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Abstract

Γ(S LX) is defined and has been investigated in (Toker, 2016). In this paper our main aim is to extend this study over
Γ(S LX) to the tensor product. The diameter, radius, girth, domination number, independence number, clique number,
chromatic number and chromatic index of Γ(S LX1 ) ⊗ Γ(S LX2 ) has been established. Moreover, we have determined when
Γ(S LX1 ) ⊗ Γ(S LX2 ) is a perfect graph.

Keywords: Tensor product, finite free semilattice, zero-divisor graph, clique number, domination number, perfect graph

1. Introduction

Let G be a graph then edge set of G denoted by E(G) and vertex set of G denoted by V(G). Let G1 and G2 be graphs, tensor
product of G1 and G2 has vertex set V(G1) × V(G2) and has edge set {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)},
and it is denoted by G1 ⊗G2. Let G1 and G2 be connected graphs then G1 ⊗G2 is connected if and only if either G1 or G2
contains an odd cycle (Weichsel, 1962). Also it is clear that G1 ⊗G2 ≃ G2 ⊗G1.

Firstly zero-divisor graph on a commutative semigroup S with 0 was studied by Demeyer and his friends (DeMeyer et all.,
2002; DeMeyer et all, 2005). Let the set of zero divisor elements in S is Z(S ), the zero-divisor graph Γ(S ) is defined as
an undirected graph with vertices Z(S ) \ {0} and the vertices x and y are adjacent with a single edge if and only if xy = 0.
Always Γ(S ) is a connected graph (DeMeyer et all., 2002).

Let X be a finite non-empty set. The free semilattice on a set X is the finite powerset of X except the empty set and
operation is union of sets. We show it with S LX . Then S LX is a commutative semigroup of idempotents with the
multiplication A · B = A ∪ B for all A, B ∈ S LX . In zero-divisor graph of S LX , any two distinct vertices A and B are
adjacent with the rule A ∪ B = X. In a recent study, Γ(S LX) has been investigated in (Toker, 2016).

We know that if |X| ≥ 3 then Γ(S LX) contains an odd cycle (Toker, 2016). Let X1 and X2 be non-empty and finite sets and
let Γ(S LX1 ) be zero-divisor graph associated to S LX1 and Γ(S LX2 ) be zero-divisor graph associated to S LX2 . In this paper,
without loss of generality we assume that |X1| = n, |X2| = m and we suppose that X1 = {x1, . . . , xn} and X2 = {y1, . . . , ym}.
So if |X1| ≥ 2, |X2| ≥ 3 then Γ(S LX1 ) ⊗ Γ(S LX2 ) is connected graph and in this paper we have researched girth, diameter,
radius, dominating number, clique number, chromatic number, chromatic index, independence number and perfectness of
this graph.

For graph theory see (Gross & Yellen, 2004), and for semigroup theory (Howie, 1995).

2. Some Properties of Γ(S LX1 ) ⊗ Γ(S LX2 )

Let G be a simple graph, the distance (length of the shortest path) between two vertices u, v in G is denoted by dG(u, v).
In a connected simple graph the maximum distance (lenght of the shortest path) between v and any other vertex u in G is
eccentricity of a vertex v,it is denoted by ecc(v), so that is

ecc(v) = max{dG(u, v) | u ∈ V(G)}.

The diameter of G is defined by
max{ecc(v) | v ∈ V(G)}

and it is denioted by diam(G). Moreover radius of G is defined by

min{ecc(v) | v ∈ V(G)}

and it is denoted by rad(G). The girth of a graph is the length of a shortest cycle contained in the graph, and it is denoted
by gr(G). If there is not any cycle in a graph, then its girth is defined to be infinity.
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The degree (or valency) of a vertex of a graph is the number of edges incident to the vertex, with loops counted twice,
degree of vertex v ∈ V(G) is denoted by degG(v). Among all degrees, the maximum degree is denoted by ∆(G) and
the minimum degree is denoted by δ(G). In a graph, the vertex of maximum degree is called delta-vertex and the set of
delta-vertices of G denoted by ΛG. In a graph, an independent set or stable set is a set of vertices in a graph, no two of
which are adjacent. Independence number of G is denoted by α(G) and it is defined by

α(G) = max{|I| | I is an independent set of G}.

In a graph, a dominating set for a graph G is a subset D of V(G) such that every vertex not in D is adjacent to at least one
member of D. The domination number of G is the number of vertices in a smallest dominating set for G, and it is denoted
by γ(G), so dominating number of G is

γ(G) = min{|D| | D is a dominating set of G}.

The open neighbourhood of a vertex v ∈ V(G) is the set of vertices which are adjacent to v and it is denoted by NG(v), the
closed neighbourhood of v is NG(v) ∪ {v} and it is denoted by NG[v]. It is clear that |NG[v] ∩ D| ≥ 1 for each dominating
set D, and for each v ∈ V(G).

In this section we mainly deal with some graph properties of Γ(S LX1 )⊗Γ(S LX2 ) namely diameter, radius, girth, domination
number and independence number.

We use the notation A = (Xi \ A) for all A ⊆ Xi (i = 1, 2), and we use the notation d(u, v) instead of dΓ(S LX1 )⊗Γ(S LX2 )(u, v).
Moreover for convenience we use Γ1 ⊗ Γ2 instead of Γ(S LX1 ) ⊗ Γ(S LX2 ). Notice that, for u = (A1, B1), v = (A2, B2) ∈
V(Γ(S LX1 ) ⊗ Γ(S LX2 )) there exists a single edge u − v in Γ(S LX1 ) ⊗ Γ(S LX2 ) if and only if A1 ⊇ A2 and B1 ⊇ B2.

Theorem 2.1

(i) If |X1| ≥ 3 and |X2| ≥ 3 then diam(Γ1 ⊗ Γ2) = 4.

(ii) If |X1| = 2 and |X2| ≥ 3 then diam(Γ1 ⊗ Γ2) = 5.

Proof. (i) Let |X1| ≥ 3, |X2| ≥ 3 and u = (A1, B1), v = (A2, B2) ∈ V(Γ1 ⊗ Γ2). If A1 ∪ A2 = X1 and B1 ∪ B2 = X2 then
d(u, v) = 1. It is clear that in other cases d(u, v) ≥ 2. Second case is A1 ∪ A2 , X1 and B1 ∪ B2 , X2. In second case if
A1 ∩ A2 , ∅ and B1 ∩ B2 , ∅, we take C1 = A1 ∪ A2, C2 = B1 ∪ B2 thus we have a path (A1, B1)− (C1,C2)− (A2, B2) and
d(u, v) = 2. In second case let A1 ∩ A2 , ∅ and B1 ∩ B2 = ∅. In this case since B1 ∪ B2 = X2 thus d(u, v) , 2. If A1 , A2
then A1 \ A2 , ∅ or A2 \ A1 , ∅. If A1 \ A2 , ∅ then we have a path (A1, B1) − (A1 ∪ A2, B1) − (A2, B2) − (A2, B2) and if
A2 \ A1 , ∅ then we have a path (A1, B1) − (A1, B1) − (A1 ∪ A2, B2) − (A2, B2) so d(u, v) = 3. If A1 = A2 and |A1| ≥ 2 we
take any 2−partition of A1, say C and D. We have a path (A1, B1)− (A1 ∪C, B1)− (A1 ∪D, B2)− (A2, B2) so d(u, v) = 3. If
A1 = A2 and |A1| = 1 then we have a path (A1, B1)−(A1, B1)−(A1, B1∪B2)−(A1, B2)−(A2, B2) so d(u, v) ≤ 4. Also (A1, B)
has adjacent form of (A1,C) where C ⊆ B so d(u, v) , 3 then d(u, v) = 4. In second case if A1 ∩ A2 = ∅ and B1 ∩ B2 , ∅
is similar. In second case if A1 ∩ A2 = ∅ and B1 ∩ B2 = ∅ then we have a path (A1, B1) − (A1, B1) − (A2, B2) − (A2, B2)
and since A1 ∪ A2 = X1 and B1 ∪ B2 = X2 so d(u, v) = 3. Third case is A1 ∪ A2 = X1 and B1 ∪ B2 , X2. In third case if
A1 ∩ A2 , ∅ and B1 ∩ B2 , ∅ then we have a path (A1, B1)− (A1 ∪ A2, B1 ∪ B2)− (A2, B2), so d(u, v) = 2. If A1 ∩ A2 , ∅
and B1 ∩ B2 = ∅ then we have a path (A1, B1) − (A2, B1) − (A1, B2) − (A2, B2) and since B1 ∪ B2 = X2 so d(u, v) = 3. Let
A1 ∩A2 = ∅ and B1 ∩ B2 , ∅, in this case since A1 ∪A2 = X1 thus d(u, v) ≥ 3. If B1 , B2, so B1 \ B2 , ∅ or B2 \ B1 , ∅.
If B1 \ B2 , ∅ then we have a path (A1, B1) − (A2, B1 ∪ B2) − (A1, B2) − (A2, B2) and if B2 \ B1 , ∅ then we have a path
(A1, B1) − (A2, B1) − (A1, B1 ∪ B2) − (A2, B2), so d(u, v) = 3. If B1 = B2 and |B1| ≥ 2, we take 2−partition of B1, we say
E and F, then we have a path (A1, B1) − (A2, B1 ∪ E) − (A1, B1 ∪ F) − (A2, B2) so d(u, v) = 3. If B1 = B2 and |B1| = 1 in
this case |A1| , 1 or |A2| , 1 since A1 ∪ A2 = X1 and |X1| ≥ 3, if |A1| , 1 then there exists ∅ , C ( A1, and we have path
(A1, B1) − (A2 ∪C, B1) − (C, B1) − (A1, B1) − (A2, B2) and adjacent of (A, B1) is (D, B1) where D ⊆ A so d(u, v) = 4 and if
|A2| , 1 is similar. In third case if A1∩A2 = ∅ and B1∩B2 = ∅ then we have a path (A1, B1)−(A2, B1)−(A1, B2)−(A2, B2)
so d(u, v) = 3. Last case is A1 ∪ A2 , X1 and B1 ∪ B2 = X2 is similar with third case. Thus if |X1| ≥ 3 and |X2| ≥ 3 then
diam(Γ1 ⊗ Γ2) = 4.

(ii) Let |X1| = 2, |X2| ≥ 3 and u = (A1, B1), v = (A2, B2) ∈ V(Γ1 ⊗ Γ2). In here different case is A1 ∪ A2 = X1 and
B1 ∪ B2 , X2 with B1 = B2 and |B1| = 1, in other cases we have same results with i). This case we take 2−partition of B1,
we say M and N. We have a path (A1, B1) − (A2, B1) − (A1, B1 ∪ M) − (A2, B1 ∪ N) − (A1, B1) − (A2, B2) so d(u, v) ≤ 5.
(A1, B1) has only one adjacent and it is (A2, B1) and (A2, B1) has only one adjacent and it is (A1, B1) and they are different
vertices and they are not adjacent, moreover d((A2, B1), (A1, B1)) = 3, thus d(u, v) = 5. So if |X1| = 2 and |X2| ≥ 3 then
diam(Γ1 ⊗ Γ2) = 5.
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Theorem 2.2

(i) If |X1| ≥ 3 and |X2| ≥ 3 then gr(Γ1 ⊗ Γ2) = 3.

(ii) If |X1| = 2, |X2| = 3 then gr(Γ1 ⊗ Γ2) = 6 and if |X1| = 2, |X2| ≥ 4 then gr(Γ1 ⊗ Γ2) = 4.

(iii) If |X1| ≥ 3 and |X2| ≥ 3 then rad(Γ1 ⊗ Γ2) = 3.

(iv) If |X1| = 2 and |X2| ≥ 3 then rad(Γ1 ⊗ Γ2) = 4.

Proof. (i) Let |X1| ≥ 3, |X2| ≥ 3 and (A, B) ∈ V(Γ1 ⊗ Γ2). Assume that |A| ≥ 2, |B| ≥ 2 so there exists 2−partition of A, we
say A1 and A2 and there exists 2−partition of B, we say B1 and B2. Thus (A, B)−(A∪A1, B∪B1)−(A∪A2, B∪B2)−(A, B) is a
cycle. Let |A| = 1, |B| ≥ 2 then there exists ∅ , C ( A so we have a cycle (A, B)−(A, B∪B1)−(A∪C, B)−(A, B∪B2)−(A, B).
If |A| ≥ 2, |B| = 1, we can find a cycle similar way. Moreover Γ1⊗Γ2 is simple graph and from its definition gr(Γ1⊗Γ2) = 3.
(ii)
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If |X1| = 2, |X2| = 3 then Γ1 ⊗ Γ2 is η thus in this case gr(Γ1 ⊗ Γ2) = 6. If |X1| = 2, |X2| = m ≥ 4 , gr(Γ1 ⊗ Γ2) can not be
odd number since |X1| = 2. So gr(Γ1 ⊗ Γ2) ≥ 4. Let (A, B) ∈ V(Γ1 ⊗ Γ2) , if 2 ≤ |B| ≤ m − 2 then there exists k ∈ B and
2−partition of B is E and F. So (A, B) − (A, B ∪ E) − (A, {k}) − (A, B ∪ F) − (A, B) is a cycle. If |B| = m − 1 then without
loss of generality we assume that y1, y2 ∈ B then (A, B) − (A, B∪ {y1, y2}) − (A, B \ {y1}) − (A, B∪ {y1}) − (A, B) is a cycle.
Thus if |X1| = 2, |X2| ≥ 4 then gr(Γ1 ⊗ Γ2) = 4.

(iii) Let |X1| ≥ 3, |X2| ≥ 3 and v = (A, B) ∈ V(Γ1 ⊗ Γ2), we can determine ecc(v). If |A| ≥ 2, |B| ≥ 2 then ecc(v) ≤ 3 from
proof of Theorem 2.1 (i) because let u ∈ V(Γ1 ⊗ Γ2), we found that if |A| ≥ 2, |B| ≥ 2 then d(u, v) ≤ 3, so ecc(v) ≤ 3.
Moreover there exists ∅ , C ( B, if we choose u =(A,C) so d(u, v) = 3 it follows that ecc(v) = 3. If |A| = 1 we choose
u = (A, B) and d(u, v) = 4. If |B| = 1 is similar. So rad(Γ1 ⊗ Γ2) = 3.

(iv) Let |X1| = 2, |X2| ≥ 3 and v = (A, B) ∈ V(Γ1 ⊗ Γ2), we can determine ecc(v). If |A| = |B| = 1 then ecc(v) = 5. If |B| ≥ 2
it is clear that ecc(v) ≤ 4, if we choose u = (A, B) then d(u, v) = 4, so ecc(v) = 4. Thus rad(Γ1 ⊗ Γ2) = 4.

Theorem 2.3 If |X1| = n ≥ 2, |X2| = m ≥ 3 then γ(Γ1 ⊗ Γ2) = n.m

Proof. Let |X1| = n ≥ 2, |X2| = m ≥ 3 and v = (A, B) ∈ V(Γ1 ⊗ Γ2), D be a dominating set for Γ1 ⊗ Γ2. It is clear
that deg(Γ1⊗Γ2)(v) = degΓ1

(A). degΓ2
(B) so if |A| = |B| = 1 then deg(Γ1⊗Γ2)(v) = 1 and adjacent of v is only u = (A, B) so

N(Γ1⊗Γ2)[v] = {u, v}. Since |N(Γ1⊗Γ2)[{v}] ∩ D| ≥ 1, either v ∈ D or u ∈ D. Let xi, xk ∈ X1 and y j, yl ∈ X2. Moreover since
|X2| ≥ 3 if ({xi}, {y j}) , ({xk}, {yl}) then

N(Γ1⊗Γ2)[({xi}, {y j})] ∩ N(Γ1⊗Γ2)[({xk}, {yl})] = ∅.

Thus γ(Γ1 ⊗ Γ2) ≥ n.m. If we choose D = {u = (A, B); u ∈ V(Γ1 ⊗ Γ2) and |A| = n − 1, |B| = m − 1}, it is easy to see that
|D| = n.m and D is a dominating set for Γ1 ⊗ Γ2. It follows that γ(Γ1 ⊗ Γ2) = n.m

Theorem 2.4 If |X1| = n ≥ 2, |X2| = m ≥ 3 then

α(Γ1 ⊗ Γ2) =
(2n − 2)(2m − 2)

2

Proof. Let xi ∈ X1 and C = {(Ai, B j) : ∅ , Ai ⊆ X1 \ {xi}, B j ∈ V(Γ2)} and D = {(X1 \ Ai, X2 \ B j) : (Ai, B j) ∈ C}. It is
clear that C ∩ D = ∅ and |C| = |D| = (2n−2)(2m−2)

2 thus C ∪ D = V(Γ1 ⊗ Γ2). Let I be an independence set of Γ1 ⊗ Γ2, then
from the pigeonhole principle |I| ≤ (2n−2)(2m−2)

2 , and C is an independence set for Γ1 ⊗ Γ2, moreover |C| = (2n−2)(2m−2)
2 .
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3. Perfectness of Γ(S LX1 ) ⊗ Γ(S LX2 )

Let G be a graph. Clique is the each of the maximal complete subgraphs of G. The number of all the vertices in any
clique of G is clique number and it is denoted by ω(G). The chromatic number of a graph G is the smallest number of
colors needed to color the vertices of G so that no two adjacent vertices share the same color and it is denoted by χ(G). It
is well-known that

χ(G) ≥ ω(G) (1)

for any graph G (Chartrand & Zhang, 2009). Let V
′ ⊆ V(G), then induced subgraph G

′
= (V

′
, E

′
) is a subgraph of G such

that E
′

consists of those edges whose endpoints are in V
′
. For each induced subgraph H of G, if χ(H) = ω(H), then G is

called a perfect graph.

The complement or inverse of a graph G is a graph on the same vertices such that two distinct vertices are adjacent if and
only if they are not adjacent in G, the complement of G is denoted by Gc.

A graph G is called Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one.

The edges are called adjacent if they share a common end vertex. An edge coloring of a graph is an assignment of colors
to the edges of the graph so that no two adjacent edges have the same color. The minimum required number of colours for
and edge colouring of G is called the chromatic index of G and it is denoted by χ

′
(G). Vizing gave a fundamental theorem

for that, for any graph G, we have
∆(G) ≤ χ′ (G) ≤ ∆(G) + 1

(Vizing, 1964). Graph G is called class-1 if ∆(G) = χ
′
(G) and called class-2 if χ

′
(G) = ∆(G) + 1.

The core of a graph G is defined to be the largest induced subgraph of G such that each edge in core is part of a cycle and
it is denoted by G∆. Finally, let M be a subset of E(G) for a graph G, if there is no two edges in M which are adjacent
then M is called a matching.

Conjecture 3.1 Let G and H be graphs then χ(G ⊗ H) = min{χ(G), χ(H)}. (Hedetniemi, 1966)

Theorem 3.2 If |X1| = n ≥ 2 and |X2| = m ≥ 3 then

ω(Γ1 ⊗ Γ2) = χ(Γ1 ⊗ Γ2) = min{n,m}.

Proof. Let X1 = {x1, . . . , xn} and X2 = {y1, . . . , ym} with n ≥ 2, m ≥ 3. We assume that K is one the maximal complete
subgraph of Γ1 ⊗ Γ2 and

V(K) = {(Ai1 , B j1 ), (Ai2 , B j2 ), . . . , (Aik , B jk )}.

It is clear that for 1 ≤ p , q ≤ k, Aip , Aiq , B jp , B jq and graph of spanned by the vertices V1 = {Ai1 , Ai2 , . . . , Aik }
is complete subgraph of Γ1 and graph of spanned by the vertices V2 = {Bi1 , Bi2 , . . . , Bik } is complete subgraph of Γ2. It
follows that k ≤ min{n,m} from (Toker, 2016). Assume that m ≥ n so if we choose

V(Π) = {((x2, x3, . . . , xn), (y2, y3, . . . , ym)), ((x1, x3, . . . , xn),

(y1, y3, . . . , ym)), . . . , ((x1, x2, x3, . . . , xn−1), (y1, y2, . . . , yn−1, yn+1, . . . ym))}

and if n ≥ m is similar. Let Π be spanned graph by V(Π). It is easy to see that Π is min{n,m} vertices complete subgraph
of Γ1 ⊗ Γ2 and so ω(Γ1 ⊗ Γ2) = min{n,m}.
Thus χ(Γ1 ⊗ Γ2) ≥ min{n,m} from equation (1). Assume that m ≥ n and ∀1 ≤ i ≤ n ; Ai = X1 \ {i}. In addition let

Q1 = {(B, v) | ∅ , B ⊆ A1 and v ∈ V(Γ2)},
Q2 = {(B, v) | ∅ , B ⊆ A2 and (B, v) < Q1 and v ∈ V(Γ2)},

...

Qn = {(B, v) | ∅ , B ⊆ An and (B, v) <
n−1∪
i=1

Qi and v ∈ V(Γ2)}.

It is clear if (u, v) ∈ V(Γ1 ⊗ Γ2) then (u, v) ∈ Qs (1 ≤ s ≤ n) for unique s, moreover
n∪

i=1
Qi = V(Γ1 ⊗ Γ2) and Qi ∩ Q j = ∅

for 1 ≤ i , j ≤ n. For each 1 ≤ k ≤ n if we choose a different colour for each Qk and assign the chosen colour to the all
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vertices in Qk, there is no two adjacent vertices have same colour, and so χ(Γ1 ⊗ Γ2) ≤ n. Thus χ(Γ1 ⊗ Γ2) = min{n,m}. If
n ≥ m is similar. So conjecture holds for Γ1 ⊗ Γ2 .

Lemma 3.3 A graph is perfect if and only if it is Berge (Chudnovsky et all., 2006).

Therefore, a graph G is perfect if and only if neither G nor Gc contains an odd cycle of length at least 5 as an induced
subgraph.

Theorem 3.4 If |X1| = 2, |X2| ≥ 3 then Γ1 ⊗ Γ2 is perfect graph but if |X1| ≥ 3, |X2| ≥ 3 then Γ1 ⊗ Γ2 is not perfect graph.

Proof. We assume that X1 = {x1, . . . , xn} and X2 = {y1, . . . , ym}. Let |X1| = 2 and |X2| ≥ 3. It is clear that there is not any
odd cycle at least 5 as induced subgraph of Γ1 ⊗ Γ2 since |X1| = 2. Let G = (Γ1 ⊗ Γ2)c. For k ≥ 3 we assume that there is
an induced subgraph of G which is cycle with 2k − 1 vertices, say

C1 −C2 − · · · −C2k−1 −C1.

Without loss of generality assume that C1 = (x1, B1). Then C3 = (x2, B3) and C2k−2 = (x2, B2k−2) because C1 and C3
adjacent vertices in Γ1 ⊗ Γ2 and C1 and C2k−2 adjacent vertices in Γ1 ⊗ Γ2. Thus C2 = (x1, B2) and C2k−1 = (x1, B2k−1)
because C2 and C2k−2 adjacent vertices in Γ1 ⊗ Γ2 and C3 and C2k−1 adjacent vertices in Γ1 ⊗ Γ2. But in this case C2
and C2k−1 adjacent vertices in G which is a contradiction. So if |X1| = 2, |X2| ≥ 3 then Γ1 ⊗ Γ2 is perfect graph. Let
|X1| ≥ 3, |X2| ≥ 3 and Y1 = X1 \ {x1, x2, x3}, Y2 = X2 \ {y1, y2, y3}. Let H = ({x1, x2}∪Y1, {y1, y2}∪Y2)− ({x3}∪Y1, {y2, y3}∪
Y2)− ({x1, x2} ∪ Y1, {y1, y3} ∪ Y2)− ({x1, x3} ∪ Y1, {y2} ∪ Y2)− ({x2, x3} ∪ Y1, {y1, y3} ∪ Y2)− ({x1, x2} ∪ Y1, {y1, y2} ∪ Y2). So
H is cycle of length of 5 which subinduced graph of Γ1 ⊗ Γ2. Thus if |X1| ≥ 3, |X2| ≥ 3 then Γ1 ⊗ Γ2 is not perfect graph.

Lemma 3.5 Consider the graphs G1 = (V, E1) and G2 = (V, E2) with the same vertex set. Suppose that E1 is a matching
such that no edge has both endvertices in NG2 [ΛG2 ]. If the union graph G = G1∪G2 has maximum degree ∆(G) = ∆(G2)+1
then G is class-1 (Machado & Figueiredo, 2010).

Theorem 3.6 If |X1| = n ≥ 2, |X2| = m ≥ 3 then

χ
′
(Γ1 ⊗ Γ2) = χ

′
(Γ1).χ

′
(Γ2) = (2n−1 − 1).(2m−1 − 1)

Proof. Let (u, v) ∈ V(Γ1 ⊗ Γ2), if |u| ≥ 2, |v| ≥ 2 or if |u| = 1, |v| ≥ 2 or |u| ≥ 2, |v| = 1 then (u, v) is in core
at graph from Theorem 2.2. Let B = {({xi}, {y j}) − (X1 \ {xi}, X2 \ {y j}) : xi ∈ X1, y j ∈ X2}, G1 = (V(Γ1 ⊗ Γ2), B))
and G2 = (V(Γ1 ⊗ Γ2), E(Γ1 ⊗ Γ2)∆). So B is a matching such that no edge has both endvertices in NG2 [ΛG2 ]. Also
(Γ1 ⊗ Γ2) = G1 ∪G2 and ∆(Γ1 ⊗ Γ2) = ∆(G2) + 1 so from Lemma 3.5, Γ1 ⊗ Γ2 is class-1.
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