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Abstract

A mixed element-characteristic finite element method is put forward to approximate three-dimensional incompressible
miscible positive semi-definite displacement problems in porous media. The mathematical model is formulated by a
nonlinear partial differential system. The flow equation is approximated by a mixed element scheme, and the pressure
and Darcy velocity are computed at the same time. The concentration equation is treated by the method of characteristic
finite element, where the convection term is discretized along the characteristics and the diffusion term is computed by the
scheme of finite element. The method of characteristics can confirm strong computation stability at the sharp fronts and
avoid numerical dispersion and nonphysical oscillation. Furthermore, a large step is adopted while small time truncation
error and high order accuracy are obtained. It is an important feature in numerical simulation of seepage mechanics
that the mixed volume element can compute the pressure and Darcy velocity simultaneously and the accuracy of Darcy
velocity is improved one order. Using the form of variation, energy method, L2 projection and the technique of priori
estimates of differential equations, we show convergence analysis for positive semi-definite problems. Then a powerful
tool is given to solve international famous problems.

Keywords: three-dimensional incompressible miscible displacement, positive semi-definite problem, mixed element with
characteristic finite element, error estimate in L2-norm

1. Introduction

The incompressible miscible positive semi-definite displacement problem in porous media consists of two partial dif-
ferent equations: an elliptic equation for the pressure, a convection-diffusion equation for the concentration, where the
concentration equation has strong hyperbolic feature (Douglas, 1983; Dougals, Ewing & Wheeler, 1983; Ewing, Russell
& Wheeler, 1984; Russell, 1985),

− ∇ · ( κ(X)
µ(X)

(∇p − γ(c)∇d(X))
) ≡ ∇ · u = q, X ∈ Ω, t ∈ J = (0,T ], (1a)

u = − κ(X)
µ(X)

(∇p − γ(c)∇d(X)), X ∈ Ω, t ∈ J. (1b)

ϕ
∂c
∂t
+ u · ∇c − ∇ · (D(X,u)∇c) = (c̃ − c)q̃, X ∈ Ω, t ∈ J, (2)

u · ν = (D(X,u)∇c) · ν = 0, X ∈ ∂Ω, t ∈ J, (3)

c(X, 0) = c0(X), X ∈ Ω. (4)

Ω denotes a bounded domain of R3, and ν is the normal outer vector to the boundary surface, denoted by ∂Ω. The
pressure, p(X, t), Darcy velocity, u = (u1, u2, u3)T and the concentration of water, c(X, t), are objective functions. q(X, t),
the quantity, is greater than zero at injection wells and is less than zero at production wells, and q̃ = max{q, 0}. ϕ(X) is the
porosity of rock, and κ(X) is absolute permeability. µ(c), the viscosity of mixture, depends on c. c̃, the concentration of
injected fluid, is equal to c at production wells, c̃ = c. γ(c) and d(X) = (0, 0, z)T denote the gravitational coefficient and
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vertical coordinates, respectively. The diffusion matrix, D(X,u), is generally defined by (Yuan & Han, 2008; Yuan, Wang
& Han, 2010),

D(X,u) = Dm(X)I + αl|u|β
 û2

x ûxûy ûxûz

ûxûy û2
y ûyûz

ûxûz ûyûz û2
z

 + αt |u|β
 û2

y + û2
z −ûxûy −ûxûz

−ûxûy û2
x + û2

z −ûyûz

−ûxûz −ûyûz û2
x + û2

y

 . (5)

Dm is the molecular diffusivity. I denotes a 3×3 unit matrix. αl and αt are the longitudinal and the transverse dispersivities,
respectively. ûx, ûy, ûz denote three direction cosines of u. Generally speaking, the symbol, β ≥ 2, is a positive constant.
The mathematical model is usually used to describe numerical simulation of oil reservoir and contaminant-transport
problem, and the diffusion matrix is supposed to be positive definite. While in actual numerical simulation applications
such as oil-gas resources basin assessment (Yuan & Han, 2008; Yuan, Wang & Han, 2010) and numerical computation of
enhanced (chemical) oil recovery (Yuan, Cheng, Yang & Li, 2014,2015), the diffusion matrix is only positive semi-definite
(Dawson, Russell & Wheeler, 1989; Ewing, 1983; Yuan, 2013),

D(X,u) ≥ 0. (6)

The present paper mainly considers a positive semi-definite problem, and the discussion gives more theoretical reference
in terms of mathematics and mechanics (Ewing, 1983; Yuan, 2013).

Oil-water two phase seepage displacement is a primary topic in numerical simulation of oil reservoir. For two-dimensional
positive definite problems, Douglas and Russell presented well-known numerical methods such as characteristic finite d-
ifference and characteristic finite element (Russell, 1985; Douglas, 1983). Douglas, Ewing and Wheeler put forward the
method of mixed element (Douglas, Ewing & Wheeler, 1983), and Ewing, Russell, Wheeler discussed the characteristics-
mixed element (Ewing, Russell & Wheeler, 1984). The above arguments were based on the positive definite assumption,
but the diffusion matrix was only positive semi-definite in some actual applications (Dawson, Russell & Wheeler, 1989;
Ewing, 1983; Yuan & Han, 2008; Yuan, Wang & Han, 2010; Yuan, 2013; Yuan, Cheng, Yang & Li, 2014,2015). There-
fore, the framework of theoretical analysis is not feasible. It is hard and difficult to show convergence analysis of semi-
definite problem. The characteristic finite element method was presented by Dawson (Dawson, Russell & Wheeler, 1989).
For three-dimensional positive semi-definite problems, Yuan discussed characteristic finite element and characteristic fi-
nite difference (Yuan, 1997,1999). Based on the above discussions, we present a method of mixed element-characteristic
finite element to simulate three-dimensional incompressible miscible positive semi-definite displacement problem of (1)-
(4). The flow equation is treated by a conservative mixed element method, and the pressure and Darcy velocity are
obtained at the same time. The characteristic finite element is used to solve the concentration equation, where the con-
vection term is discretized along the characteristics and the diffusion term is approximated by the finite element method.
The characteristics can confirm strong stability at the fronts and can avoid numerical dispersion. Moreover, it can adopt
large spatial step while computational accuracy is not decreased. More important in numerical simulation of seepage
mechanics, the pressure and Darcy velocity are obtained simultaneously by using the scheme of mixed element and the
computational accuracy of Darcy velocity is developed one order. Using variation form, energy method, L2 projection
and theoretical framework of priori estimate, we show convergence analysis in L2 norm. Then the well-known difficult
problem is solved numerically, and a basic theoretical reference is given for actual numerical simulations.

common symbols and notations of Sobolev space are adopted. Suppose that the problem of (1)-(4) is regular,

(R)


c ∈ L∞(Hl+1)

∩
H1(Hl+1)

∩
L∞(W1

∞)
∩

H2(L2),
p ∈ L∞(Hk+1),
u ∈ L∞(Hk+1(div))

∩
L∞(W1

∞)
∩

W1
∞(L∞)

∩
H2(L2),

(7)

where l ≥ 3, k ≥ 1.

And suppose that the problem is positive semi-definite

(C) 0 < a∗ ≤ κ(X)
µ(c) ≤ a∗, 0 < ϕ∗ ≤ ϕ(X) ≤ ϕ∗, D(X,u) ≥ 0, (8)

where a∗, a∗, ϕ∗ and ϕ∗ are positive constants.

In this paper, the symbols K and ε denote a generic positive constant and a generic small positive number, respectively.
They have different definitions at different places.
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2. The Computation Program

2.1 The Mixed Element for the Pressure

The form of variation is discussed. Let H(div;Ω) denote a space consisting of vector functions, v ∈ L2(Ω)3, satisfying
∇ · v ∈ L2(Ω), then define

V = H(div;Ω)
∩{

v · ν = 0 on the boundary ∂Ω
}
. (9a)

The pressure p(X, t) is determined only except an additive constant. For simplicity, consider a factor space

W = L2(Ω)/
{
φ ≡ const. on the boundary ∂Ω

}
. (9b)

For α, β ∈ V , φ ∈ W and θ ∈ L∞(Ω), define the following bilinear function

A(θ, α, β) =
(µ(θ)

k
α, β
)
, (10a)

B(α, φ) = −(∇ · α, φ). (10b)

Then the pressure equation is equivalent to a family of saddle point problems:

A(c,u, v) + B(v, p) = (γ(c)∇d, v), ∀v ∈ V, (11a)
B(u,w) = −(q,w), ∀w ∈ W. (11b)

The problem of (11) is considered. Let hp > 0 be the spatial step for the pressure, and let Jhp be a quasi-regular partition
of Ω, consisting of tetrahedrons or cubes with the greatest diameter at most hp. Let Vh ×Wh ⊂ V ×W be a Raviar-Thomas
space on the partition (Raviart & Thomase, 1977; Thomase, 1977), with the index k and the approximation O(hk+1

p ), whose
approximations satisfy

(Ap)


inf

vh∈Vh
||v − vh||L2(Ω)3 ≤ K||v||Hk+1(Ω)3 hk+1

p ,

inf
vh∈Vh
||v − vh||V ≤ K

{||v||Hk+1(Ω)3 + ||∇ · v||Hk+1(Ω)
}
hk+1

p ,

inf
wh∈Wh

||w − wh|| ≤ K||w||Hk+1(Ω)hk+1
p ,

(12a)

(Ip) ||w||L∞(Ω) ≤ Kh−3/2
p ||w||L2(Ω), ||w||H1(Ω) ≤ Kh−1

p ||w||L2(Ω). (12b)

Introduce elliptic projection of (u, p) to find (ũh, p̃h): [0,T ]→ Vh ×Wh such that

A(c, ũh, v) + B(v, p̃h) = (γ(c)∇d, v), ∀v ∈ V, (13a)
B(ũh,w) = −(q,w), ∀w ∈ W, (13b)

where c is the exact concentration.

It is seen that in the references (Douglas, Ewing & Wheeler, 1983; Ewing, Russell & Wheeler, 1984) the solution (ũh, p̃h)
exists solely and is estimated as follows

||ũh − u||L∞(H(div)) + ||p̃h − p||L∞(L2) ≤ Khk+1
p . (14)

Then it follows from (14) and (Ip), for k ≥ 1,
||ũ||L∞(L∞) ≤ K. (15)

The mixed element scheme is constructed. When the approximate concentration ch at t ∈ J is known, then (uh, ph) ∈
Vh ×Wh is aimed to find

A(ch,uh, v) + B(v, ph) = (γ(ch)∇d, v), ∀v ∈ Vh, (16a)
B(uh,w) = −(q,w), ∀w ∈ Wh. (16b)

It has been proved that numerical solutions of (16) exist solely (Brezzi, 1974). Using (14) and (15),

||uh − ũh||H(div) + ||ph − p̃h|| ≤ K(1 + ||ũh||L∞)||c − ch||L2 . (17)

The concentration equation (2) is discretized later.
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2.2 The Finite Element Approximation for the Concentration

For convenience to interpret the approximation of concentration, we suppose that Darcy velocity u = (u1, u2, u3)T is given.
The procedures are constructed by combining the discretization of characteristics and the approximation of finite element.

Let Mh ⊂ H1(Ω) be a normal finite element space with index l, and let hc > 0 be a spatial step of quasi-regular partition
Jhc . The largest diameter of tetrahedron elements or cube elements is not exceeding hc. Approximation order is O(hl+1

c )
(Ciarlet, 1978),

(Ac) inf
zh∈Mh

{
||z − vh||L2(Ω) + hc||z − zh||H1(Ω)

}
≤ Khl+1

c , (18a)

(Ic) ||w||L∞(Ω) ≤ Kh−3/2
c ||w||L2(Ω), ||w||H1(Ω) ≤ Kh−1

c ||w||L2(Ω). (18b)

Let τ(X, t) denote a unit vector of the characteristics, and let ψ = [ϕ2 + |u|2]1/2 = (ϕ2 +
3∑

i=1
u2

i )1/2. Then the characteristic

derivative is formulated by
ψ
∂c
∂τ
= ϕ

∂c
∂t
+ u · ∇c. (19)

Let ∆tc = T/N denote the time step for the concentration, and tn = n∆tc. N is a positive integer. For X ∈ Ω, define

X̌n−1 = X − ϕ−1un∆tc, čn−1(X) = cn−1(X̌n−1). (20)

The characteristic derivative, ∂cn

∂τ
(X) = ∂c

∂τ
(X, tn), is approximated by a backward difference quotient

∂cn

∂τ
(X) ≈ cn(X) − čn−1(X)

∆tcψn , (21)

where ψn = [ϕ2 + |un|2]1/2.

The variation of (2) is defined as follows. A function, c : J → H1(Ω), is determined by

(ϕ
∂c
∂t
, z) + (u · ∇c, z) + (D(u)∇c,∇z) = ((c̃ − c)q̃, z), ∀z ∈ H1(Ω), t ∈ J. (22)

By using (19), (22) is restated by

(ψ
∂c
∂τ
, z) + (D(u)∇c,∇z) = ((c̃ − c)q̃, z), ∀z ∈ H1(Ω), t ∈ J, (23a)

c(X, 0) = c0(X), X ∈ Ω. (23b)

Since the diffusion matrix D(u) is positive semi-definite, so L2 projection is introduced, replacing elliptic projection, to
show convergence analysis. For t ∈ J, c̄h ∈ Mh is defined by

(ϕc̄h, χ) = (ϕc, χ) ,∀χ ∈ Mh. (24)

Then the estimate holds (Ciarlet,1978)

||c − c̄h||L2(L2) + hc||c − c̄h||L2(H1) ≤ Khl+1
c ||c||L2(Hl+1). (25)

The characteristic finite element scheme of (23) is constructed. {cn
h ∈ Mh} is computed by

(ϕ
cn

h − ĉn−1
h

∆tc
, zh) + (D(un)∇cn

h,∇zh) + (q̃cn
h, zh) = ((q̃c̃(tn), zh), ∀zh ∈ Mh, (26a)

c0
h = c̄0

h, (26b)

where c̄0
h is an L2 projection of initial solution c0(X).

2.3 The Composite Scheme

Combining (16) and (26), we state a composite scheme to solve (1)-(4). In actual computation Darcy velocity changes
more slowly than the saturation with respect to time t, so spatial large step is adopted for computing (16). Time interval J
is partitioned 0 = t0 < t1 < · · · < tL = T , with ∆tm

p = tm − tm−1. All the steps except for the first step ∆t1
p are supposed to

be uniform ∆tm
p = ∆tp,m ≥ 2. Each pressure node tm is also a saturation node tn where m, n are positive integers, and let
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j = ∆tp/∆tc, j1 = ∆t1
p/∆tc. For a function φm(X) = φ(X, tm) related with saturation step tn for tm−1 < tn ≤ tm, we require a

velocity approximation uh in (26). If m ≥ 2, define a linear extrapolation of uh,m−1 and uh,m−2 as follows

Eun
h = (1 +

tn − tm−1

tm−1 − tm−2
)uh,m−1 −

tn − tm−1

tm−1 − tm−2
uh,m−2. (27)

If m = 1, set Eun
h = uh,0.

Combining (16) with (26), replacing exact solution by numerical approximations, then we can obtain full discrete coupled
scheme of (1)-(4) to find {cn

h} : (t0, t1, · · · , tL)→ Mh and {uh,m, ph,m} : (t0, t1, · · · , tL/ j)→ Vh ×Wh,

(ϕ
cn

h − ĉn−1
h

∆tc
, zh) + (D(Eun

h)∇cn
h,∇zh) + (q̃ncn

h, zh) = (q̃cn
h, zh), ∀zh ∈ Mh, (28a)

c0
h = c̄0

h, ∀X ∈ Ω, (28b)

A(ch,m,uh,m, v) + B(v, ph,m) = (γ(ch,m)∇d, v), ∀v ∈ Vh, (29a)
B(uh,m,w) = −(qm,w), ∀w ∈ Wh, (29b)

where ĉn−1
h (X) = cn−1

h (X − ϕ−1Eun
h∆tc).

The procedures of (28) and (29) run as follows.
Step 1. Given initial approximation c0

h, then by (29a) and (29b) the numerical values of (uh,0, ph,0) are obtained.
Step 2. Applying (28a) and (28b) to find c1

h, c2
h, · · · , c j1

h .
Step 3. By the fact of c j1

h = ch,1, and by (29a), (29b), we have (uh,1, ph,1).
Step 4. Similarly, we get the values of c j1+1

h , c j1+2
h , · · · , c j1+ j

h , (uh,2, ph,2).
Step 5. The program runs repeatedly as above, then all the numerical solutions are obtained.

3. Convergence Analysis

Based on the discussions of Darcy velocity uh and the pressure ph, (14) and (17), convergence analysis is shown as
follows. Let ζ = ch − c̄h and ξ = c − c̄h. From (28a), (23a) (t = tn), (21) and (24), taking zh = ζ

n, we have

(ϕ
ζn − ζ̌n−1

∆tc
, ζn) + (D(Eun

h)∇ζn,∇ζn) + (q̃nζn, ζn)

= (σn, ζn) − (ϕ
ξ̌n−1 − ξn−1

∆tc
, ζn) + (q̃nξn, ζn) + (D(Eun

h)∇ξn,∇ζn)

+ (ϕ
F̌n−1

h − F̂n−1
h

∆tc
, ζn) − (ϕ

ζ̌n−1 − ζ̂n−1

∆tc
, ζn) + ([D(un) − D(Eun

h)]∇cn,∇ζ),

(30)

where σn = [ϕ ∂cn

∂t + Eun · ∇cn] − ϕ cn−čn−1

∆tc
, Fh = c̄h, ζ̌n−1 = ζn−1(X̌n−1), · · · .

The first term on the left-hand side of (30) is estimated. Noting that

(ϕ
ζn − ζ̌n−1

∆tc
, ζn) ≥ 1

2∆tc

{
(ϕζn, ζn) − (ϕζ̌n−1, ζ̌n−1)

}
=

1
2∆tc

{
(ϕζn, ζn) − (ϕζn−1, ζn−1)

}
+

1
2∆tc

{
(ϕζn−1, ζn−1) − (ϕζ̌n−1, ζ̌n−1)

}
.

(31)

The second term of (31), 1
2∆tc

{
(ϕζn−1, ζn−1) − (ϕζ̌n−1, ζ̌n−1)

}
, is discussed. Let Y = X̌ = X − u(X, tn)ϕ−1∆tc , R(X), and let
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Ω̌ = R(Ω) be the range of the mapping R. Since detDR(X) = 1 − ∇ · ( u
ϕ

)
∆tc + O((∆tc)2), then

1
2∆tc

{
(ϕζ̌, ζ̌) − (ϕζ, ζ)

}
=

1
2∆tc

{ ∫
Ω̌

ϕ(x)ζ(y)ζ(y)(detDR(X))−1dy −
∫
Ω

ϕ(X)ζ(x)ζ(x)dx
}

=
1

2∆tc

{ ∫
Ω̌

ϕ(x)ζ(y)ζ(y)[1 + ∇ · (u
ϕ

)
∆tc + O((∆tc)2)]dy −

∫
Ω

ϕ(x)ζ(x)ζ(x)dx
}

=
1

2∆tc

{ ∫
Ω̌

ϕ(y)ζ(y)ζ(y)dy −
∫
Ω

ϕ(X)ζ(x)ζ(x)dx +
∫
Ω̌

(ϕ(x) − ϕ(y))ζ(y)ζ(y)dy

+

∫
Ω̌

ϕ(x)ζ(y)ζ(y)[∇ · (u
ϕ

)
∆tc + O((∆tc)2)]dy

}
=

1
2∆tc

{ ∫
Ω̌\Ω

ϕ(y)ζ(y)ζ(y)dy −
∫
Ω\Ω̌

ϕ(x)ζ(x)ζ(x)dx
}

+
1

2∆tc

{ ∫
Ω̌

(ϕ(x) − ϕ(y))ζ(y)ζ(y)dy +
∫
Ω̌

ϕ(x)ζ(y)ζ(y)[∇ · (u
ϕ

)
∆tc + O((∆tc)2)]dy

}
= T1 + T2.

(32)

From the boundary condition u · ν = 0, we can get meas{Ω̌\Ω} = O((∆tc)2), meas{Ω\Ω̌} = O((∆tc)2). If the partition
satisfies ∆tc = O(h3

c), then T1 is bounded by |T1| ≤ K||ϕ1/2ζ ||2L∞∆tc ≤ Kh−3
c ∆tc(ϕζ, ζ) ≤ K(ϕζ, ζ). Similarly, T2 is bounded

by |T2| ≤ K(ϕζ, ζ). Then,

1
2∆tc

{
(ϕζ̌, ζ̌) − (ϕζ, ζ)

} ≤ K(ϕζ, ζ). (33)

Estimate the other terms on the left-hand side of (30),

(D(Eun
h)∇ζn,∇ζn) = ||D1/2(Eun

h)∇ζn||20. (34)

(q̃ζn, ζn) = ||q̃1/2ζn||20. (35)

The right-hand side of (30) is considered as follows,∣∣∣(σn, ζn)
∣∣∣ ≤ K

{
∆tc||

∂2c
∂τ2 ||

2
L2(tn−1,tn;L2) + ||ζ

n||2}. (36)

∣∣∣(ϕ ξ̌n−1 − ξn−1

∆tc
, ζn)
∣∣∣ ≤ K

{||∇ξn−1||2 + ||ζn||2} ≤ K
{
h2l + ||ζn||2}. (37)∣∣∣(D(Eun

h)∇ξn,∇ζn)
∣∣∣ ≤ 1

3
||D1/2(Eun

h)∇ζn||20 + Kh2l. (38)

∣∣∣(ϕ F̌n−1
h − F̂n−1

h

∆tc
, ζn)
∣∣∣ ≤ K||∇c̄n−1

h ||∞||E(u − un
h)||0||ζn||0

≤ K
{
h2(l+1)

c + h2(k+1)
p + (∆tc)2 + ||ζm||2 + ||ζm−1||2 + ||ζn||2}. (39)

∣∣∣(ϕ ζ̌n−1 − ζ̂n−1

∆tc
, ζn)
∣∣∣ ≤ K||∇ζn−1||||E(u − un

h)||0||ζn||∞

≤ Kh−5/2
c ||E(u − un

h)||0||ζn−1||0||ζn||0
≤ K
{
h2(l+1)

c + h2(k+1)
p + ||ζm||2 + ||ζm−1||2 + ||ζn−1||2}.

(40)

An induction hypothesis is used
sup

0≤n≤L−1
h−5/2

c ||ζn||0 ≤ K. (41)

The last term is discussed.∣∣∣([D(un) − D(Eun
h)]∇cn,∇ζ)

∣∣∣
=

∫
Ω

∫ 1

0

[∂D
∂u
(
θun − (1 − θ)Eun

h
) − ∂D

∂u
(Eun

h)
]
dθ(un − Eun

h)∇cn · ∇ζndX

+

∫
Ω

∂D
∂u

(Eun
h)(un − Eun

h)∇cn · ∇ζndX = W1 +W2.

(42)
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Suppose that ∂2D
∂u2 is bounded, we have∣∣∣W1

∣∣∣ ≤ K
∣∣∣∂2D
∂u2

∣∣∣||un − Eun
h||20||∇ζ ||∞

≤ Kh−5/2
c
{
(∆tc)2 + h2(l+1)

c + h2(k+1)
p + ||ζm||2 + ||ζm−1||2

}||ζn||0
≤ K
{
(∆tc)2 + h2(l+1)

c + h2(k+1)
p + ||ζm||2 + ||ζm−1||2

}
, (43a)

and ∣∣∣W2
∣∣∣ ≤ 1

3
||D1/2(Eun

h)∇ζn||20 + K
∫
Ω

D(Eun
h)−1
∣∣∣∂D
∂u

(Eun
h)
∣∣∣2|un − Eun

h|2|∇cn|2dX. (43b)

Later it is shown that D−1| ∂D
∂u |2 is bounded. For simplicity, we suppose that u is oriented in x-direction, since the rotation

transformation of coordinates will not affect the size of | ∂D
∂u |2. Then,

D = Dm + |u|β
 αl 0 0

0 αt 0
0 0 αt

 , D−1 ≤ |u|−β
 α

−1
l 0 0

0 α−1
t 0

0 0 α−1
t

 ,
∂D
∂ux
= |u|β−1

 αl 0 0
0 αt 0
0 0 αt

 , ∂D
∂uy
= |u|β−1

 0 αl − αt 0
αl − αt 0 0
0 0 0

 ,
∂D
∂uz
= |u|β−1

 0 0 αl − αt

0 0 0
αl − αt 0 0

 ,
∣∣∣∣D−1(

∂D
∂u

)2
∣∣∣∣ ≤ |u|β−2

β2

 αl 0 0
0 αt 0
0 0 αt

 +
 α

−1
l (αl − αt)2 0 0

0 α−1
t (αl − αt)2 0

0 0 0


+

 α
−1
l (αl − αt)2 0 0

0 0 0
0 0 α−1

t (αl − αt)2


 .

When the constraint conditions hold,

α2
l

αt
≤ α∗ < ∞, α2

t

αl
≤ α∗ < ∞, β ≥ 2, (43c)

then D−1| ∂D
∂u |2 is bounded. Now ∂2D

∂u2 is argued. Noting that

∂2D
∂u2

x
= β(β − 1)|u|β−2

 αl 0 0
0 αt 0
0 0 αt

 , ∂2D
∂u2

y
= 2|u|β−2

 αt 0 0
0 αl0 0
0 0 αt

 ,
∂2D
∂u2

z
= 2|u|β−2

 αl 0 0
0 αt 0
0 0 αt

 , ∂2D
∂ux∂uy

= β|u|β−2

 0 αl − αt 0
αl − αt 0 0
0 0 0

 , · · ·
we can get that ∂2D

∂u2 is bounded for β ≥ 2. In a similar discussion, W2 is estimated by the right-hand side expression of
(43a).

For (30), using the estimates of (31)-(43), we have

1
2∆tc

{||ϕ1/2ζn||20 − ||ϕ1/2ζn−1||20
}
+ ||D1/2(Eun

h)∇ζn||20 + ||q̃1/2ζn||20

≤ K
{
∆tc||

∂2c
∂τ2 ||

2
L2(tn−1,tn;L2) + (∆tc)2 + (∆t1

p)3 + (∆tp)4 + h2l
c + h2(k+1)

p

+ ||ζm−1||2 + ||ζm||2 + ||ζn−1||2 + ||ζn||2}.
(44)

Multiplying both sides of (44) by 2∆t, summing them over n(1 ≤ n ≤ L), and applying the discrete Gronwall inequality,
we have

||ζL||20 ≤ K
{
h2l

c + h2(k+1)
p + (∆tc)2 + (∆t1

p)3 + (∆tp)4}. (45)
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It remains to testify the induction hypothesis (41). As l ≥ 3, and the partition parameters satisfy

∆tc = O(h5/2
c ), hk+1

p = O(h5/2
c ), (46)

then it is easy to check the proof of (41).

The following statement is concluded by using (17), (14), (45) and (25).
Theorem. Suppose that the problem of (1)-(4) is regular (R), and positive semi-definite (C). And suppose that the index
of Mh, l ≥ 3, and (46) holds. Adopting the schemes of (28) and (29), we have the following estimates,

||u − uh||L∞(H(div)) + ||p − ph||L∞(L2) + ||c − ch||L∞(L2) ≤ K
{
hk+1

p + hl
c + ∆tc + (∆t1

p)3/2 + (∆tp)2}, (47)

where K is a constant dependent on p, c and their derivatives, independent of the parameters ∆tc, hp, hc.

4. Conclusions and Discussions

In the present paper, we discuss a mixed element-characteristic finite element method to solve three-dimensional in-
compressible miscible positive semi-definite displacement problem in porous media. In §1 Introduction, we state the
mathematical model, physical background and some related international research studies. In §2, we define some nota-
tions and partitions, then construct a composite computational scheme of mixed element-characteristic finite element. In
§3, we introduce an induction hypothesis and use theoretical techniques of priori estimates, then show convergence anal-
ysis of the present scheme. In conclusion, the numerical scheme and its theoretical analysis can solve actual applications
such as well-known positive semi-definite displacement problem efficiently.
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