r]+[y, r][x, y] f(t)=0$ for all $x, y \in I$ and $r \in R$. Using (32), we obtain

$$
\begin{equation*}
[y, r][x, y] f(t)=0 \text { for all } x, y \in I \text { and } r \in R . \tag{33}
\end{equation*}
$$

Replace r by $p r$ in (33) where $p \in R$, we get $p[y, r][x, y] f(t)+[y, p] r[x, y] f(t)=0$ for all $x, y \in I$ and $r, p \in R$. Using (33), we get $[y, p] r[x, y] f(t)=0$ for all $x, y \in I$ and $r, p \in R$. Substitute $f(t) r$ for r and in particular, we get $[x, y] f(t) R[x, y] f(t)=(0)$ for all $x, y \in I$. Semiprimeness of R implies that

$$
\begin{equation*}
[x, y] f(t)=0 \text { for all } x, y \in I \tag{34}
\end{equation*}
$$

Replace y by $f(t) y$ in (34), we get $f(t)[x, y] f(t)+[x, f(t)] y f(t)=0$ for all $x, y \in I$. Equation (34) forces that $[x, f(t)] y f(t)=$ 0 for all $x, y \in I$. It implies $[x, f(t)] y[x, f(t)]=0$ for all $x, y \in I$. Since I is a left ideal of R so we have $y[x, f(t)] R y[x, f(t)]=$ (0) for all $x, y \in I$. Semiprimeness of R yields that $y[x, f(t)]=0$ for all $x, y \in I$ and $t \in Z(R)$. Hence, we conclude that $I[x, f(Z(R))]=(0)$ for all $x \in I$.

Theorem 9. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $F(x \circ y) \pm[x, y] \in Z(R)$ for all $x, y \in I$, then $I[x, f(x)]=(0)$ or $I[x, f(Z(R))]=(0)$ for all $x \in I$.
Proof. We consider

$$
\begin{equation*}
F(x \circ y) \pm[x, y] \in Z(R) \text { for all } x, y \in I \tag{35}
\end{equation*}
$$

If $Z(R)=(0)$ then

$$
\begin{equation*}
F(x \circ y) \pm[x, y]=0 \text { for all } x, y \in I \tag{36}
\end{equation*}
$$

Replace y by $y x$ in (36), we get $(F(x \circ y) \pm[x, y]) x+(x \circ y) f(x)=0$ for all $x, y \in I$. Using (36) to obtain

$$
\begin{equation*}
(x \circ y) f(x)=0 \text { for all } x, y \in I \tag{37}
\end{equation*}
$$

Replace y by $f(x) y$ in (37) and we get $f(x)(x \circ y) f(x)+[x, f(x)] y f(x)=0$ for all $x, y \in I$. Relation (37) implies that

$$
\begin{equation*}
[x, f(x)] y f(x)=0 \text { for all } x, y \in I . \tag{38}
\end{equation*}
$$

Replace y by $y x$ in (38), we obtain

$$
\begin{equation*}
[x, f(x)] y x f(x)=0 \text { for all } x, y \in I . \tag{39}
\end{equation*}
$$

Right multiply (38) by x and subtract from (39), we get $[x, f(x)] y[x, f(x)]=0$ for all $x, y \in I$. Since I is a left ideal of R , so we have $y[x, f(x)] R y[x, f(x)]=(0)$ for all $x, y \in I$. Semiprimeness of R yields that $y[x, f(x)]=0$ for all $x, y \in I$. Hence, we conclude that $I[x, f(x)]=(0)$ for all $x \in I$.
If $Z(R) \neq(0)$ then there exist $0 \neq t \in Z(R)$. Replace y by $y t$ in (27) to get $(F[x, y] \pm(x \circ y)) t+(x \circ y) f(t) \in Z(R)$ for all $x, y \in I$. Using (27), we left with $(x \circ y) f(t) \in Z(R)$ for all $x, y \in I$. On commuting with $r \in R$, we obtain

$$
\begin{equation*}
[(x \circ y) f(t), r]=0 \text { for all } x, y \in I \text { and } r \in R . \tag{40}
\end{equation*}
$$

Replace y by $x y$ in (40), we get $x[(x \circ y) f(t), r]+[x, r](x \circ y) f(t)=0$ for all $x, y \in I$ and $r \in R$. Equation (40) reduce it to

$$
\begin{equation*}
[x, r](x \circ y) f(t)=0 \text { for all } x, y \in I \text { and } r \in R . \tag{41}
\end{equation*}
$$

Replace y by $p y$ in (41) where $p \in R$, we have $[x, r] p(x \circ y) f(t)+[x, r][x, p] y f(t)=0$ for all $x, y \in I$ and $r, p \in R$. Using the fact that $(x \circ y) f(t) \in Z(R)$ for all $x, y \in I$, we get $[x, r](x \circ y) f(t) p+[x, r][x, p] y f(t)=0$ for all $x, y \in I$ and $r, p \in R$. Using (41) to obtain

$$
\begin{equation*}
[x, r][x, p] y f(t)=0 \text { for all } x, y \in I \text { and } r, p \in R \tag{42}
\end{equation*}
$$

Replacing r by $s r$ where $s \in R$ in (42) and we have $s[x, r][x, p] y f(t)+[x, s] r[x, p] y f(t)=0$ for all $x, y \in I$ and $p, r, s \in R$. Using (42) to obtain

$$
\begin{equation*}
[x, s] r[x, p] y f(t)=0 \text { for all } x, y \in I \text { and } p, r, s \in R . \tag{43}
\end{equation*}
$$

Replace y by $y x$ in (43), we get

$$
\begin{equation*}
[x, s] r[x, p] y x f(t)=0 \text { for all } x, y \in I \text { and } p, r, s \in R . \tag{44}
\end{equation*}
$$

Right multiply (43) by x and subtract from (44) to get $[x, s] r[x, p] y[x, f(t)]=0$ for all $x, y \in I$ and $p, r, s \in I$. Replace r by $r y$ and y by ry, we obtain $[x, s] r y[x, p] r y[x, f(t)]=0$ for all $x, y \in I$ and $p, r, s \in I$. In particular, $[x, f(t)] r y[x, f(t)] r y[x, f(t)]=0$ for all $x, y \in I, r \in I$ and $t \in Z(R)$. It implies $(R y[x, f(Z(R))])^{3}=(0)$ for all $x, y \in I$. But R has no nonzero nilpotent ideal, so we have $R y[x, f(Z(R))]=(0)$ for all $x, y \in I$. Hence, we conclude that $I[x, f(Z(R))]=(0)$ for all $x \in I$.

Theorem 10. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $F[x, y] \pm x y \in Z(R)$ holds for all $x, y \in I$, then $I[x, f(x)]=(0)$ or $I[x, f(Z(R))]=(0)$ for all $x \in I$.
Proof. We consider

$$
\begin{equation*}
F[x, y] \pm x y \in Z(R) \text { for all } x, y \in I \tag{45}
\end{equation*}
$$

If $Z(R)=(0)$ then it is easy to prove that $I[x, f(x)]=(0)$ for all $x \in I$.
If $Z(R) \neq(0)$ then there exist $0 \neq t \in Z(R)$. Replace y by $y t$ in (45) to obtain $(F[x, y] \pm x y) t+[x, y] f(t) \in Z(R)$ for all $x, y \in I$. Using (45), we get $[x, y] f(t) \in Z(R)$ for all $x, y \in I$. On commuting with $r \in R$, we have $[[x, y] f(t), r]=0$ for all $x, y \in I$ and $r \in R$. It coincides with (32), hence Theorem 9. insure the conclusions.

Theorem 11. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $F(x \circ y) \pm x y \in Z(R)$ holds for all $x, y \in I$, then $I[x, f(x)]=(0)$ or $I[x, f(Z(R))]=(0)$ for all $x \in I$.

Proof. We consider

$$
\begin{equation*}
F(x \circ y) \pm x y \in Z(R) \text { for all } x, y \in I \tag{46}
\end{equation*}
$$

If $Z(R)=(0)$ then it is easy to prove that $I[x, f(x)]=(0)$ for all $x \in I$.
If $Z(R) \neq(0)$ then there exist $0 \neq t \in Z(R)$. Replace y by $y t$ in (46) and we get $(F[x, y] \pm x y) t+(x \circ y) f(t) \in Z(R)$ for all $x, y \in I$. Using (46), we get $(x \circ y) f(t) \in Z(R)$ for all $x, y \in I$. On commuting with $r \in R$, we obtain $[(x \circ y) f(t), r]=0$ for all $x, y \in I$ and $r \in R$. It coincides with (40), hence Theorem 10 . insure the conclusions.
Theorem 12. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $F[x, y] \pm f(x) \circ y \in Z(R)$ holds for all $x, y \in I$, then $I[x, f(x)]=(0)$ or $I[x, f(Z(R))]$ for all $x \in I$.
Proof. We consider

$$
\begin{equation*}
F[x, y] \pm f(x) \circ y \in Z(R) \text { for all } x, y \in I \tag{47}
\end{equation*}
$$

If $Z(R)=(0)$ then we have

$$
\begin{equation*}
F[x, y] \pm f(x) \circ y=0 \text { for all } x, y \in I . \tag{48}
\end{equation*}
$$

Substitute $y x$ for y in (48) to get $(F[x, y] \pm f(x) \circ y) x+[x, y] f(x) \mp y[f(x), x]=0$ for all $x, y \in I$. By (48), it reduces to

$$
\begin{equation*}
[x, y] f(x) \mp y[f(x), x]=0 \text { for all } x, y \in I \tag{49}
\end{equation*}
$$

Replace y by $f(x) y$ in (49), we get

$$
\begin{equation*}
f(x)[x, y] f(x)+[x, f(x)] y f(x) \mp f(x) y[f(x), x]=0 \text { for all } x, y \in I \tag{50}
\end{equation*}
$$

Left multiply (49) by $f(x)$ and subtract from (50), we obtain $[x, f(x)] y f(x)=0$ for all $x, y \in I$.. Since I is a left ideal in R, it implies that $y[x, f(x)] R y[x, f(x)]=(0)$ for all $x, y \in I$. Semiprimeness of R yields that $y[x, f(x)]=0$ for all $x, y \in I$. We conclude that $I[x, f(x)]=(0)$ for all $x \in I$.
If $Z(R) \neq(0)$ then there exist some $0 \neq t \in Z(R)$. Replace y by $y t$ in (47), we get $(F[x, y]+f(x) \circ y) t+[x, y] f(t) \in Z(R)$ for all $x, y \in I$. Using (47) to obtain $[x, y] f(t) \in Z(R)$ for all $x, y \in I$. That is $[[x, y] f(t), r]=0$ for all $x, y \in I$ and $r \in R$. It coincides with (32), hence Theorem 9. yields that $I[x, f(Z(R))]=(0)$ for all $x \in I$.

Theorem 13. Let R be a semiprime ring and I a nonzero left ideal of R. Suppose that (F, f) is a multiplicative (generalized)derivation of R. If $F(x \circ y) \pm[f(x), y] \in Z(R)$ holds for all $x, y \in I$, then $I[x, f(x)]=(0)$ or $I[x, f(Z(R))]=(0)$ for all $x \in I$.
Proof. We consider

$$
\begin{equation*}
F(x \circ y) \pm[f(x), y] \in Z(R) \text { for all } x, y \in I . \tag{51}
\end{equation*}
$$

If $Z(R)=(0)$ then we have

$$
\begin{equation*}
F(x \circ y) \pm[f(x), y]=0 \text { for all } x, y \in I . \tag{52}
\end{equation*}
$$

Replace y by $y x$ in (52) and we obtain $F(x \circ y) x+(x \circ y) f(x) \pm[f(x), y] x \pm y[f(x), x]=0$ for all $x, y \in I$. Using (52), we left with

$$
\begin{equation*}
(x \circ y) f(x) \pm y[f(x), x]=0 \text { for all } x, y \in I . \tag{53}
\end{equation*}
$$

Replace y by $f(x) y$ in (53) and we get

$$
\begin{equation*}
f(x)(x \circ y) f(x)+[x, f(x)] y f(x) \pm f(x) y[f(x), x]=0 \text { for all } x, y \in I . \tag{54}
\end{equation*}
$$

Left multiply (53) by $f(x)$ and subtract it from (54), we obtain $[x, f(x)] y f(x)=0$ for all $x, y \in I$. It implies that $[x, f(x)] y[x, f(x)]=(0)$ for all $x, y \in I$. Semiprimeness of R yields that $y[x, f(x)]=(0)$ for all $x, y \in I$. We conclude that $I[x, f(x)]=(0)$ for all $x \in I$.
If If $Z(R) \neq(0)$ then there exist some $0 \neq t \in Z(R)$. Replace y by $y t$ in (51), we get $(F(x \circ y)+[f(x), y]) t+(x \circ y) f(t) \in Z(R)$ for all $x, y \in I$. Using (51), we obtain $(x \circ y) f(t) \in Z(R)$ for all $x, y \in I$. That is $[(x \circ y) f(t), r]=0$ for all $x, y \in I$ and $r \in R$. It coincides with (40), hence Theorem 10. yields that $I[x, f(Z(R))]=(0)$ for all $x \in I$.

Corollary 14. Let R be a semi-prime ring. Suppose that (F, f) is a multiplicative (generalized)-derivation of R. If any one of the following
i. $F[x, y] \pm(x \circ y) \in Z(R)$
ii. $F(x \circ y) \pm[x, y] \in Z(R)$
iii. $F[x, y] \pm x y \in Z(R)$
iv. $F(x \circ y) \pm x y \in Z(R)$
v. $F[x, y] \pm(f(x) \circ y) \in Z(R)$
vi. $F(x \circ y) \pm[f(x), y] \in Z(R)$
holds for all $x, y \in R$, then either f is commuting map or $f(Z(R)) \subseteq Z(R)$.

3. Examples

In this section, we build a few examples to show that the condition of semiprimeness in our results is not superfluous.
Example 1. Consider

$$
R=\left\{\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right): a, b, c \in S\right\}
$$

where S is any arbitrary ring.
We define maps $F, f: R \rightarrow R$ by

$$
F\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & a \\
0 & 0 & b c \\
0 & 0 & 0
\end{array}\right), f\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & c^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

it is verified that F is a multiplicative (generalized)-derivations associated with the maps f and it is easy to see that the identities $f(x) F(y) \pm[x, y] \in Z(R), f(x) F(y) \pm(x \circ y) \in Z(R)$ and $f(x) F(y) \pm y x \in Z(R)$ are satisfied for all $x, y \in R$. Here R is not a semiprime ring because

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) R\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=(0)
$$

Note that R is not commutative. Hence, the condition of semi-primeness in Corollary 5. can not be omitted.
Example 2. Consider $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{Z}_{2}\right\}$ be a ring over integers modulo 2 and let $I=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b, c \in \mathbb{Z}_{2}\right\}$, be a left ideal in R . We define maps $F, f: R \rightarrow R$ by

$$
F\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
a & n b \\
0 & 0
\end{array}\right), f\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
0 & (n-1) b \\
0 & 0
\end{array}\right)
$$

where n is any positive integer. Then it is verified that F is a multiplicative (generalized)-derivations associated with the maps f and it is easy to see that the identities $F(x y) \pm F(x) F(y) \in Z(R)$ are satisfied for all $x, y \in I$. Here R is not a semiprime ring, but observe that $I[f(x), x] \neq(0)$ for all $x \in I$. Hence, the condition of semiprimeness in Theorem 6. is essential.
Example 3. Consider $R=\left\{\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right): a, b, c \in \mathbb{Z}\right\}$, where \mathbb{Z} stands for the ring of integers. We define maps $F, f:$ $R \rightarrow R$ by

$$
F\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & b c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & b & a^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then it is verified that F is a multiplicative (generalized)-derivations associated with the maps f and it is easy to see that the identities $F[x, y] \pm(x \circ y) \in Z(R), F(x \circ y) \pm[x, y] \in Z(R), F[x, y] \pm x y \in Z(R), F(x \circ y) \pm x y \in Z(R), F[x, y] \pm(f(x) \circ y) \in Z(R)$ and $F(x \circ y) \pm[f(x), y] \in Z(R)$ are satisfied for all $x, y \in R$. Clearly, R is not a semiprime ring. Note that f is neither commuting on R nor maps $Z(R)$ into $Z(R)$. Hence, the condition of semiprimeness in Corollary 14. can not be removed.

References

Ali, A., Dhara, B., Khan, S. \& Ali, F. (2015). Multiplicative (generalized)-derivations and left ideals in semiprime rings. Hecettape J. Math. Stat., 44(6), 1293-1306. http://dx.doi.org/10.15672/HJMS. 2015449679
Ali, A., Kumar, D. \& Miyan, P. (2011). On generalized derivations and commutativity of prime and semiprime rings. Hecettepe J. Math. Stat., 40(3), 367-374.
Ali, S., Dhara, B., Dar N. A. \& Khan A.N. (2014). On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings. Beitr. Algebra Geom., 56(1), 325-337. http://dx.doi.org/10.1007/s13366-013-0186-y
Ali, S., Dhara, B. \& Fošner, A. (2011). Some commutativity theorems concerning additive maps and derivations on semiprime rings. Contemp. Ring Theory: World Sci. Publ. Hackensack, NJ 2012, 135-143. http://dx.doi.org/10.1142 /9789814397681_0012

Andima, S. \& Pajoohesh, H. (2010). Commutativity of rings with derivations. Acta Math. Hung., 128(1-2), 1-14. http://dx.doi.org/10.1007/s10474-010-9092-z
Ashraf, M., Ali, A. \& Ali, S. (2007). Some commutativity theorems for rings with generalized derivations. Southeast Asian Bull. Math., 31, 415-421.

Ashraf, M. \& Rehman, N. (2001). On derivations and commutativity in prime rings. East-West J. Math., 3(1), 87-91.
Brešar, M. (1991). On the distance of composition of two derivations to the generalized derivation. Glasgow Math. J., 33, 89-93. http://dx.doi.org/10.1017/s0017089500008077

Daif, M. N. (1991). When is a multiplicative derivation additive? Internat. J. Math. Math. Sci., 14(3), 615-618. http://dx.doi.org/10.1155/s0161171291000844
Daif, M. N. \& Bell, H. E. (1992). Remarks on derivations on semiprime rings. Internat. J. Math. Math. Sci., 15(1), 205-206. http://dx.doi.org/10.1155/s0161171292000255
Daif, M. N. \& Tammam-El-Sayiad, M. S. (1997). Multiplicative generalized derivations which are additive. East-West J. Math., 9(1), 33-37.

Dhara, B. \& Ali, S. (2013). On multiplicative (generalized)-derivations in prime and semiprime rings. Aequations Math., 86(1-2), 65-79. http://dx.doi.org/10.1007/s00010-013-0205-y
Dhara, B., Kar, S. \& Das, D. (2014). A multiplicative (generalized)-(σ, σ)-derivations acting as (anti-) homomorphism in semiprime rings. Palestine J. Math., 3(2), 240-246.

Dhara, B. \& Pattanayak, A. (2011). Generalized derivations and left ideals in prime and semiprime rings. ISRN Algebra, Article id 750382, P.5. http://dx.doi.org/10.5402/2011/750382
Goldmann, H. \& Sěmrl, P. (1996). Multiplicative derivation on C(X). Monatsh. Math., 121(3), 189-197. http://dx.doi.org/1 0.1007/bf01298949

Havala, B. (1998). Generalized derivation in rings. Comm. Algebra, 26(4), 1147-1166. http://dx.doi.org/10.1080/00927879 808826190
Herstein, I. N. (1976). Rings with involution, The University of Chicago Press, Chicago.
Hongan, M. (1997). A note on semiprime rings with derivations. Internat J. Math. Math. Sci., 20, 413-415.
Khan, S. (2016). On semiprime rings with multiplicative (generalized)-derivations. Beitr. Algebra Geom., 57(1), 119-128. http://dx.doi.org/10.1007/s13366-015-0241-y

Martindale III, W.S. (1969). When are multiplicative maps additive. Proc. Amer. Math. Soc., 21, 695-698. http://dx.doi. org/10.1090/s0002-9939-1969-0240129-7

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

