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Abstract 
The notion of differential geometry is known to have played a fundamental role in unifying aspects of the physics of 

particles and fields, and have completely transformed the study of classical mechanics. 

In this paper we applied the definitions and concepts which we defined and derived in part (I) of our paper: Types of 

Derivatives: Concepts and Applications to problems arising in Geometry and Fluid Mechanics using exterior calculus. We 

analyzed this problem, using the geometrical formulation which is global and free of coordinates. 

Keywords: differential geometry, exterior calculus, free of coordinates 

1. Introduction 

In our previous paper, we defined three types of major derivatives such as the Exterior Derivative, Lie Derivative and 

Covariant Derivative (Kolár, et al., 1999; Warner, 2013). We divided our work into two parts, where in the first section 

we started by defining a Differentiable Manifold structure, (Arkani-Hamed, et al., 2010) then The Tangent Bundle, where 

we built the Bundle from the tangent space defined on a Differentiable Manifold; we defined the Cotangent Bundle in a 

similar fashion to the Tangent Bundle, then considered Smooth Vector Fields and finally concluded our structure by 

defining Tensor fields and Riemannian Manifolds (Beig, R.). 

In the second part, we defined The Covariant Derivative in which we defined Covariant derivatives of covectors and 

Tensors, Lie Derivatives:Lie Derivatives of tensor fields and Differential Forms. Finally, in the third part we defined The 

Exterior Derivative and shed light on the properties of the respective Derivative. 

Exterior calculus is a concise formalism to express differential and integral equation on smooth and curved spaces in a 

consistent manner, while revealing the geometrical invariants at play. One of the main goals of developing a geometric 

theory of fluid is to put all the existing computational techniques in one abstract setting. This rationalization of 

computational mechanics will be theoretically interesting for its own sake. 

Rewriting equations of fluid mechanics in terms of differential forms enables one to clearly see the geometric features of 

the fluid field theory. 

2. Main Formulas 

2.1 Definition (Kobayashi, S., & Nomizu, K., 1963) 

Let M be a smooth differentiable manifold of dimension m. The Tangent Bundle TM is defined to be 

TM =∪p∈M TpM = {(p, υ)|p ∈ M, υ ∈ TpM}.                           (1) 

2.2 Definition (Lang, S., 1999) 

AVector field υ on M is a section of the tangent bundle TM, ie υ:M → TM such that π ∘ υ(p)for every p ∈ M. In other 

words Let x: U → Rm be a local chart of M, and p ∈ U, then υ(p) = ∑ υp
m
i=1 (xi)

∂

∂xi
|p. avector field on M is a map υ 

which assigns to each point p ∈ M a tangent vector  υ(p) = υp ∈ Tp(M). 
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          gUV(p) = (
∂yi

∂xj
)
1≤i,j≤m

|ϕU(p).                                 (2) 

2.3 Definition  

A covariant derivative is an operator V on tensor fields which satisfies the following conditions: 

1) If T is of rank (r, s), then ∇T is of rank (r, s + 1); the covariant rank increases by 1. 

2) For any function f, ∇(f) = df. [∇a(f) = ∂a(f)] 

3) For any function f and tensor T, ∇(fT) = df ⊗ T + f∇T. [∇a(fT…
…) = ∂a(f)T…

… + f∇aT…
…]. 

4) More generally, for any tensors Sand T, ∇(S ⊗ T) = ∇S⊗ T + S⊗ ∇T. 

2.4 Definition Lie Derivative (O'neill, B., 1983) 

If φ is a local diffeomorphism M→ N, we may define a pull- back map  

φ∗ ∶  ΓTr,s  N →  ΓTr,s  Mon mixed field as follows. For T ∈  ΓTr,s  N we define  

φ∗(T)m ∶= (dm φ)
∗Tφ(m). 

2.5 Definition 

Let X ∈  𝔛(M) be smooth vector field. Then for every m ∈  Mwe denote by t ↦  φX
t (m) the (maximal) integral 

curve for X with initial point m. the domain of this integral curve is an open interval IX,m  containing 0. Let  T ∈
 ΓTr,s M and we define the Lie derivative of T with respect to X by 

(ℒ × T)m: = 
d

dt
|t=0[(φX

t )∗ T]m 

note that φX
t  is a diffeomorphism from a neighborhood of m onto a neighborhood of φX

t (m). Accordingly, the 

expression 

[(φX
t )∗ T]m 

is a well-defined element of  (Tm M)r,s which depends smoothly on t (in a neighborhood of 0). Accordingly, (ℒ × T)m 

defines a tensor in (TmM)r,s . Moreover, by the smoothness of the flow of the vector field X it follows that the section 

ℒ × T of the tensor bundle Tr,s M thus defined is smooth. In other words, we have defined a linear map. 

ℒX ∶  ΓTr,s M →  ΓTr,s M, 

called The Lie derivative. In a similar way it is seen that the Lie derivative defines a linear map ℒX ∶  Ek (M)  →  Ek(M) 

(Cartan’s formula) let X be a smooth vector field on M. then on E(M), 

ℒX = i(X) ο d + d ο i(X). 

The proof was given in paper (I)Applications. 

3. The Geometric Setup 

We give a geometric model of the basic kinematics used in modeling the fluid flow. 

3.1 The Fluid Space (Haller, G., 2001) 

Assume our fluid flows in a smooth manifold M(M denotes a differentiable n-manifold). 

A fluid particle is a point in the manifold. Points in a domain D ⊂  M represent the geometric positions of material 

particles;these points are denoted by x ∈ M and called particle labels. 

3.2 Fluid Motion (Geometric Notion of the Fluid Motion) 

The Fluid moves in a manifold whose points represent the fluid particles. Let x ∈ M be a point in M (M is the space in 

which the fluid moves) and consider the particle of fluid moving through x at time t = 0. As t increases, we denote byϕt(x) 

the curve followed by the fluid particle, which is initially at x ∈ M. For fixed t, each ϕt will be a diffeomorphism of M. 

Thus the fluid motion is a smooth one parameter family of diffeomorphisms ϕt: M→M; with ϕ0 =Id. 

t→ ϕ(t) is a one parameter family of diffeomorophisms of M.For each value oft,we define a vector field Xt ∈ 𝔵(M) as 

follows: 

For x ∈ M, Xt(x) is the tangent vector to the curve u → ϕ(u)ϕ(t)−1x at 

u = t, X, is the velocity field corresponding to the fluid motion defined by ϕ(t): that is, Xt(x) is the velocity vector of the 

particle that, at time t, is at the point x. 
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     X(ϕt(x), t) ∶=  
∂ϕt

∂t
 (x).                                   (3) 

Xt(f)(X) =
d

du
f (ϕuϕt

−1(x)) |u=t =
d

du
(ϕuϕt

−1)(f)(x)|u=t 

=
d

du
((ϕt

−1)
∗
ϕu
∗ )(f)(x)|u=t = (ϕt

−1)
∗
(
d

du
ϕu
∗ (f)(x)|u=t                       (4) 

 Or  ϕt
∗(Xt(f))(x)|u=t =

d

du
ϕu
∗ (f)(x) =

∂

∂t
ϕt
∗(f)(x)                          (5) 

   Therefore  Xt(f) = (ϕt
−1)
∗ ∂

∂t
ϕt
∗(f); For f ∈ F(M)                        (6) 

Note: the inverse maps be computed by reversing time, ϕt
−1 = ϕ−t. 

A flow is called steady (or stationary)if its vector field satisfies: 

∂X

∂t
= 0,                                        (7) 

i.e. the "shape" of the fluid flow is not changing. Even if each particle is moving under the flow, the global configuration 

of the fluid does not change. 

Let the one-form α ∈ Ω1(M) describe the velocity of a fluid. We define vorticity as 

              ϖ = dα                                       (8) 

The vorticity is a 2-form UJ is dual to the vorticity vector field (.The trajectories of vorticity field are called vortex lines.A 

flow is called irrotational if 

           ϖ = 0                                        (9) 

                                              

From the Poincare lemmaon some open subset U ⊂  M, there exist φ ∈ ℱU such that 

             α = dφ                                       (10) 

φ ∈ ℱUis called velocity potential. 

4. Continuity Equation (Erbar, M., 2010; Bajura, R., & Jones, E., 1976) 

4.1 Continuity Equation on Manifolds 

Reformulating the continuity equation from the point of view of vector fields and differential forms on manifolds. 

Let D ⊂  M be a sub region of MConsider a fluid moving in a domain D ⊂  M and suppose ω is a fixed¬volume 

element differential form on M, which is point-wise nonvanishing. Then, the total mass of the fluid in the region D at time 

t is 

 m(D, t) = ∫
D
ρtω .                                  (11) 

Where ρt describes the mass-density of the fluid at time t. from the principle of mass conservation in fluid dynamics, the 

total mass of the fluid, which at time t = 0 occupied a region D,remains unchanged after time t. 

Thus, the total mass of the fluid at time t = 0 occupinga region D is maintained with time, i.e. 

∫
ϕt(D)
ρtω = ∫Dρ0ω .                                 (12) 

Where ϕtthe one-parameter family of diffeomorophisms.Equation (12) isis the integral invariant for conservation of mass. 

By the change of variable formula, the left hand side of this relation is equal to 

∫
D
ϕt
∗(ρtω) = ∫Dρ0ω .                                (13) 

differentiating,with respect to t, we get 

∂

∂t
∫
D
ϕt
∗(ρtω) = ∫ D

∂

∂t
(ϕt
∗(ρtω)) = 0 .                       (14) 

Since
∂

∂t
(ϕt
∗(ρtω)) = ϕt

∗(LXt(ρtω)) + ϕt
∗(
∂

∂t
(ρt)ω) 
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Then (14) takes the form 

∫
D
[ϕt
∗(LXt(ρtω) +

∂

∂t
(ρt)ω)] = 0.                             (15) 

by change of variable formula  

     ∫
ϕt(D)
[LXt(ρtω) +

∂

∂t
(ρt)ω] = 0;  ∀D                                   (16) 

 

Since D is an arbitrary open set, this can be true only if the integrand is zero; that is 

                         LXt(ρtω) +
∂

∂t
(ρt)ω = 0                                (17) 

This is the equation of continuity in invariant form.Equation (17) can be written as 

    LXtωt +
∂ωt

∂t
= 0                                   (18) 

whereωt ∶= ρtω is a 1-parameter family of n-forms on M. 

(17) takes the following form 

     LX(ρω) = 0                                     (19) 

From properties of the Lie derivative this reduces to 

(LXρ)ω + ρLXω = 0                                 (20) 

Since ρis a constant function,the first term on the left-hand side of equation (20) is vanish, then equation (20) take the 

following form 

           LXω = 0                                      (21) 

This is the geometric form of equation of continuity for incompressible fluid.According to (Cartan's formula) the 

Lie-derivative applied to volume form can may be written as 

                              LXω = ixdω + dixω = dixω                          (22) 

Since dω = 0. Using (22), we find the alternative invariant formulation of continuity equation for incompressible fluid 

diXtω = 0                                 (23) 

 

These two formulations are equivalent. 

Now, whenever M =  ℝ3. In fact 

LXt(ρtω) = (LXtρt)ω + ρtLXtω    = Xt(ρt)ω + ρt(divXt)ω 

Xt(ρt) = ∑v
i (x, t)

∂ρ

∂xi
(16)                                (24) 

divXt =
∂vi

∂xi
 

∂

∂t
(ρt)ω =

∂ρ

∂t
 ω.  

substituting (24)into the continuity equation (17), we get the following 

     
∂ρ

∂t
ω + ∑vi

∂ρ

∂xi
ω+ ρ

∂vi

∂xi
ω = 0                              (25) 

Sinceω =  dx1dx2dx3 (volume form), therefore 

   
∂ρ

∂t
+ div(ρv) = 0                                    (26) 

Which is the usual equation of continuity. 
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4.2 Continuity Equation as Exterior Differential System (Verhulst, F., 2006) 

In this sub section, we use the Cartan's theory to show that it is possible to rewrite the continuity equation as an exterior 

differential system. 

A. Compressible (general) case: 

To reformulate the continuity equation as an exterior differential system(alternate geometric approach), we set. 

𝜃1 = 𝑑𝑥1 − 𝑣1𝑑𝑡
𝜃2 = 𝑑𝑥2 − 𝑣2𝑑𝑡
𝜃3 = 𝑑𝑥3 − 𝑣3𝑑𝑡

}                                      (27)    

We define the 3-form: 

𝜔 = 𝜌(𝑑𝑥1 − 𝑣1𝑑𝑡) ∧ (𝑑𝑥2 − 𝑣2𝑑𝑡) ∧ (𝑑𝑥3 − 𝑣3) 

= 𝜌𝑑𝑥1𝑑𝑥2𝑑𝑥3 − 𝜌𝑣1𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑡 + 𝜌𝑣2𝑑𝑥3𝑑𝑡𝑑𝑥1 − 𝜌𝑣3𝑑𝑡𝑑𝑥1𝑑𝑥2        (28) 

By applying the exterior derivative of both sides in (28) 

𝑑𝜔 = 𝑑[𝜌𝑑𝑥1𝑑𝑥2𝑑𝑥3 − 𝜌𝑣1𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑡 + 𝜌𝑣2𝑑𝑥3𝑑𝑡𝑑𝑥1 − 𝜌𝑣3𝑑𝑡𝑑𝑥1𝑑𝑥2] 

       = 𝑑𝜌 ∧ 𝑑𝑥1𝑑𝑥2𝑑𝑥3 − 𝑑(𝜌𝑣1) ∧ 𝑑𝑥2𝑑𝑥3𝑑𝑡 + 𝑑(𝜌𝑣2) ∧ 𝑑𝑥3𝑑𝑡𝑑𝑥1 − 𝑑(𝜌𝑣3) ∧ 𝑑𝑡𝑑𝑥1𝑑𝑥2] 

      = (
𝜕𝜌

𝜕𝑡
𝑑𝑡 +

𝜕𝜌

𝜕𝑥1
𝑑𝑥1 +

𝜕𝜌

𝜕𝑥2
𝑑𝑥2 +

𝜕𝜌

𝜕𝑥3
𝑑𝑥3) 𝑑𝑥1𝑑𝑥2𝑑𝑥3 

−(
𝜕𝜌𝑣1

𝜕𝑡
𝑑𝑡 +
𝜕𝜌𝑣1

𝜕𝑥1
𝑑𝑥1 +

𝜕𝜌𝑣1

𝜕𝑥2
𝑑𝑥2 +

𝜕𝜌𝑣1

𝜕𝑥3
𝑑𝑥3)𝑑𝑥2𝑑𝑥3𝑑𝑡 

                                                 + (
𝜕𝜌𝑣2

𝜕𝑡
𝑑𝑡 +

𝜕𝜌𝑣2

𝜕𝑥1
𝑑𝑥1 +

𝜕𝜌𝑣2

𝜕𝑥2
𝑑𝑥2 +   

𝜕𝜌𝑣2

𝜕𝑥3
𝑑𝑥3) 𝑑𝑥3𝑑𝑡𝑑𝑥1                   (29) 

        − (
𝜕𝜌𝑣3

𝜕𝑡
𝑑𝑡 +
𝜕𝜌𝑣3

𝜕𝑥1
𝑑𝑥1 +

𝜕𝜌𝑣3

𝜕𝑥2
𝑑𝑥2 +

𝜕𝜌𝑣3

𝜕𝑥3
𝑑𝑥3)𝑑𝑡𝑑𝑥1𝑑𝑥2 

Using the properties of wedge product, this becomes 

𝑑𝜔 =
𝜕𝜌

𝜕𝑡
𝑑𝑡𝑑𝑥1𝑑𝑥2𝑑𝑥3 −

𝜕𝜌𝑣1

𝜕𝑥1
𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑡 +

𝜕𝜌𝑣2

𝜕𝑥2
𝑑𝑥2𝑑𝑥3𝑑𝑡𝑑 −

𝜕𝜌𝑣3

𝜕𝑥3
𝑑𝑥3𝑑𝑡𝑑𝑥1𝑑𝑥2 

= [
𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑣1

𝜕𝑥1
+
𝜕𝜌𝑣2

𝜕𝑥2
+
𝜕𝜌𝑣3

𝜕𝑥3
] 𝑑𝑡𝑑𝑥1𝑑𝑥2𝑑𝑥3                                                                   (30) 

Therefore div𝜔= 0 corresponds to 

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑣1

𝜕𝑥1
+
𝜕𝜌𝑣2

𝜕𝑥2
+
𝜕𝜌𝑣3

𝜕𝑥3
= 0                                                                            (31) 

Thus the continuity equation correspond to the closed form 

𝑑𝜔 = 0                                           (32) 

Suppose we express the flow in terms of initial conditions (or other parameters) by 

𝑥 = 𝑥(𝑡, 𝛼1, … , 𝛼3),                                    (33) 

so that the a' are the parameters and 

𝜕𝑥

𝜕𝑡
= 𝑣,                                             (34) 

Thus𝑑𝑥𝑖 − 𝑣𝑖𝑑𝑡 = (
𝜕𝑥𝑖

𝜕𝑡
𝑑𝑡 + ∑

𝜕𝑥𝑖

𝜕𝛼𝑗
𝑑𝛼𝑗) − 𝑣𝑖𝑑𝑡 = ∑

𝜕𝑥𝑖

𝜕𝛼𝑗
𝑑𝛼𝑗                                                (35) 

So that 

 𝜔 = 𝜌
𝜕(𝑥1,𝑥2,𝑥3)

𝜕(𝛼1,𝛼2,𝛼3)
𝑑𝛼1𝑑𝛼2𝑑𝛼3 = 𝐾(𝑡, 𝛼)𝑑𝛼1𝑑𝛼2𝑑𝛼3                                            (36) 

Since 𝑑𝜔 = 0  we deduce that  



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                        Vol. 9, No. 1; 2017 

55 

                                                
𝜕𝑘

𝜕𝑡
= 0                                                                                    (37) 

Therefore 

    𝜔 = 𝐴(𝛼)𝑑𝛼1𝑑𝛼2𝑑𝛼3.                              (38) 

This means that the 3-form 𝜔is an integral-invariant for the flow 𝜙𝑡, which represents property of conservation of mass 

Equation (32).We consequently have the following result. Given two 3-chains 𝐶3, 𝐶3
′ ∈ 𝐶3(𝑀) which are in 1 - 1 

correspondence such that corresponding points lie on the same trajectory of the flow {𝜙𝑡}, then: 

∫
𝐶3
𝜔 = ∫

𝐶3
′𝜔,   𝐶3

′ = (𝜙𝑡)∗𝐶3                                                            (39) 

If now 𝐶3 = 𝐶3
(0)
 𝑎𝑡 𝑡0 = 0, then, by (2.37), 

                        𝜔 = ∫
𝐶3

′𝜔|𝑡=𝑡0 = ∫𝐶3
𝜌𝑑𝑥1𝑑𝑥2𝑑𝑥3,                                                         (40) 

And following up 𝐶3
(0)
= 𝐶3

(1)
 at time 𝑡1, we have: 

∫
𝐶3
(0)𝜌𝑑𝑥1𝑑𝑥2𝑑𝑥3 = ∫

𝐶3
(1)𝜌𝑑𝑥1𝑑𝑥2𝑑𝑥3                                           (41) 

Which expresses that mass is preserved in the flow {𝜙𝑡}, another form of the conservation of mass. 

B. Inviscid, incompressible, and irrotational (potential flow) case: 

A potential flow describes what the flow would be like if it were inviscid, incompressible, and irrotational. which in vector 

calculus is described by Laplace equation 𝛻2𝜑 = .Reformulating the problem in a differential geometry terms we 

consider the scalar function 𝜑 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎 0 − 𝑓𝑜𝑟𝑚 𝑜𝑟 𝑎 2 − 𝑓𝑜𝑟𝑚 , following contact variables 

𝑝 =
𝜕𝜑

𝜕𝑥
, 𝑞 =

𝜕𝜑

𝜕𝑦
, 𝑟 =                                   (42) 

Let M be a manifold with variables (𝑥, 𝑦, 𝑧, 𝜑, 𝑝, 𝑞, 𝑟), on M we define the contact form 

𝛼 = 𝑑𝜑 − 𝑝𝑑𝑥 − 𝑞𝑑𝑦 − 𝑟𝑑𝑧,                             (43) 

And the 2-form  

          𝛼  = 𝑝𝑑𝑦𝑑𝑧 + 𝑞𝑑𝑧𝑑𝑥 + 𝑟𝑑𝑥𝑑𝑦,                                                            (44) 

By taking the exterior derivative of (44) and using the anti-symmetric property of wedge product we obtain 

𝑑𝜎 = 𝑑[𝑝𝑑𝑦𝑑𝑧 + 𝑞𝑑𝑧𝑑𝑥 + 𝑟𝑑𝑧𝑑𝑦]   = 𝑑𝑝 ∧ 𝑑𝑦𝑑𝑧 + 𝑑𝑞 ∧ 𝑑𝑧𝑑𝑥 + 𝑑𝑟 ∧ 𝑑𝑥𝑑𝑦 

 = (
𝜕𝑝

𝜕𝑥
𝑑𝑥 +
𝜕𝑝

𝜕𝑦
𝑑𝑦 +
𝜕𝑝

𝜕𝑧
𝑑𝑧)𝑑𝑦𝑑𝑧 + (

𝜕𝑞

𝜕𝑥
𝑑𝑥 +
𝜕𝑞

𝜕𝑦
𝑑𝑦 +
𝜕𝑞

𝜕𝑧
𝑑𝑧) 𝑑𝑧𝑑𝑥 

+(
𝜕𝑟

𝜕𝑥
𝑑𝑥 +

𝜕𝑟

𝜕𝑦
𝑑𝑦 +

𝜕𝑟

𝜕𝑧
𝑑𝑧)𝑑𝑥𝑑𝑦                                                      (45) 

By using the anti-symmetric property of wedge product, this becomes 

𝑑𝜎 =
𝜕𝑝

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕𝑞

𝜕𝑦
𝑑𝑦𝑑𝑧𝑑𝑦 +

𝜕𝑟

𝜕𝑧
𝑑𝑧𝑑𝑥𝑑𝑦 = [

𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
+
𝜕2𝜑

𝜕𝑧2
] 𝑑𝑥𝑑𝑦𝑑𝑧             (46) 

Note that 𝑑𝜎 = 0. Then Laplace equation is equivalent to the relation 

                                     𝑑𝜎 = 0                                       (47) 

This is the coordinate-free version. 

5. Equations of Motion 

5.1 Momentum Equation on Manifolds (Datta, A., & Majumdar, A., 1980) 

Navier-Stokes equation is the most general equation for description of fluid phenomena , which as special case comprises 

Euler's equation of motion.Let M be a differentiable n-manifold, 𝜃 be a differential 1-form on M, co be a volume-element 

differential form on Mand D be a domain in M.  

Consider a fluid moving in a domain 𝐷 ⊂  𝑀. For any continuum there are two types of forces acting on a piece of 

material.  
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1) First there are external or body forces: 

whereF is a vector field representing the volume forces on a domain D, the 𝜃-component of the volume forces acting on 

the domain D are 

     𝑜𝑟𝑐 𝑣  = ∫ 𝜌
 ( )𝜔,                                   (48) 

2) Second there are stress forces (discipline of continuum mechanics can also encounter forces that come from the region 

surrounding a bit of fluid, expressed by the stress tensor):  

Phrasing this stress force a differential geometric language. 

Let T be a tensor field on M representing this stress. At 𝑥 ∈  𝑀, T is a skew-symmetric tensor field on M define in the 

following form: 

     𝜃 −1( 1, …  ,   −1) = 𝜃( ( 1, …  ,   −1));  𝑖 ∈  𝑥                         (49) 

Then we define the stress tensor of the fluid inside 𝐷 ⊂ 𝑀 in terms of the multilinear map: 

 =  ( 1,  2, …  ,   −1):  𝑥(𝑀) × … ×  𝑥(𝑀)   𝑥(𝑀),                         (50) 

For 𝑥 ∈  𝑀,  1,  2, …  ,   −1 ∈  𝑥(𝑀) 

( ( 1, …  ,   −1))is an (𝑛 − 1) covector on M. Then 𝜃( ) defines for each 𝜃 an (𝑛 − 1)-differential form on M. If D 

is a domain in M with boundary 𝜕𝐷, then the total 𝜃-component of the stress force is 

   𝑜𝑟𝑐 𝑠𝑡𝑟 = ∫𝜕 𝜃( ),                                                                                (51) 

Applying Stokes' theorem, to ∫
𝜕 
𝜃( ) we get 

 𝑜𝑟𝑐 𝑠𝑡𝑟 = ∫𝜕 𝜃( ) = ∫ 𝑑𝜃( ).                          (52) 

From (11) and (15) the 8-component of the force acting on the domain D at fixed time is 

 𝑜𝑟𝑐 𝑡 𝑡 = ∫𝜕 [𝜌𝜃( )𝜔 + 𝑑𝜃( ) = ∫ 𝜙𝑡( )
[𝜌𝑡𝜃( 𝑡)𝜔 + 𝑑(𝜃( (𝑧𝑡)(𝑖𝑧𝜔)))]        (53) 

Where𝜙𝑡(𝐷) is a volume preserving fluid flow with evolution operator 𝜙𝑡. 

Suppose a group of particles making up the fluid start out at t = 0 to occupy the domain D. At time t, they will be in domain 

𝜙𝑡(𝐷), their 𝜃- component of total momentum will be 

𝑀𝑜𝑚 𝑛𝑡 𝑚𝑡 𝑡 = ∫𝜙𝑡( )
𝜃( 𝑡)𝜌𝑡𝜔,                                                                    (54) 

by the change of variables theorem, this equals 

𝑀𝑜𝑚 𝑛𝑡 𝑚𝑡 𝑡 = ∫ 𝜙𝑡
∗(𝜃( 𝑡)𝜌𝑡𝜔).                             (55) 

The rate of change of momentum 

                                
𝜕

𝜕𝑡
∫
 
𝜙𝑡
∗(𝜃( 𝑡)𝜌𝑡𝜔) = ∫ 

𝜕

𝜕𝑡
[𝜙𝑡
∗(𝜃( 𝑡)𝜌𝑡𝜔)] 

= ∫
 
𝜙𝑡
∗ (  𝑡(𝜃( 𝑡)𝜌𝑡𝜔)) + ∫ 𝜙𝑡

∗ (𝜃 (
𝜕 𝑡

𝜕𝑡
) 𝜌𝑡𝜔 + 𝜃( 𝑡)

𝜕𝜌𝑡

𝜕𝑡
𝜔)                (56) 

By the change of variables theorem, we get 

𝜕

𝜕𝑡
∫
 
𝜙𝑡
∗(𝜃( 𝑡)𝜌𝑡𝜔) = ∫𝜙𝑡( )

[  𝑡(𝜃( 𝑡)𝜌𝑡𝜔) + 𝜃 (
𝜕 𝑡

𝜕𝑡
) 𝜌𝑡𝜔 + 𝜃( 𝑡)

𝜕𝜌𝑡

𝜕𝑡
𝜔]                           (57) 

By applying Newton's law of motion (principle of balance of momentum): the rate of momentum of a portion of the fluid 

equals the total force applied to it. By equating (16) to the expression (20) for the force acting in this region, we get 

∫
𝜙𝑡( )
[𝜌𝑡𝜃( 𝑡)𝜔 + 𝑑 (𝜃( (𝑧𝑡)(𝑖𝑧𝜔)))] 

= ∫
𝜙𝑡( )
[  𝑡(𝜃( 𝑡)𝜌𝑡𝜔) + 𝜃 (

𝜕 𝑡

𝜕𝑡
)𝜌𝑡𝜔 + 𝜃( 𝑡)

𝜕𝜌𝑡

𝜕𝑡
𝜔]                    (58) 

Since this relation is to hold for all domainsD, we have 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                        Vol. 9, No. 1; 2017 

57 

𝜌𝑡𝜃( 𝑡)𝜔 + 𝑑𝜃( 𝑡) =   𝑡(𝜃( 𝑡)𝜌𝑡𝜔) + 𝜃 (
𝜕 𝑡

𝜕𝑡
) 𝜌𝑡𝜔 + 𝜃( 𝑡)

𝜕𝜌𝑡

𝜕𝑡
𝜔.               (59) 

This is the geometric version of momentum equation of fluid motion, which is coordinate-free. 

If M= ℝ3, with coordinates 𝑥𝑖 , 𝑖 = 1,2,3. 

 𝑖 = 𝑣𝑖(𝑥, 𝑡)
𝜕

𝜕𝑥𝑖
,          𝜌𝑡 = 𝜌(𝑥, 𝑡),                         (60a) 

𝜔 = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3,          𝜃 = 𝑑𝑥𝑘,                          (60b) 

 =  𝑘
𝜕

𝜕𝑥𝑖
,          𝜃(F) = 𝑑𝑥𝑘( ) = 𝑑𝑥𝑘 ( 

𝑖 𝜕

𝜕𝑥𝑖
) =  𝑘                  (60c) 

We consider the bilinear map: 

 𝑥(𝑀) ×  𝑥(𝑀) →  𝑥(𝑀) 

( ,  ) →  ( ,  )(𝑥) =∑ 𝑖 𝑗  (
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗
) 

Defined by 

 𝑥( (𝑥),  (𝑥)) =  ( ,  )(𝑥),                             (61) 

Where 

 =∑ 𝑖
𝜕

𝜕𝑥𝑖
,     =∑ 𝑗

𝜕

𝜕𝑥𝑗
,            ,  ∈ 𝔵(𝑀) 

 (
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗
) =  𝑖𝑗𝑘

𝜕

𝜕𝑥 
,(2.3.15) 

Then 

 ( ,  )(𝑥) =  𝑖 𝑗 (
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗
) (𝑥) =  𝑖(𝑥) 𝑗(𝑥) 𝑖𝑗𝑘(𝑥)

𝜕

𝜕𝑥 
,                     (62) 

And   𝑖𝑗𝑘 =
1

2
∈𝑖𝑗   𝑘,                                                                          (63) 

Where∈𝑖𝑗 is the 3-index, skew-symmetric tensor (with ∈123 = 1). Equations (63) and (64) correspond to the conventional 

continuous approach where: 

 𝑘(𝑑 ) =  𝑖𝑗 𝑑 
𝑖𝑗 ,                                        (64) 

Now  

𝑑(𝜃( )) +
1

2

𝜕 𝑖𝑗𝑘

𝜕𝑥ℎ
𝑑𝑥ℎ ∧ 𝑑𝑥𝑗 =

1

2
(∈ℎ𝑖𝑗

𝜕 𝑖𝑗𝑘

𝜕𝑥ℎ
)𝜔 

=
1

2
∈ℎ𝑖𝑗∈𝑖𝑗 

𝜕 𝑖 

𝜕𝑥 
𝜔 =  ℎ 

𝜕 𝑖 

𝜕𝑥 
𝜔 =

𝜕 𝑖 

𝜕𝑥 
,                                                                              (65) 

And    𝑡(𝜔) =
𝜕𝑣𝑖

𝜕𝑥𝑖
𝜔                                                                                      (66) 

Hence (66) becomes 

𝜌 𝑘 + 3(𝜔) =
𝜕 𝑖 

𝜕𝑥𝑖
= 𝑣𝑖

𝜕

𝜕𝑥𝑖
(𝑣𝑘𝜌) + 𝑣𝑘𝜌

𝜕𝑣𝑖

𝜕𝑥𝑖
+
𝜕𝑣 

𝜕𝑡
𝜌 + 𝑣𝑘

𝜕𝜌

𝜕𝑡
,                                      (67) 

Which is the usual momentum equation of motion. 

5.2 Euler Equation on Riemannian Manifold (Gilkey, P. B., 1975; Yamabe, H., 1960) 

In this section we express the Euler's equation in the language of differential one-forms on Riemannian manifold. The 

formulation is obtained in the absence of body forces. 
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Consider an n-dimensional manifold M with a Riemannian metric g. By identifying the differential forms with their dual 

vector fields, we rewrite Euler equation in terms of differential 1-forms. Let 𝛼 ∈ 𝛺1(𝑀) be the one form associated to X 

(𝛼 is the one-form dual to X), describe the velocity of an ideal fluid. We seek an invariant meaning for the sum of the last 

three terms on the left-hand side of equation (26). For fixed i this expression equals 

  𝑣𝑗
𝜕𝑣𝑖

𝜕𝑥𝑗
= 𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
+ 𝑣𝑗

𝜕𝑣𝑗

𝜕𝑥𝑖
− 𝑣𝑗

𝜕𝑣𝑗

𝜕𝑥𝑖
=  𝑥𝛼 −

1

2
𝑑(𝛼(𝑥))(27)Also

𝜕𝑝

𝜕𝑥𝑖
= 𝑑𝑝                           (68) 

So substituting (67) and (68) into the Euler equations (65), we get the following exterior differential system 

𝜕𝛼

𝜕𝑡
+  𝑥𝛼 −

1

2
𝑑(𝛼(𝑥)) +

1

𝜌
𝑑𝑃 = 0                          (69) 

This is the Euler equation in terms of differential 1-forms. According to (Cartan's magic formula) the Lie-derivative 

applied to one-form a may be written as 

 𝑥𝛼 = 𝑖 𝑑𝛼 + 𝑑𝑖 𝛼 

              = 𝑖 𝑑𝛼 + 𝑑(𝛼(𝑥)) 

           = 𝑖  + 𝑑(𝛼(𝑥))                                                                               (70) 

Since 𝑑𝛼 =  . So substituting (70) into the Euler equation (69), we get the following alternative form 

𝜕𝛼

𝜕𝑡
+ 𝑖  +

1

2
𝑑(𝛼(𝑥)) +

1

𝜌
𝑑𝑃 = 0                         (71) 

On the basis of the Euler equation (69)and exterior calculus, we derive in the following a set of invariant fluid equations. 

A. Bernoulli equation. 

For a steady (time-independent) flow of a perfect (an inviscid and incompressible) fluid, Euler equation (69) becomes 

 𝑥𝛼 = −𝑑 (
1

𝜌
𝑃 −

1

2
𝛼(𝑥))                                (72) 

By using Cartan Magic formula 

 𝑥𝛼 = 𝑖 𝑑𝛼 + 𝑑𝑖 𝛼 

         = 𝑖 𝑑𝛼 + 𝑑(𝛼(𝑥))                                                                             (73) 

Substituting (73) into (72) we get  

𝑖𝑥𝑑𝛼 = −𝑑 (
1

𝜌
𝑃 −

1

2
𝛼( ))                                (74) 

Where    𝑓 =
1

𝜌
𝑃 −

1

2
𝛼( )                               (75) 

From (74) we have   

     𝑖𝑥𝑑 (
1

𝜌
𝑃 +

1

2
𝛼( )) = 0                                (76) 

Since 𝑖𝑥𝑖𝑥 = 0, so that the quantity 
1

𝜌
𝑃 +

1

2
𝛼( ) is constant along each streamline (integral curves of X) of the fluid flow. 

This is the Bernoulli's principle. The function f is known as the Bernoulli function of X. 

Also 

 𝑑(𝑖𝑥𝑑𝛼) =  𝑥𝑑𝛼 = 𝑑(−𝑑𝑓) = 0                               (77) 

meaning that d𝛼 is preserved by X. 

Since𝑖𝑥𝑑𝛼 − 𝑑𝑓, we get 𝑥𝑓 = −𝑖 𝑖 𝑑𝛼 = 0                         (78) 

Thus f is invariant under the flow of X. We will call Euler vector fields to the solutions to the equations of an ideal steady 

incompressible fluid on a manifold. 

If the fluid is irrotational (𝑑𝛼= 0) then Poincare lemma tells us that 

𝛼 = 𝑑𝜑                                         (79) 

Where𝜑 ∈ ℱ𝑈is a velocity potential, 𝑈 ⊂ 𝑀. Substituting (79) into (71) we obtain 
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𝜕 𝜑

𝜕𝑡
+
1

2
𝑑(𝛼( )) = −

1

𝜌
𝑑𝑃                                                                              (80) 

Therefore, 

   𝑑 [
𝜕 𝜑

𝜕𝑡
+
1

2
(𝛼( )) +

1

𝜌
𝑃] = 0                                  (81) 

 

Thus we have the Unsteady Bernoulli Equation form from the geometric point of view 

𝜕𝜑

𝜕𝑡
+
1

2
(𝛼( )) +

1

𝜌
𝑃 + 𝑐,                                                  (82) 

on 𝑈 ⊂  𝑀, where 𝑐 ∈ ℱ𝑈 satisfied      𝑑𝑐 = 0                                                       (83) 

B. Vorticity Equation and Conservation Properties 

On the basis of the Euler equation (69) we show conservation of vorticity 

 = 𝑑𝛼 ∈ 𝛺2(𝑀) 

By taking the exterior derivative of (69), 

𝑑 [
𝜕𝛼

𝜕𝑡
+  𝑥𝛼 −

1

2
𝑑(𝛼( )) +

1

𝜌
𝑑𝑃] = 0                              (84) 

As the Lie-derivative and the exterior derivative commute, we get the following 

𝜕 𝛼

𝜕𝑡
+  𝑥𝑑𝛼 −

1

2
𝑑𝑑(𝛼( )) + 𝑑 (

1

𝜌
) 𝑑𝑑𝑃 = 0                           (85) 

For the case of incompressible flows  

  
𝜕𝜛

𝜕𝑡
+ L𝑥 = 0.                                                                         (86) 

This equation is called vorticity equation From (85) it follows that 

:
𝜕

𝜕𝑡
(𝜙𝑡
∗ 𝑡) = 0, 

So  

𝜙𝑡
∗ 𝑡 =  0,                                          (88) 

Showing that vorticity moves with the fluid.This is, via stokes theorem another way of phrasing Kelvin's theorem. 

5.2.1 Kelvin Circulation Theorem. (Marsden, J., & Weinstein, A., 1983)  

Let M be a manifold and 𝑙 ⊂ 𝑀a smooth closed loop that is, a compact one-manifold. Let  𝑡 solve the Euler equations 

on M for ideal isotropic compressible or homogeneous incompressible flow and 𝑙(𝑡) be the image of 𝑙 at time t when 

each particlemoves under the flow 𝜙𝑡of  𝑡; that is, 𝑙(𝑡) = 𝜙𝑡(𝑙). Then the circulation is constant in time; that is, 

 

 𝑡
∫
 (𝑡) 
𝛼 = 0.                                       (89) 

Proof. Let 𝜙𝑡 be the flow of  𝑡. Then (𝑡) = 𝜙𝑡(𝑙), and by change of variables theorem, (89) becomes 

 

 𝑡
∫
𝜙𝑡( ) 
𝛼 =

 

 𝑡
∫
  
𝜙𝑡
∗𝛼 = ∫

  
[𝜙𝑡
∗(  𝛼) + 𝜙𝑡

∗ (
𝜕𝛼

𝜕𝑡
)].                           (90) 

However,   𝛼 +
𝜕𝛼
𝜕𝑡⁄  is exact from the equations of motion and the integral of an exact form over a closed loop is zero. 

We now use Stokes theorem, which will bring in the vorticity. If 𝛴 is a surface (a two-dimensional submanifold of M) 

whose boundary is a closed contour C, then Stokes theorem yields 

 𝐶 = ∫𝐶𝛼 = ∫ 𝑑𝛼 = ∫                                       (91) 

Thus, as a corollary of the circulation theorem, we can conclude: 

5.2.2 Helmholtz Theorem. 

The flux of vorticity across a surface moving with the fluid is constant in time 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                        Vol. 9, No. 1; 2017 

60 

6. Classification of Fluids According to Diffeomorophisms (Kiehn, R., 2002) 

We will now sketch a conceptual frame work for some of the geometric structure of fluids. 

6.1 Compressible Fluid 

Let M and N be differentiable manifolds of the same dimension. Let L denote an interval of positive real numbers. Let 

 𝑓 (𝑀 ×  ,𝑁)denote the set of all maps: 

𝜙:𝑀 ×  → 𝑁   ∶ (𝑥, 𝑡) ⟼ 𝜙(𝑥, 𝑡),                              (92) 

Such that¢ 𝜙 is smooth. For each t EL, the map 

𝜙𝑡:𝑀 → 𝑁   ∶ 𝑥 ⟼ 𝜙(𝑥, 𝑡),                                 (93) 

is a diffeomorphism. 

6.1.1 Definition 

 𝑓 (𝑀 ×  ,𝑁)is called the space of smooth fluid flows in N parameterized by M. geometrically, 𝑡 ⟼ 𝜙𝑡  can be 

considered as a one parameter deformation in the space of diffeomorphisms, we can write:  

                                  𝜙𝑡 = 𝜙°𝑐𝑡,                                                                         (94) 

Where 𝑡 ⟼ 𝑐𝑡 ∈Diff(N) is a curve in the group of all diffeomorphisms of N. recall the ideas of the jet bundle calculus. We 

do this in a form that accords with intuition surrounding what is called the Eulerian picture in fluid mechanics. 

Let M and N be finite dimensional, infinitely-differentiable manifold. Let 𝜙𝑓 (𝑀 ×  ,𝑁)be as above, introduce the 

following equivalence relation on 𝑀 ×  ×  𝑓 (𝑀 ×  ,𝑁): 

(𝑥, 𝑡, 𝜙) = (𝑥 ′, 𝑡 ′, 𝜙′)𝑖𝑓𝑓

𝑥 = 𝑥 ′

𝑡 = 𝑡 ′

𝜙(𝑥, 𝑡) = 𝜙′(𝑥, 𝑡) }
 

 
                                                                         (95) 

The curves 𝑠 → 𝜙(𝑥, 𝑠) and𝑠 → 𝜙′(𝑥, 𝑠) have the same tangent vector at 𝑠 = 𝑡. 

6.1.2 Definition 

Let 𝐸(𝑀,𝑁) be the quotient set of 𝑀 ×  ×  𝑓 (𝑀 ×  ,𝑁) with respect to this equivalence relation. 𝐸(𝑀,𝑁)is called 

the Eulerian velocity bundle for motion of fluids in N parameterized by M. It is readily seen to be a manifold. 

6.1.3 Definition 

Given (x, t, ϕ) ∈ M × L × Γfl(M × L,N) , the equivalence class to which the pair (x, ϕ) belongs is denoted as 

v(ϕ)(x,t).as(x, t) varies, we obtain a map.  

Called the Eulerian velocity field  associated with the fluid flow ϕ. Consider the target map 

vϕ:M × L → E(M,N),                                    (7) 

Called the Eulerian velocity field associated with the fluid flow ϕ. Consider the target map： 

M× L × Γfl(M × L, N) → N × L 

: (x, t, ϕ) ⟼ ϕ(x, t)                                      (8) 

This map is constant on the equivalence relation (6), hence defines a quotient map that we will label as follows: 

πtarE(M,N) → N × L 

The fibers of πtar are tangent vectors to N, hence πtar defines E(M, N) as a vector bundle over N × L where TN is the 

tangent bundle to N. 

6.2 Incompressible Fluids 

Let us define the geometry of an incompressible fluid. Let η and ω denote fixed volume-element differential forms on N 

and M, respectively. 

Let Γinfl(M × L,N)denote the set of all maps 

ϕ:M × L → N 

: (x, t) ⟼ ϕ(x, t),                                       (10) 

Such that ϕ ∈ Γfl(M × L,N), for each t ∈ L, the map: 

ϕt:M → N   ∶ x ⟼ ϕ(x, t),                               (96) 
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Is a diffeomorphism, and satisfies:ϕt
∗(η) = ω. 
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