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Abstract

We introduced in (Fortin & Serghini Mounim, 2005) a new method which allows us to extend the connection between the
finite volume and dual mixed hybrid (DMH) methods to advection-diffusion problems in the one-dimensional case. In the
present work we propose to extend the results of (Fortin & Serghini Mounim, 2005) to multidimensional hyperbolic and
parabolic problems. The numerical approximation is achieved using the Raviart-Thomas (Raviart & Thomas, 1977) finite
elements of lowest degree on triangular or rectangular partitions. We show the link with numerous finite volume schemes
by use of appropriate numerical integrations. This will permit a better understanding of these finite volume schemes and
the large number of DMH results available could carry out their analysis in a unified fashion. Furthermore, a stabilized
method is proposed. We end with some discussion on possible extensions of our schemes.
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1. Introduction

The aim of this paper is to extend to multidimensional hyperbolic and parabolic problems the results of (Fortin & Serghini
Mounim, 2005). In (Fortin & Serghini Mounim, 2005) we presented in a mixed finite element framework, two non-
standard formulations in one space dimension allowing, among other things, to recover in a unique fashion, numerous
finite volume schemes. We shall present in this paper a two-dimensional extension. To achieve the discretization we
shall use mixed finite elements to approximate the convective and diffusive fluxes. We concentrate on the case of the
lowest order Raviart-Thomas spaces (Raviart & Thomas, 1977), though many of our results will be more general. In
particular, to obtain higher-order accuracy finite volume schemes less sensitive to partitions of domain, we can follow the
same procedure but utilize others usual mixed finite element approximation subspaces of H(div,Ω) such as BDM spaces
(Brezzi, Douglas & Marini, 1986).

This paper is organized as follows. In the next section, we systematically build the extension of the formulations of (Fortin
& Serghini Mounim, 2005) to the multi-dimensional case. Results of existence and uniqueness are presented. In Section
3, we build the numerical schemes on triangular or rectangular partitions of the domain Ω using the Raviart-Thomas finite
elements of lowest degree (Rarviart & Thomas, 1977) to approximate the fluxes. In Section 4, we show the link between
the finite volume methods and our formulations using the suitable quadrature formulas suggested in (Baranger, Maitre,
& Oudin, 1996) (triangular case) or trapezoidal quadrature (rectangular case) to diagonalize the element mass matrix and

numerical integration formulas to approximate the term
∫

K
f (u).q dx (here f (u) is the convective flux). Moreover, we

focus our attention to the multidimensional extension of some recent schemes. Finally, in Section 5 we discuss how we
can also establish the extension of the second method to both convection-diffusion equations and system of equations.
We end with some discussion on possible extensions of our schemes. The DMH formulation requires the solution of a
linear system; the approach adopted here was suggested by Arnold and Brezzi (Arnold & Brezzi, 1985). In their method,
one eliminates the velocity and the flux unknowns to leave a system for the Lagrange multipliers alone. The lowest order
Raviart-Thomas spaces have one Lagrange multiplier unknown per edge.

2. Multidimensional Extension

2.1 Preliminaries

In this section, we start by presenting a few properties relative to the decomposition of Ω . The proofs can be found
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in Thomas (Thomas, 1977) or Brezzi-Fortin (Brezzi & Fortin, 1991). Let us consider the following partial differential
equation for u:

∂u
∂t
+ div( au ) − div( ν grad u ) = f inΩ, (1)

with given initial data u(x, 0) = u0(x) inΩ, and corresponding suitable boundary conditions on Γ = ∂Ω. Here the velocity
field and the diffusion coefficient (which is positive) are denoted by a(x, t) and ν respectively. Moreover, for simplicity
and without loss of generality, we restrict our attention to the case where div(a) = 0; taking into account a.n = 0 on
Γ×]0,T [, and assuming that a(., t) ∈ L∞(Ω); also, that u = 0 on Γ×]0,T [.
Let then Th = {Ki}NT

i=1 be the usual non-overlapping finite element triangulation of the domain Ω = ∪K∈Th K. We also
consider for 1 ≤ t < ∞ the spaces

Xt(Ω) = { v ∈ ( Lt(Ω) )2 , v |K ∈ Wt( div; K ) ∀K ∈ Th }, (2)

and
Wt(div; Ω) = { v ∈ (Lt(Ω))n; div(v) ∈ Lt(Ω) }, (3)

which are both Banach spaces endowed with the usual norms

∥ v ∥Xt(Ω) = ∥ v ∥0,t,Ω +
∑
K∈Th

∥ div(v) ∥0,t,K , (4)

and
∥ v ∥Wt(div;Ω) = ∥ v ∥0,t,Ω + ∥ div(v)∥0,t,Ω. (5)

The following proposition, showing that the space Wt(div; Ω) can be characterized as a subspace of Xt(Ω), is well known:

Proposition 1 Let s > 1, a vector q ∈ Xt(Ω) then q ∈ Wt(div;Ω) if and only if∑
K∈Th

⟨ q.n , v ⟩W−1/t,t(∂K)×W1/t,s(∂K) = 0, (6)

for all v ∈ W1,s
0 (Ω ), where t is the conjugate of s.

Finally, let us recall that for all µ ∈ W1/t,s(Γ) and µ∗ ∈ W−1/t,t(Γ) we have

∥ µ ∥1/t,s,Γ = sup
q ∈Wt(div;Ω)

⟨ q.n, µ ⟩Γ
∥ q ∥Wt(div;Ω)

, (7)

and

∥ µ∗ ∥−1/t,t,Γ = sup
v ∈W1,s(Ω)

⟨ µ∗, v ⟩Γ
∥ v ∥1,s,Ω

. (8)

Here ⟨., .⟩ denotes the duality pairing between W−1/t,t(Γ) and W1/t,s(Γ).

Now, we are able to formulate precisely the parabolic problem (1).

2.2 Dual Mixed and Hybrid Finite Element Method DMH1

In this section, we deal with the first variational formulation of the convection-diffusion problem previously considered.
The principal objective of the following is to extend to the 2D case the first formulation proposed in (Fortin & Serghini
Mounim, 2005).

As in (Fortin & Serghini Mounim, 2005), we shall begin from equation (1). Next, we introduce convective and diffusion
fluxes as auxiliary variables to obtain the following first order system:

∂u
∂t
− ν div(p) + div(p̂) = f in Ω×]0,T [,

p = grad u in Ω×]0,T [,
p̂ = au in Ω×]0,T [.

(9)

Boundary conditions and initial data are added to these equations.
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Here the boundary of Ω is supposed polygonal. Introducing λ, a Lagrange multiplier to enforce the continuity constraint
of q.n at elements’ interfaces, we obtain∫

Ω

p.q dx = −
∑
Ki

∫
Ki

u div(q) dx +
∑
Ki

∫
∂Ki

λ q.n ds. (10)

We shall evidently have to make a proper choice for the space of λ. This technique was first used by Fraejis DE Veubeke
(Fraejis DE Veubeke, 1965; Fraejis DE Veubeke, 1975). In the same way, we shall impose the continuity of the convective
flux p̂ at the interfaces of elements Ki, with the aid of a Lagrange multiplier noted λ̂. Hence, the last equation of the system
(9) can now be rewritten as: ∫

Ω

p̂.q dx =
∑
Ki

∫
Ki

au.q dx +
∑
Ki

∫
∂Ki

λ̂ q.n ds. (11)

Now, to make the variational formulation precise we have to define the functional spaces. Let us consider an exponent
4
3
< s < 2 and its conjugate t. In addition, we set X = { q ∈ (Lt(Ω))2; q|K ∈ Wt(div; K)∀K ∈ Th}, M2 = { µ ∈∏

K∈Th
W1/t,s(∂K) ; µ|∂K∩Γ = 0 ∀K ∈ Th }, and M1 = Lt(Ω). Hence, the system (9) could be written as follows:

Find (u(t), p(t), p̂(t)) ∈ M1 × X2 and (λ(t), λ̂(t)) ∈ M2
2 such that

∫
Ω

∂u
∂t

v dx − ν
∑
Ki

∫
Ki

div(p) v dx+

∑
Ki

∫
Ki

div(p̂) v dx =
∫
Ω

f v dx ∀ v ∈ M1,

∫
Ω

p.q dx = −
∑
Ki

∫
Ki

u div(q) dx +
∑
Ki

∫
∂Ki

λ q.n ds ∀ q ∈ X,

∫
Ω

p̂.q dx =
∑
Ki

∫
Ki

(au.q) dx +
∑
Ki

∫
Ki

λ̂ q.n ds ∀ q ∈ X,

∑
Ki

∫
∂Ki

p.n µ ds = 0 ∀ µ ∈ M2,

∑
Ki

∫
∂Ki

p̂.n µ ds = 0 ∀ µ ∈ M2.

(12)

The last two equations of system (12) insure the continuity of p.n and p̂.n at the interfaces of Th.

Remark 1

The expressions
∫
∂K

q.n µ ds and
∫
∂K

q̂.n µ ds are duality pairing between W−1/t,t(∂K) and W1/t,s(∂K). Indeed, q|K ∈

(Wt(div; K))2 and its normal trace is defined in W−1/t,t(∂K).

Remark 2

The proof of the existence of Lagrange multipliers λ and λ̂, which insure the continuity of normal traces is similar to the
one given in Brezzi-Fortin (Brezzi & Fortin, 1991).

Once the spaces are defined, we can establish the existence and uniqueness of problem (12) inspired from Girault-Raviart
(Godlewski & Raviart, 1991) (for details we can see (Serghini Mounim, 2000)).

Theorem 1 Let u be the solution of the convection-diffusion problem (1). If p = grad u and p̂ = au verify

(p(t), p̂(t)) ∈ (Wt(div;Ω))2, (13)

then ((p, p̂, λ̂); (u, u|∂K)) is the unique solution of (12).
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2.3 Dual Mixed and Hybrid Finite Element DMH2

Let us consider the following partial differential equation for u:

∂u
∂t
+ div( au ) = 0 in Ω×]0, T [, (14)

where a(x, t) is the velocity.

The dual mixed and hybrid formulation of the problem (14) can be achieved proceeding in a similar way as in (Fortin &
Serghini Mounim, 2005). First, we introduce again the convective flux as an auxiliary variable to obtain:

∂u
∂t
+ div(p̂) = 0 in Ω×]0,T [,

p̂ = au, in Ω×]0,T [. (15)

Boundary conditions and initial data are added to these equations.

Next, we assume that the solution has discontinuities at each boundary of every Ki. Finally, we suggest that the “Rankine-
Hugoniot” jump condition should be imposed on the numerical flux through the elements’ interfaces. With this aim, we
employ a Lagrange multiplier to relax these jump conditions at the interelements.∫

Ω

p̂.q dx =
∑
Ki

∫
Ki

au.q dx +
∑
Ki

∫
∂Ki

λ̂ q.n ds ∀ q ∈ X, (16)

and ∑
Ki

∫
∂Ki

[p̂.n] µ ds =
∑
Ki

∫
∂Ki

sign(a.n)ai [u] µ ds ∀ µ ∈ M2. (17)

We denote by λ̂ the Lagrange multiplier and by ai ≥ 0 some approximation of the local propagation speeds. As we will
see, it plays a stabilization parameter role, and for an appropriate choice of ai, we can recover in particular the well-known
upwind numerical fluxes (approximate Riemann solvers). Here, we have set [p̂.n] = p̂i.n − p̂e.n, where “the interior
normal trace ” p̂i.n (resp. “the exterior normal trace” p̂e.n) is defined as the normal trace of the restriction p̂|K (resp.
p̂|(Ω\K)) on ∂K, and with [u] = ui − ue stands for the jump of u, where “the interior trace” ui and “the exterior trace” ue of
u are defined from the trace of u as above. In order to obtain the non-standard mixed hybrid finite element formulation,
we keep the same notation for functional spaces as in the previous section. Thus, the variational formulation of (14) is to
find (u(t), λ̂(t)) ∈ M1 × M2 and p̂(t) ∈ X such that:

∫
Ω

∂u
∂t

v dx +
∑
Ki

∫
Ki

div(p̂) v dx = 0 ∀ v ∈ M1,

∫
Ω

p̂.q dx =
∑
Ki

∫
Ki

(au.q) dx +
∑
Ki

∫
∂Ki

λ̂ q.n ds ∀ q ∈ X,

∑
Ki

∫
∂Ki

[ p̂.n] µ ds =
∑
Ki

∫
∂Ki

sign(a.n)ai [u] µ ds ∀ µ ∈ M2.

(18)

The last equation of (18) imposes jump conditions to the flux p̂.n at the interelement interfaces of Th. We are now able to
obtain a result of existence and uniqueness of the solution for problem (18), using an argument of regularity as in Theorem
2.23.

Theorem 2 Consider u the solution of the problem (14). If p̂ = au satisfies

p̂(t) ∈ Wt(div;Ω), (19)

then ((p̂, λ̂); (u, u|∂K)) is the unique solution of (18).

3. Spatial Approximation

Let us now deal with the finite element approximation of the above dual variational problem. To this aim, we assume that
Ω is a polygonal bounded domain of IR. Let Th be a standard finite element partition of Ω.
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3.1 Spatial Approximation of DMH1

To define a discretization of problem (12), we first define the approximation spaces Xh, M1h and M2h of X, M1 and M2,
respectively. We thus build an appropriate approximation space for q ∈ X in the standard way as follows:

Xh =
{

q
h
∈ X; q

h
|K ∈ RT0(K) ∀K ∈ Th

}
, (20)

where RT0(K) is the local Raviart-Thomas space of lowest degree.

To obtain the approximation of the spaces M1 and M2, we define

M1h = { vh ∈ M1; vh|K ∈ IP0(K) ∀K ∈ Th} , (21)

and
M2h = { µh ∈ M2; µh|∂K ∈ R0(∂K) ∀K ∈ Th} , (22)

where
R0(∂K) = {φ; φ|e ∈ IP0(e) ∀ e ∈ ∂K } .

Finally, the discrete version of (12) is given by:

Find (uh(t), λh(t), λ̂h(t)) ∈ M1h × M2
2h and (ph(t), p̂h(t)) ∈ X2

h such that:

∫
Ω

∂uh

∂t
vh dx − ν

∑
Ki

∫
Ki

div(p
h
) vh dx+

∑
Ki

∫
Ki

div(p̂
h
) vh dx =

∫
Ω

f vh dx ∀ vh ∈ M1h,

∫
Ω

p
h
.q

h
dx = −

∑
Ki

∫
Ki

uh div(q
h
) dx +

∑
Ki

∫
∂Ki

λh q
h
.n ds ∀ q

h
∈ Xh,

∫
Ω

p̂
h
.q

h
dx =

∑
Ki

∫
Ki

(auh.qh
) dx +

∑
Ki

∫
∂Ki

λ̂h q
h
.n ds ∀ q

h
∈ Xh,

∑
Ki

∫
∂Ki

p
h
.n µh ds = 0 ∀ µh ∈ M2h,

∑
Ki

∫
∂Ki

p̂
h
.n µh ds = 0 ∀ µh ∈ M2h.

(23)

To these equations we have to add given initial data, and corresponding suitable boundary conditions.

Theorem 3 Problem (23) has a unique solution.

Proof. Solving the problem (23) leads to solve a square finite-dimensional system of linear algebraic equations. Hence,
we only have to prove the uniqueness of the solution.

If we consider the homogeneous problem associated to (23), f=0, and if the boundary conditions and initial value vanish,
the proof is similar to that of the Theorem 1, in regard to uh, p

h
and p̂

h
. For the uniqueness of λh and λ̂h, we consider

∑
Ki

∫
∂Ki

q
h
.n λh ds = 0 ∀ q

h
∈ M1h,

let ∫
∂Ki

q
h
.n λh ds = 0 ∀ q

h
∈ RT0(Ki),

and we then deduce that λh = 0, and similarly we have λ̂h = 0.
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3.2 Spatial Approximation of DMH2

To define the associated discrete problem of (18), we may now use the same suitable subspaces as above, and we also
proceed in the same manner. Hence, we obtain the following discrete problem:

Find (uh(t), λ̂h(t)) ∈ M1h × M2h and p̂h(t) ∈ Xh such that

∫
Ω

∂uh

∂t
vh dx +

∑
Ki

∫
Ki

div(p̂
h
) vh dx = 0 ∀ vh ∈ M1h,

∫
Ω

p̂
h
.q

h
dx =

∑
Ki

∫
Ki

(auh.qh
) dx +

∑
Ki

∫
∂Ki

λ̂h q
h
.n ds ∀ q

h
∈ Xh,

∑
Ki

∫
∂Ki

[p̂
h
.n] µh ds =

∑
Ki

∫
∂Ki

sign(a.n)ai[uh] µh ds ∀ µh ∈ M2h,

(24)

ai is again the approximation of the local velocity at ∂Ki, (ai ≥ 0). In a similar way as we did for Theorem 3, we can
prove the following result:

Theorem 4 The problem (24) has a unique solution.

4. Analogy with the Finite Volume Method

The contents of this section are discussed in more details in (Serghini Mounim, 2000). Notice that the most attractive
property of finite volume methods is that the conservation of quantities such as mass, momentum and energy is exactly
satisfied on each finite volume and also on the whole domain. To make the link explicit with finite volume methods, we
use the RT vector finite elements to approximate the diffusion and convective fluxes. We point out this relationship, using

a suitable quadrature formula to approximate the terms
∫

K
p.q dx and

∫
K

f (u).q dx, f (u) denotes here the convective flux.

4.1 DMH1 and scheme1

4.1.1 Rectangular Case

We consider a quadrangulation Th of Ω, and we denote by K the generic rectangle of Th defined by [xK , xK + ∆xK] ×
[yK , yK +∆yK], and the degrees of freedom introduced by Raviart-Thomas. The usual RT basis functions of K are defined
by: 

pS =
1
|K| (0 , y − yK − ∆yK),

pE =
1
|K| (x − xK , 0),

pN =
1
|K| (0 , y − yK),

pW =
1
|K| (x − xK − ∆xK , 0),

(25)

where |K| is the area of K.

In order to diagonalize the mass matrix
∫

K
p.q dx, still retaining the good numerical properties of the mixed approxima-

tion, we employ the trapezoidal quadrature rule to obtain the following diagonal matrix:

1
2


∆y
∆x 0 0 0
0 ∆x

∆y 0 0
0 0 ∆y

∆x 0
0 0 0 ∆x

∆y

 .

For simplicity, we suppose f = 0, and in what follows we shall write u, p, p̂ instead uh, ph, p̂h, ... and omit the dependance
of index sets u, p, p̂, ... on h. Now, let us fix our attention on two adjacent rectangles K and Ki, i ∈ {S , E,N,W}, and denote
the values of u in K and Ki by uK and ui respectively. Next, as in the 1D case (see (Fortin & Serghini Mounim, 2005)) a
direct computation provides:

λi =
uK + ui

2
, (26)

73



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 1; 2017

and

λ̂i =
|K|
4

f (ui) − f (uK)

|ei|
.ni, (27)

from which we can deduce the approximation of the convective flux at the faces of K

α̂i =
|ei|
2

( f (uK) + f (ui)).ni, (28)

where the outward normal to the faces ei of K is denoted by ni, with |ei| stands for the length of ei for i ∈ {S , E,N,W}.
Then, we observe that the expressions of α̂i are equivalent to a finite volume method. Indeed, we obtain a “central
difference scheme" (CDS). This scheme is not spatially stable; it does not prevent oscillations near discontinuities and at
shocks, (for the properties of CDS see Lazarov et al (Lazarov, & Vassilevski, 1996)).

4.1.2 Other Formulation and Upwind Schemes

If we impose the continuity of convective flux only at inflow boundary of each control volume K, we can obtain an upwind
scheme. For this purpose, we utilize the following form:

c((p̂h, λ̂); qh) =

∫
Ω

p̂h.qh dx −
∑
Ki

∫
Ki

f (uh).qh dx +
∑
Ki

∫
∂K−
λ̂ q.n ds,

= 0 ∀ qh ∈ Xh.

∂K− denotes the inflow boundary of K, which is defined by

∂K− =
{

x ∈ ∂K : a.n ≤ 0
}
.

Using the same techniques as in the previous subsection, we can derive easily the numerical convective flux at the interface
between adjacent cells:

α̂i = |ei|
  f (uK) + f (ui)

2

 .ni −
1
2
|
 ∂ f

∂u


u
.ni| ( ui − uK )

 , (29)

since

f (ui) − f (uK) =
 ∂ f

∂u


u

( ui − uK ) ,

where u represents some average state between ui and uK .
For the linear convection case ( f (u) = au where a denotes again the convective field), the above expression then reads:

α̂i = |ei|
 f (uK).ni + | f (uK).ni|

2
+

f (ui).ni − | f (ui).ni|
2

 , (30)

where i ∈ { S , E,N,W } , and |eS | = |eN | = ∆x, |eE | = |eW | = ∆y. This scheme coincides with the standard UDS (upwind
difference scheme) see for example (LeVeque, 2002).
Before considering the generalization of the previous schemes, we note that one advantage of the use of λ̂ is that no
(approximate) Riemann solvers are required.

Remark 3

Since u is discretized using piecewise polynomial functions and our formulation involves the boundary integrals, we can
introduce an upwinding in the formulation. To achieve the generalization of the schemes above, we propose the following
form ∑

K

{
1 + β

2

∫
∂K−
λ̂ q.n ds +

1 − β
2

∫
∂K+
λ̂ q.n ds

}
, (31)

to replace the form already used
∑

K

∫
∂K
λ̂ q.n ds in the system (23). The following notation is used:

∂K+ =
{

x ∈ ∂K : a.n > 0
}
.
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Taking the same approach as above, this results in the generalized upwind scheme:

4∑
i=1

α̂i = ∆x
(
(1 − β) f2(uN) − f2(uS )

2
+ 2β

f2(uK) − f2(uS )
2

)
+

∆y
(
(1 − β) f1(uE) − f1(uW )

2
+ 2β

f1(uK) − f1(uW )
2

)
.

Here f = ( f1, f2), and β is the dissipation parameter (0 ≤ β ≤ 1) which controls the combination of fully upwind and
centered scheme. We have supposed without loss of generality that the inflow boundary of K is eS ∪ eW . Notice that for
β = 1, we recover the scheme (29), (30).

4.1.3 Triangular Case

We consider now the case where Th is a standard triangulation ofΩ (here, we suppose again thatΩ is a polygonal bounded
domain of IR). We begin with a brief description of the notation used here. For each triangle K, we have:

• |K |: area of K;
• ar: rth vertex of K with coordinates (xr, yr);
• er: face opposite to vertex ar, with length | er |;
• hr: the length of the perpendicular dropped from the vertex ar;
• nr: unit exterior normal to face er;
• θr: angle at vertex ar;
for r ∈ {i, j, k}.
We also consider the local shape functions {p

r
}r∈{i, j,k} of RT0(K) for every triangle K. The degrees of freedom are the

fluxes through the faces {er}r∈{i, j,k}, and are defined by:

p
r
(x) =

x − ar

2|K| ≡
x − ar

hr |er |
∀ x = (x1, x2) ∈ K, (32)

from which, for every local vectorial function p
r

of RT0(K) the well known properties follow:



supp(p
r
) = K ∪ K′, with K ∩ K′ = er,

div(p
r
) =

1
|K| ,

p
r
.ns|es =

δrs

|er |
,

(33)

where δrs denotes the Kronecker symbol δrs =

{
1 if r = s,
0 otherwise.

We introduce the bilinear form a(p, q) ≡
∫

K
p.q dx for all p, q in RT0(K). Then, a(p

r
, p

s
) is a 3 × 3 symmetric, positive

definite matrix,

a( p
r
, p

s
) ≡ ars =

1
12


3ci + c j + ck ck − (ci + c j) c j − (ck + ci)

ck − (ci + c j) 3c j + ck + ci ci − (c j + ck)

c j − (ck + ci) ci − (c j + ck) 3ck + ci + c j

 , (34)

with cr ≡ cot θr, for r, s ∈ {i, j, k}.
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Figure 1. Notations for triangles K and K′

We employ the quadrature formula proposed in (Barranger, Maitre, & Oudin, 1996), to diagonalize the local mass matrix
(34). We obtain the matrix:

ah
rs ≡

1
2
δrscotθr, for r, s ∈ {i, j, k}. (35)

From this, after temporal approximation, and considering the neighbor elements of K which appear in the formula, the
equation expressing the discrete conservation law becomes:

|K|
un+1

K − un
K

δt
− ν

∑
r=i, j,k

αr +
∑

r=i, j,k

α̂r = 0, (36)

and thanks to the following relation, ∫
K

p.q dx = −
∫

K
u div(q) dx +

∫
∂K
λ q.n ds,

we obtain
βrαr = − uK + λr, (37)

where we have set βr =
1
2

cotθr, with r = i, j, k.
From the above equation, in conjunction with the continuity of the normal trace of the diffusive flux, we deduce

λr =
βr′

βr + βr′
uK +

βr

βr + βr′
uKr , r = i, j, k. (38)

Using (37) and (38), the numerical diffusion flux across edge er reads

αr =
uKr − uK

βr + βr′
. (39)

We note that βr =
dr

|er |
, r = i, j, k (see the annexe in (Bank & Rose, 1987; Kerkhoven-Jerome, 1990)), where dr denotes

the distance between the circumscribed circle of K and the center mr on sides er (see previous and below figures). We

mention that βr is also given by βr = −
|es|ts.|es′ |ts′

4|K| , where we have set s = I(r), s′ = I(s), with I defined as I(i) = j, I( j) = k

and I(k) = i, and tr stands for the unit tangent to er for r = i, j, k.
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With the aid of the new expression of βr the system (39) becomes

αr = |er |
uKr − uK

dr + dr′
, r = i, j, k, (40)

where dr + dr′ is the distance between the circumcenters C,Cr of two adjoining triangles K and Kr. The above distance
does not vanish, in the case of a strictly acute triangle.

We now deal with the convective flux using the same notation and procedure as above. We thus start from the equation∫
K

p̂.q dx =
∫

K
f (u).q dx +

∫
∂K
λ̂ q.n ds.

We approximate the mass matrix with the same quadrature formula as in the diffusive case, in addition, we use the
following numerical integration which is exact for polynomials of degree 0:∫

K
p(x, y) dxdy ≃ |K|p(HK), (41)

where HK is the orthocenter of the triangle K which is considered acute, and |K| denotes the area of K as illustrated in
Figure 3.
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Figure 3. The orthocenter HK of the triangle K.

Thanks to the above formula (41), the integral
∫

K
f (u)p

r
dx is approximated by∫

K
f (u).p

r
dx ≃

f (u)

2
.
−−−−→
ArHK , r = i, j, k.
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Finally, these approximate relations allow us to write the numerical convective flux as

α̂r =
|er |
2

f (uK) ∥−−−−→ArHK∥ + f (uKr ) ∥
−−−−−→
Ar′HKr∥

dr + dr′
.nr, r = i, j, k, (42)

since βr =
dr

|er |
, for all r ∈ {i, j, k}.

If we only use equilateral triangles, we get ∥−−−−→ArHK∥ = ∥
−−−−−→
Ar′HKr∥ = 2d, with dr = dr′ = d, and the approximation formula

(42), becomes

α̂r = |er |
 f (uK) + f (uKr )

2

 .nr, r = i, j, k. (43)

It is precisely the central finite volume scheme “CDS".

Remark 4

In view of the linear case f (u) = au, we can define a as a linear combination of the local shape functions p
r

of RT0(K),
after some manipulation, we can exhibit the numerical flux through the face er

α̂r =
|er |

dr + dr′

uK + uKr

2
ahr , r = i, j, k,

where ah =

k∑
r=i

ahr p
r
. For other approximations the reader can refer to (Serghini Mounim, 2000).

Remark 5

If we utilize the bilinear form (31) and the quadrature formula (41), the numerical convective flux (43) becomes

α̂r = |er |
 (1 + β) f (uK) + (1 − β) f (uKr )

2
+ βΞ

(
f (uK) − f (uKr )

) .nr,

for r ∈ {i, j, k}, with Ξ = min
(

sign(a.nr), 0
)

and β being again the upwinding parameter (0 ≤ β ≤ 1). Note that for β = 1
(or the continuity constraint imposed to p̂ only at the inflow boundary of K ), we get the following upwind finite volume
scheme:

α̂r = |er |
[

f (uK) + Ξ
(

f (uK) − f (uKr )
)]
.nr, r = i, j, k,

for the stability and error estimates of CDS and UDS on Voronoi meshes we refer to (Mishev, 1998).

4.2 DMH2 and Scheme2

The results of this section are derived in a similar fashion to DMH1 case.

4.2.1 Rectangular Case

Consider again the case of a rectangular mesh Th of Ω, and the local degrees of freedom associated to RT0(K). Here we
denote by ne

r (resp. ni
r) the exterior unit normal vector, i.e., oriented from K to Kr (resp. interior unit normal vector, i.e.,

oriented from Kr to K) along each edge er = ∂K ∩ ∂Kr; clearly, the property ne
r = −ni

r holds. Now, following the same
lines as in previous sections, we can state the result:

Proposition 2 If we use the trapezoidal quadrature formula to diagonalize the element mass matrix, and exact compu-

tation of the spatial integral
∫

K
f (u).q dx; then, the exterior α̂e

r and the interior α̂i
r fluxes approximating

∫
er

p̂e.ne
r ds and∫

er

p̂i.ne
r ds respectively across edge er are given by:

α̂e
r =

|er |
2

(
( f (uK) + f (ur)).ne

r + sign(a.ne
r) ar |er (ur − uK)

)
,

and
α̂i

r =
|er |
2

(
( f (uK) + f (ur)).ne

r + sign(a.ne
r) ar |er (uK − ur)

)
,

where λ̂r is given by:

λ̂r =
|K|
4

( f (ur) − f (uK)).ne
r + sign(a.ne

r) ar |er (uK − ur)

|er |
,
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for r ∈ {S , E,N,W}, and where ar |er stands for an approximation of the propagation speed at the edge er.

Hence, we can state that the Rankine-Hugoniot jump condition at er is recovered in the expression of Lagrange multipliers.
It is also important to notice that assuming that er is the upstream boundary of ∂K, i.e., sign(a.ne

r)|er < 0 (resp. er is the
downstream boundary of ∂K), then the numerical fluxes used in the FV methods at er are our exterior fluxes: Fi = α

e
r

(resp. our interior fluxes α̂i
r). Then we can generalize the above formulation taking the same approach used in (Fortin

& Serghini Mounim, 2005). To this end, we consider the values of the trace normal of the fluxes p̂.n at the boundary of
element ∂K as a convex combination of the exterior fluxes p̂e.n and the interior fluxes p̂i.n:

p̂.n =

 1+β
2 p̂e.n + 1−β

2 p̂i.n on ∂K−,
1−β

2 p̂e.n + 1+β
2 p̂i.n on ∂K+,

(44)

where β ∈ [0, 1] is the upwinding parameter, and n is again the exterior unit normal vector oriented from K to neighboring
triangles Kr. Consequently, by means of (44), we also obtain the local conservativity of the scheme (the numerical fluxes
are obviously consistent). Hence, we replace in each Ki,

∫
Ki

div(p) vh dx by

∫
∂K−i

(
1 + β

2
p̂e.n +

1 − β
2

p̂i.n)vh ds +
∫
∂K+i

(
1 + β

2
p̂i.n) +

1 − β
2

p̂e.n)vh ds.

We mention that the usual expressions of the finite volume numerical fluxes (see for example (LeVeque, 2002; Beux et al,
1993) are obtained via our formulation, taking β = 1 and for the choice β = 0 we recover the centered scheme. Now, it
is clear that the appropriate choice of the speed ai allows us to recover the standard volume schemes. Next, we focus our
attention to giving the extensions of some recent schemes.

Remark 6

In the following we shall use in each K the piecewise polynomial interpolant at time tn, PK(., tn), and the local velocities of
propagation an

r , proposed in (Kurganov & Levy, 2000). Next, taking a dimension by dimension approach, we can recover
the two-dimensional, third order, non oscillatory scheme of Kurganov-Levy scheme, computing the interior and exterior
traces of u, ui,e

r at the faces er = ∂K ∩∂Kr, r ∈ {S , E,N,W} following the recipe. The recipe is as follows (the computation
of the exterior values ue

r can be carried out in the similar way, using Pr(., tn) in the neighboring rectangles)

ui
r = wLPK

L (xr; tn) + wRPK
R (xr; tn) + wC PK

C (xr; tn), r ∈ {W, E},

and

ui
r = wLPK

L (yr; tn) + wRPK
R (yr; tn) + wC PK

C (yr; tn), r ∈ {S ,N},

where the polynomials PK
L , P

K
R , P

K
C , and the weights wL,wR,wC are also introduced in (Kurganov & Levy, 2000).

Now, if we utilize ui
r and ue

r in (24), and thanks to Proposition 4.21, and the help to (44), this will result in the 2D extension
Kurganov-Levy semi-discrete scheme.

4.2.2 Triangular Case

We consider now the case where Th is a triangular mesh. For each triangle K, we use the same notations as DMH1 case
and we summarize the result obtained as follows:

Proposition 3 If we use the quadrature formula proposed in (Baranger, Maitre, & Oudin, 1996) to diagonalize the ele-
ment mass matrix and we employ the numerical integration formula (41) then, the fluxes α̂e

r and αi
r through the face er are

approximated by

α̂e
r =

|er |
dr + dr′

(
∥−−−−→ArHK∥ f (uK).ne

r + ∥
−−−−−→
Ar′HKr∥ f (uKr ).n

e
r

2

+ sign(a.ne
r)drar |er (uKr − uK)),

and

α̂i
r =

|er |
dr + dr′

(
∥−−−−→ArHK∥ f (uK).ne

r + ∥
−−−−−→
Ar′HKr∥ f (uKr ).n

e
r

2

+ sign(a.ne
r)dr′ar |er (uK − uKr )),
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where λ̂r is given by:

λ̂r = − dr′

dr + dr′
∥−−−−→ArHK∥

f (uK)

2
.ne

r +
dr

dr + dr′
∥−−−−−→ArHKr∥

f (uKr )

2
.ne

r ,

+ sign(a.ne
r)

drdr′

dr + dr′
ar |er (uK − uKr ),

for r = i, j, k.

If we restrain to equilateral triangles, one then gets obviously ∥−−−−→ArHK∥ = ∥
−−−−−→
Ar′HKr∥ = 2d, with dr = dr′ = d, and, in

particular, the approximation of the exterior flux becomes:

α̂e
r = |er |

 f (uK) + f (uKr )

2
.ne

r + sign(a.ne
r)

ar |er

2
(uKr − uK)

 , (45)

for r = i, j, k.

Remark 7

In view of the linear case f (u) = au, we can express a as linear combination of the local shape functions p
r

of RT0(K).
After some manipulations, we can exhibit the exterior numerical flux through the face er:

α̂e
r =

druK + dr′uKr

dr + dr′
ahr + sign(a.ne

r)
|er |dr′

dr + dr′
ar |er (uKr − uK),

for r = i, j, k, and the approximation ah of a is defined by ah =

k∑
r=i

ahr p
r
.

Remark 8

To simplify, let K be an equilateral triangle with centroid G, and let Kr, r = i, j, k be the neighbouring equilateral triangles,
with centroids Gr (r = i, j, k). If we assume u|K linear, and the least-squares gradient gradu(t)|K = (aK(t), bK(t)) for the
triangle K is then chosen in order to minimize the functional

F(aK(t), bK(t)) =
k∑

r=i

{
uK(t) +

−−−→
GGr.gradu(t)|K − uKr (t)

}2
.

Of course, the minimum is obtained when
∂F
∂aK(t)

=
∂F
∂bK(t)

= 0,

for details and the expressions of aK(t) and bK(t) see (Champier, 1992).
Next, we define over all K

PK(x, y, t) = uG(t) + (x − xG)aK(t) + (y − yG)bK(t),

and the exterior and interior traces of u at the face er are now given by:

ue
r(tn) = PKr (xmr , t

n) and ui
r(t

n) = PK(xmr , t
n),

where xmr denote the coordinates of the center on sides er (see Fig. 2). The resulting exterior flux is

α̂e
r = |er |

 f (uK) + f (uKr )

2

 .ne
r

+ sign(a.ne
r)
|er |
2

ar |er (u
e
r(tn) − ui

r(t
n)),

(46)

for r = i, j, k. The cell average flux f (uK), (also f (uKr ), r = i, j, k) can be approximated by a second-order quadrature
in time (such as the mid-point rule). The resulting scheme can be viewed as a natural new version of multidimensional
extension of the second order central NT scheme (Nessyahu & Tadmor, 1990). For other extensions of the NT scheme,
see (Arminjon & Viallon, 1995; Jiang & Tadmor, 1998).

We close by noting that we can get a 2D extension of the family of semi-discrete central schemes of Kurganov and Tadmor
(Kurganov & Tadmor, 2000). Our recipe is similar to that above, taking into account the quadrature formula given below:∫

K
f (u(t))p

r
dx ≃

f (ui
r)(t)

2
−−−−→
ArHK r = i, j, k.

80



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 1; 2017

From this, we can express the exterior numerical flux in the form:

α̂e
r = |er |

 f (ui
r(t)) + f (ue

r
(t))

2

 .ne
r

+ sign(a.ne
r)
|er |
2

ar(t)|er (u
e
r(t) − ui

r(t)),

(47)

for r = i, j, k, we then obtain the extension to the triangular grid case of the semi-discrete KT scheme (Kurganov &
Tadmor, 2000), and where ar(t) are the maximal local speeds. For more details see (Kurganov & Tadmor, 2000).

5. Discussion

1- The extension to a system of equations can be carried out in the same fashion as (Fortin & Serghini Mounim, 2005),
and again with the aid of Roe’s construction (ROE, 1981).

2- The generalization to a convection-diffusion equation can also be performed using the extension to 2D of the variational
formulation used in (Fortin & Serghini Mounim, 2005). We use, for this, the fact that the solutions to the general initial
value problem of the viscous conservation laws converge, in the zero dissipation limit as ν goes zero, to the solutions of the
hyperbolic conservation laws. Next, the “RH” jump conditions at the interelements are imposed again to the convective
flux. Finally, we can establish the existence and uniqueness of the solution in this case taking the same approach to
previous formulations, and using in particular an argument of regularity.

3- Note that the simplicity of the method makes it easy to extend to the three-dimensional case, in addition, if the trian-
gulation of Ω is made of tetrahedrons, and the mesh is restricted to regular subdivisions of the domain, the quadrature
formula given in Baranger et al (Baranger, Maitre, & Oudin, 1996) can be used to diagonalize the mass matrix. Moreover,
the result of (Baranger, Maitre, & Oudin, 1996) cannot be extended to the general 3D case, for more details see (Thomas
& Trujillo, 1997).

4- Notice that the methods presented here can also be viewed as an extension of the mortar finite elements method to
transport problems. On the other hand, we mention that there is a possible link between our methods and the mimetic
finite difference methods (see for example (Hyman & Shashkov, 1997)) that could be made by choosing an appropriate
inner product.

Finally, the stability and the feasibility of the method had been successfully tested on numerical examples. For this, the
dual mixed finite element method associated to the first-order accurate implicit Euler (for the time-discretization) has been
experimented on structured and unstructured meshes see (Serghini Mounim, 2000).
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