Tensor Product Of Zero-divisor Graphs With Finite Free Semilattices

Kemal Toker ${ }^{1}$
${ }^{1}$ Faculty Of Arts And Sciences Department Of Mathematics, Harran University, Şanlıurfa-Turkey
Correspondence: Kemal Toker, Faculty Of Arts And Sciences Department Of Mathematics, Harran University, ŞanlıurfaTurkey. Tel: 90-414-318-3000/1143. E-mail: ktoker@harran.edu.tr

Received: November 4, 2016 Accepted: December 20, 2016 Online Published: December 30, 2016
doi:10.5539/jmr.v9n1p13 URL: http://dx.doi.org/10.5539/jmr.v9n1p13

Abstract

$\Gamma\left(S L_{X}\right)$ is defined and has been investigated in (Toker, 2016). In this paper our main aim is to extend this study over $\Gamma\left(S L_{X}\right)$ to the tensor product. The diameter, radius, girth, domination number, independence number, clique number, chromatic number and chromatic index of $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$ has been established. Moreover, we have determined when $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$ is a perfect graph.

Keywords: Tensor product, finite free semilattice, zero-divisor graph, clique number, domination number, perfect graph

1. Introduction

Let G be a graph then edge set of G denoted by $E(G)$ and vertex set of G denoted by $V(G)$. Let G_{1} and G_{2} be graphs, tensor product of G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and has edge set $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right): u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$, and it is denoted by $G_{1} \otimes G_{2}$. Let G_{1} and G_{2} be connected graphs then $G_{1} \otimes G_{2}$ is connected if and only if either G_{1} or G_{2} contains an odd cycle (Weichsel, 1962). Also it is clear that $G_{1} \otimes G_{2} \simeq G_{2} \otimes G_{1}$.
Firstly zero-divisor graph on a commutative semigroup S with 0 was studied by Demeyer and his friends (DeMeyer et all., 2002; DeMeyer et all, 2005). Let the set of zero divisor elements in S is $Z(S)$, the zero-divisor graph $\Gamma(S)$ is defined as an undirected graph with vertices $Z(S) \backslash\{0\}$ and the vertices x and y are adjacent with a single edge if and only if $x y=0$. Always $\Gamma(S)$ is a connected graph (DeMeyer et all., 2002).
Let X be a finite non-empty set. The free semilattice on a set X is the finite powerset of X except the empty set and operation is union of sets. We show it with $S L_{X}$. Then $S L_{X}$ is a commutative semigroup of idempotents with the multiplication $A \cdot B=A \cup B$ for all $A, B \in S L_{X}$. In zero-divisor graph of $S L_{X}$, any two distinct vertices A and B are adjacent with the rule $A \cup B=X$. In a recent study, $\Gamma\left(S L_{X}\right)$ has been investigated in (Toker, 2016).
We know that if $|X| \geq 3$ then $\Gamma\left(S L_{X}\right)$ contains an odd cycle (Toker, 2016). Let X_{1} and X_{2} be non-empty and finite sets and let $\Gamma\left(S L_{X_{1}}\right)$ be zero-divisor graph associated to $S L_{X_{1}}$ and $\Gamma\left(S L_{X_{2}}\right)$ be zero-divisor graph associated to $S L_{X_{2}}$. In this paper, without loss of generality we assume that $\left|X_{1}\right|=n,\left|X_{2}\right|=m$ and we suppose that $X_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $X_{2}=\left\{y_{1}, \ldots, y_{m}\right\}$. So if $\left|X_{1}\right| \geq 2,\left|X_{2}\right| \geq 3$ then $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$ is connected graph and in this paper we have researched girth, diameter, radius, dominating number, clique number, chromatic number, chromatic index, independence number and perfectness of this graph.

For graph theory see (Gross \& Yellen, 2004), and for semigroup theory (Howie, 1995).
2. Some Properties of $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$

Let G be a simple graph, the distance (length of the shortest path) between two vertices u, v in G is denoted by $d_{G}(u, v)$. In a connected simple graph the maximum distance (lenght of the shortest path) between v and any other vertex u in G is eccentricity of a vertex v, it is denoted by ecc($v)$, so that is

$$
\operatorname{ecc}(v)=\max \left\{d_{G}(u, v) \mid u \in V(G)\right\} .
$$

The diameter of G is defined by

$$
\max \{\operatorname{ecc}(v) \mid v \in V(G)\}
$$

and it is denioted by $\operatorname{diam}(G)$. Moreover radius of G is defined by

$$
\min \{\operatorname{ecc}(v) \mid v \in V(G)\}
$$

and it is denoted by $\operatorname{rad}(G)$. The girth of a graph is the length of a shortest cycle contained in the graph, and it is denoted by $\operatorname{gr}(G)$. If there is not any cycle in a graph, then its girth is defined to be infinity.

The degree (or valency) of a vertex of a graph is the number of edges incident to the vertex, with loops counted twice, degree of vertex $v \in V(G)$ is denoted by $\operatorname{deg}_{G}(v)$. Among all degrees, the maximum degree is denoted by $\Delta(G)$ and the minimum degree is denoted by $\delta(G)$. In a graph, the vertex of maximum degree is called delta-vertex and the set of delta-vertices of G denoted by Λ_{G}. In a graph, an independent set or stable set is a set of vertices in a graph, no two of which are adjacent. Independence number of G is denoted by $\alpha(G)$ and it is defined by

$$
\alpha(G)=\max \{|I| \mid I \text { is an independent set of } G\} .
$$

In a graph, a dominating set for a graph G is a subset D of $V(G)$ such that every vertex not in D is adjacent to at least one member of D. The domination number of G is the number of vertices in a smallest dominating set for G, and it is denoted by $\gamma(G)$, so dominating number of G is

$$
\gamma(G)=\min \{|D| \mid D \text { is a dominating set of } G\} .
$$

The open neighbourhood of a vertex $v \in V(G)$ is the set of vertices which are adjacent to v and it is denoted by $N_{G}(v)$, the closed neighbourhood of v is $N_{G}(v) \cup\{v\}$ and it is denoted by $N_{G}[v]$. It is clear that $\left|N_{G}[v] \cap D\right| \geq 1$ for each dominating set D, and for each $v \in V(G)$.
In this section we mainly deal with some graph properties of $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$ namely diameter, radius, girth, domination number and independence number.
We use the notation $\bar{A}=\left(X_{i} \backslash A\right)$ for all $A \subseteq X_{i}(i=1,2)$, and we use the notation $d(u, v)$ instead of $d_{\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)}(u, v)$. Moreover for convenience we use $\Gamma_{1} \otimes \Gamma_{2}$ instead of $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$. Notice that, for $u=\left(A_{1}, B_{1}\right), v=\left(A_{2}, B_{2}\right) \in$ $V\left(\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)\right)$ there exists a single edge $u-v$ in $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$ if and only if $A_{1} \supseteq \overline{A_{2}}$ and $B_{1} \supseteq \overline{B_{2}}$.

Theorem 2.1

(i) If $\left|X_{1}\right| \geq 3$ and $\left|X_{2}\right| \geq 3$ then diam $\left(\Gamma_{1} \otimes \Gamma_{2}\right)=4$.
(ii) If $\left|X_{1}\right|=2$ and $\left|X_{2}\right| \geq 3$ then diam $\left(\Gamma_{1} \otimes \Gamma_{2}\right)=5$.

Proof. (i) Let $\left|X_{1}\right| \geq 3,\left|X_{2}\right| \geq 3$ and $u=\left(A_{1}, B_{1}\right), v=\left(A_{2}, B_{2}\right) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$. If $A_{1} \cup A_{2}=X_{1}$ and $B_{1} \cup B_{2}=X_{2}$ then $d(u, v)=1$. It is clear that in other cases $d(u, v) \geq 2$. Second case is $A_{1} \cup A_{2} \neq X_{1}$ and $B_{1} \cup B_{2} \neq X_{2}$. In second case if $A_{1} \cap A_{2} \neq \varnothing$ and $B_{1} \cap B_{2} \neq \varnothing$, we take $C_{1}=\overline{A_{1}} \cup \overline{A_{2}}, C_{2}=\overline{B_{1}} \cup \overline{B_{2}}$ thus we have a path $\left(A_{1}, B_{1}\right)-\left(C_{1}, C_{2}\right)-\left(A_{2}, B_{2}\right)$ and $d(u, v)=2$. In second case let $A_{1} \cap A_{2} \neq \varnothing$ and $B_{1} \cap B_{2}=\varnothing$. In this case since $\overline{B_{1}} \cup \overline{B_{2}}=\underline{X_{2}}$ thus $d(\underline{u}, v) \neq 2$. If $A_{1} \neq A_{2}$ then $A_{1} \backslash A_{2} \neq \varnothing$ or $A_{2} \backslash A_{1} \neq \varnothing$. If $A_{1} \backslash A_{2} \neq \varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(\overline{A_{1}} \cup A_{2}, \overline{B_{1}}\right)-\left(\overline{A_{2}}, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ and if $A_{2} \backslash A_{1} \neq \varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(\overline{A_{1}}, \overline{B_{1}}\right)-\left(A_{1} \cup \overline{A_{2}}, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ so $d(u, v)=3$. If $A_{1}=A_{2}$ and $\left|A_{1}\right| \geq 2$ we take any 2 -partition of A_{1}, say C and D. We have a path $\left(A_{1}, B_{1}\right)-\left(\overline{A_{1}} \cup C, \overline{B_{1}}\right)-\left(\overline{A_{1}} \cup D, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ so $d(u, v)=3$. If $A_{1}=A_{2}$ and $\left|A_{1}\right|=1$ then we have a path $\left(A_{1}, B_{1}\right)-\left(\overline{A_{1}}, \overline{B_{1}}\right)-\left(A_{1}, B_{1} \cup B_{2}\right)-\left(\overline{A_{1}}, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ so $d(u, v) \leq 4$. Also $\left(A_{1}, B\right)$ has adjacent form of $\left(\overline{A_{1}}, C\right)$ where $\bar{C} \subseteq B$ so $d(u, v) \neq 3$ then $d(u, v)=4$. In second case if $A_{1} \cap A_{2}=\varnothing$ and $B_{1} \cap B_{2} \neq \varnothing$ is similar. In second case if $\overline{A_{1}} \cap A_{2}=\varnothing$ and $B_{1} \cap B_{2}=\varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(\overline{A_{1}}, \overline{B_{1}}\right)-\left(\overline{A_{2}}, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ and since $\overline{A_{1}} \cup \overline{A_{2}}=X_{1}$ and $\overline{B_{1}} \cup \overline{B_{2}}=X_{2}$ so $d(u, v)=3$. Third case is $A_{1} \cup A_{2}=X_{1}$ and $B_{1} \cup B_{2} \neq X_{2}$. In third case if $A_{1} \cap A_{2} \neq \varnothing$ and $B_{1} \cap B_{2} \neq \varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(\overline{A_{1}} \cup \overline{A_{2}}, \overline{B_{1}} \cup \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$, so $d(u, v)=2$. If $A_{1} \cap A_{2} \neq \varnothing$ and $B_{1} \cap B_{2}=\varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(A_{2}, \overline{B_{1}}\right)-\left(A_{1}, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ and since $\overline{B_{1}} \cup \overline{B_{2}}=X_{2}$ so $d(u, v)=3$. Let $A_{1} \cap A_{2}=\varnothing$ and $B_{1} \cap B_{2} \neq \varnothing$, in this case since $\overline{A_{1}} \cup \overline{A_{2}}=X_{1}$ thus $d(u, v) \geq 3$. If $B_{1} \neq B_{2}$, so $B_{1} \backslash B_{2} \neq \varnothing$ or $B_{2} \backslash B_{1} \neq \varnothing$. If $B_{1} \backslash B_{2} \neq \varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(A_{2}, \overline{B_{1}} \cup B_{2}\right)-\left(A_{1}, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ and if $B_{2} \backslash B_{1} \neq \varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(A_{2}, \overline{B_{1}}\right)-\left(A_{1}, B_{1} \cup \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$, so $d(u, v)=3$. If $B_{1}=B_{2}$ and $\left|B_{1}\right| \geq 2$, we take 2 -partition of B_{1}, we say E and F, then we have a path $\left(A_{1}, B_{1}\right)-\left(A_{2}, \overline{B_{1}} \cup E\right)-\left(A_{1}, \overline{B_{1}} \cup F\right)-\left(A_{2}, B_{2}\right)$ so $d(u, v)=3$. If $B_{1}=B_{2}$ and $\left|B_{1}\right|=1$ in this case $\left|A_{1}\right| \neq 1$ or $\left|A_{2}\right| \neq 1$ since $A_{1} \cup A_{2}=X_{1}$ and $\left|X_{1}\right| \geq 3$, if $\left|A_{1}\right| \neq 1$ then there exists $\varnothing \neq C \subsetneq A_{1}$, and we have path $\left(A_{1}, B_{1}\right)-\left(A_{2} \cup C, \overline{B_{1}}\right)-\left(\bar{C}, B_{1}\right)-\left(A_{1}, \overline{B_{1}}\right)-\left(A_{2}, B_{2}\right)$ and adjacent of $\left(A, B_{1}\right)$ is $\left(D, \overline{B_{1}}\right)$ where $\bar{D} \subseteq A$ so $d(u, v)=4$ and if $\left|A_{2}\right| \neq 1$ is similar. In third case if $A_{1} \cap A_{2}=\varnothing$ and $B_{1} \cap B_{2}=\varnothing$ then we have a path $\left(A_{1}, B_{1}\right)-\left(A_{2}, \overline{B_{1}}\right)-\left(A_{1}, \overline{B_{2}}\right)-\left(A_{2}, B_{2}\right)$ so $d(u, v)=3$. Last case is $A_{1} \cup A_{2} \neq X_{1}$ and $B_{1} \cup B_{2}=X_{2}$ is similar with third case. Thus if $\left|X_{1}\right| \geq 3$ and $\left|X_{2}\right| \geq 3$ then $\operatorname{diam}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=4$.
(ii) Let $\left|X_{1}\right|=2,\left|X_{2}\right| \geq 3$ and $u=\left(A_{1}, B_{1}\right), v=\left(A_{2}, B_{2}\right) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$. In here different case is $A_{1} \cup A_{2}=X_{1}$ and $B_{1} \cup B_{2} \neq X_{2}$ with $B_{1}=B_{2}$ and $\left|B_{1}\right|=1$, in other cases we have same results with i). This case we take $2-$ partition of $\overline{B_{1}}$, we say M and N. We have a path $\left(A_{1}, B_{1}\right)-\left(A_{2}, \overline{B_{1}}\right)-\left(A_{1}, B_{1} \cup M\right)-\left(A_{2}, B_{1} \cup N\right)-\left(A_{1}, \overline{B_{1}}\right)-\left(A_{2}, B_{2}\right)$ so $d(u, v) \leq 5$. $\left(A_{1}, B_{1}\right)$ has only one adjacent and it is $\left(A_{2}, \overline{B_{1}}\right)$ and $\left(A_{2}, B_{1}\right)$ has only one adjacent and it is $\left(A_{1}, \overline{B_{1}}\right)$ and they are different vertices and they are not adjacent, moreover $d\left(\left(A_{2}, \overline{B_{1}}\right),\left(A_{1}, \overline{B_{1}}\right)\right)=3$, thus $d(u, v)=5$. So if $\left|X_{1}\right|=2$ and $\left|X_{2}\right| \geq 3$ then $\operatorname{diam}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=5$.

Theorem 2.2

(i) If $\left|X_{1}\right| \geq 3$ and $\left|X_{2}\right| \geq 3$ then $g r\left(\Gamma_{1} \otimes \Gamma_{2}\right)=3$.
(ii) If $\left|X_{1}\right|=2,\left|X_{2}\right|=3$ then $g r\left(\Gamma_{1} \otimes \Gamma_{2}\right)=6$ and if $\left|X_{1}\right|=2,\left|X_{2}\right| \geq 4$ then $g r\left(\Gamma_{1} \otimes \Gamma_{2}\right)=4$.
(iii) If $\left|X_{1}\right| \geq 3$ and $\left|X_{2}\right| \geq 3$ then $\operatorname{rad}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=3$.
(iv) If $\left|X_{1}\right|=2$ and $\left|X_{2}\right| \geq 3$ then $\operatorname{rad}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=4$.

Proof. (i) Let $\left|X_{1}\right| \geq 3,\left|X_{2}\right| \geq 3$ and $(A, B) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$. Assume that $|A| \geq 2,|B| \geq 2$ so there exists 2-partition of A, we say A_{1} and A_{2} and there exists 2 -partition of B, we say B_{1} and B_{2}. Thus $(A, B)-\left(\bar{A} \cup A_{1}, \bar{B} \cup B_{1}\right)-\left(\bar{A} \cup A_{2}, \bar{B} \cup \underline{B}_{2}\right)-(A, B)$ is a cycle. Let $|A|=1,|B| \geq 2$ then there exists $\varnothing \neq C \subsetneq \bar{A}$ so we have a cycle $(A, B)-\left(\bar{A}, \bar{B} \cup B_{1}\right)-(A \cup C, B)-\left(\bar{A}, \bar{B} \cup B_{2}\right)-(A, B)$. If $|A| \geq 2,|B|=1$, we can find a cycle similar way. Moreover $\Gamma_{1} \otimes \Gamma_{2}$ is simple graph and from its definition $g r\left(\Gamma_{1} \otimes \Gamma_{2}\right)=3$. (ii)

If $\left|X_{1}\right|=2,\left|X_{2}\right|=3$ then $\Gamma_{1} \otimes \Gamma_{2}$ is η thus in this case $g r\left(\Gamma_{1} \otimes \Gamma_{2}\right)=6$. If $\left|X_{1}\right|=2,\left|X_{2}\right|=m \geq 4, g r\left(\Gamma_{1} \otimes \Gamma_{2}\right)$ can not be odd number since $\left|X_{1}\right|=2$. So $g r\left(\Gamma_{1} \otimes \Gamma_{2}\right) \geq 4$. Let $(A, B) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$, if $2 \leq|B| \leq m-2$ then there exists $k \in \bar{B}$ and 2-partition of B is E and F. So $(A, B)-(\bar{A}, \bar{B} \cup E)-(A, \overline{\{k\}})-(\bar{A}, \bar{B} \cup F)-(A, B)$ is a cycle. If $|B|=m-1$ then without loss of generality we assume that $y_{1}, y_{2} \in B$ then $(A, B)-\left(\bar{A}, \bar{B} \cup\left\{y_{1}, y_{2}\right\}\right)-\left(A, B \backslash\left\{y_{1}\right\}\right)-\left(\bar{A}, \bar{B} \cup\left\{y_{1}\right\}\right)-(A, B)$ is a cycle. Thus if $\left|X_{1}\right|=2,\left|X_{2}\right| \geq 4$ then $\operatorname{gr}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=4$.
(iii) Let $\left|X_{1}\right| \geq 3,\left|X_{2}\right| \geq 3$ and $v=(A, B) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$, we can determine $\operatorname{ecc}(v)$. If $|A| \geq 2,|B| \geq 2$ then $\operatorname{ecc}(v) \leq 3$ from proof of Theorem 2.1 (i) because let $u \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$, we found that if $|A| \geq 2,|B| \geq 2$ then $d(u, v) \leq 3$, so ecc $(v) \leq 3$. Moreover there exists $\varnothing \neq C \subsetneq B$, if we choose $u=(\bar{A}, C)$ so $d(u, v)=3$ it follows that $e c c(v)=3$. If $|A|=1$ we choose $u=(A, \bar{B})$ and $d(u, v)=4$. If $|B|=1$ is similar. So $\operatorname{rad}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=3$.
(iv) Let $\left|X_{1}\right|=2,\left|X_{2}\right| \geq 3$ and $v=(A, B) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$, we can determine $\operatorname{ecc}(v)$. If $|A|=|B|=1$ then $\operatorname{ecc}(v)=5$. If $|B| \geq 2$ it is clear that $\operatorname{ecc}(v) \leq 4$, if we choose $u=(A, \bar{B})$ then $d(u, v)=4$, so $\operatorname{ecc}(v)=4$. Thus $\operatorname{rad}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=4$.
Theorem 2.3 If $\left|X_{1}\right|=n \geq 2,\left|X_{2}\right|=m \geq 3$ then $\gamma\left(\Gamma_{1} \otimes \Gamma_{2}\right)=n . m$
Proof. Let $\left|X_{1}\right|=n \geq 2,\left|X_{2}\right|=m \geq 3$ and $v=(A, B) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right), D$ be a dominating set for $\Gamma_{1} \otimes \Gamma_{2}$. It is clear that $\operatorname{deg}_{\left(\Gamma_{1} \otimes \Gamma_{2}\right)}(v)=\operatorname{deg}_{\Gamma_{1}}(A) . \operatorname{deg}_{\Gamma_{2}}(B)$ so if $|A|=|B|=1$ then $\operatorname{deg}_{\left(\Gamma_{1} \otimes \Gamma_{2}\right)}(v)=1$ and adjacent of v is only $u=(\bar{A}, \bar{B})$ so $N_{\left(\Gamma_{1} \otimes \Gamma_{2}\right)}[v]=\{u, v\}$. Since $\left|N_{\left(\Gamma_{1} \otimes \Gamma_{2}\right)}[\{v\}] \cap D\right| \geq 1$, either $v \in D$ or $u \in D$. Let $x_{i}, x_{k} \in X_{1}$ and $y_{j}, y_{l} \in X_{2}$. Moreover since $\left|X_{2}\right| \geq 3$ if $\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right) \neq\left(\left\{x_{k}\right\},\left\{y_{l}\right\}\right)$ then

$$
N_{\left(\Gamma_{1} \otimes \Gamma_{2}\right)}\left[\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right)\right] \cap N_{\left(\Gamma_{1} \otimes \Gamma_{2}\right)}\left[\left(\left\{x_{k}\right\},\left\{y_{l}\right\}\right)\right]=\varnothing .
$$

Thus $\gamma\left(\Gamma_{1} \otimes \Gamma_{2}\right) \geq n . m$. If we choose $D=\left\{u=(A, B) ; u \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)\right.$ and $\left.|A|=n-1,|B|=m-1\right\}$, it is easy to see that $|D|=n . m$ and D is a dominating set for $\Gamma_{1} \otimes \Gamma_{2}$. It follows that $\gamma\left(\Gamma_{1} \otimes \Gamma_{2}\right)=n . m$
Theorem 2.4 If $\left|X_{1}\right|=n \geq 2,\left|X_{2}\right|=m \geq 3$ then

$$
\alpha\left(\Gamma_{1} \otimes \Gamma_{2}\right)=\frac{\left(2^{n}-2\right)\left(2^{m}-2\right)}{2}
$$

Proof. Let $x_{i} \in X_{1}$ and $C=\left\{\left(A_{i}, B_{j}\right): \varnothing \neq A_{i} \subseteq X_{1} \backslash\left\{x_{i}\right\}, B_{j} \in V\left(\Gamma_{2}\right)\right\}$ and $D=\left\{\left(X_{1} \backslash A_{i}, X_{2} \backslash B_{j}\right):\left(A_{i}, B_{j}\right) \in C\right\}$. It is clear that $C \cap D=\varnothing$ and $|C|=|D|=\frac{\left(2^{n}-2\right)\left(2^{m}-2\right)}{2}$ thus $C \cup D=V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$. Let I be an independence set of $\Gamma_{1} \otimes \Gamma_{2}$, then from the pigeonhole principle $|I| \leq \frac{\left(2^{n}-2\right)\left(2^{m}-2\right)}{2}$, and C is an independence set for $\Gamma_{1} \otimes \Gamma_{2}$, moreover $|C|=\frac{\left(2^{n}-2\right)\left(2^{m}-2\right)}{2}$.

3. Perfectness of $\Gamma\left(S L_{X_{1}}\right) \otimes \Gamma\left(S L_{X_{2}}\right)$

Let G be a graph. Clique is the each of the maximal complete subgraphs of G. The number of all the vertices in any clique of G is clique number and it is denoted by $\omega(G)$. The chromatic number of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color and it is denoted by $\chi(G)$. It is well-known that

$$
\begin{equation*}
\chi(G) \geq \omega(G) \tag{1}
\end{equation*}
$$

for any graph G (Chartrand \& Zhang, 2009). Let $V^{\prime} \subseteq V(G)$, then induced subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G such that E^{\prime} consists of those edges whose endpoints are in V^{\prime}. For each induced subgraph H of G, if $\chi(H)=\omega(H)$, then G is called a perfect graph.
The complement or inverse of a graph G is a graph on the same vertices such that two distinct vertices are adjacent if and only if they are not adjacent in G, the complement of G is denoted by G^{c}.
A graph G is called Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one.
The edges are called adjacent if they share a common end vertex. An edge coloring of a graph is an assignment of colors to the edges of the graph so that no two adjacent edges have the same color. The minimum required number of colours for and edge colouring of G is called the chromatic index of G and it is denoted by $\chi^{\prime}(G)$. Vizing gave a fundamental theorem for that, for any graph G, we have

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

(Vizing, 1964). Graph G is called class-1 if $\Delta(G)=\chi^{\prime}(G)$ and called class-2 if $\chi^{\prime}(G)=\Delta(G)+1$.
The core of a graph G is defined to be the largest induced subgraph of G such that each edge in core is part of a cycle and it is denoted by G_{Δ}. Finally, let M be a subset of $E(G)$ for a graph G, if there is no two edges in M which are adjacent then M is called a matching.
Conjecture 3.1 Let G and H be graphs then $\chi(G \otimes H)=\min \{\chi(G), \chi(H)\}$. (Hedetniemi, 1966)
Theorem 3.2 If $\left|X_{1}\right|=n \geq 2$ and $\left|X_{2}\right|=m \geq 3$ then

$$
\omega\left(\Gamma_{1} \otimes \Gamma_{2}\right)=\chi\left(\Gamma_{1} \otimes \Gamma_{2}\right)=\min \{n, m\}
$$

Proof. Let $X_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $X_{2}=\left\{y_{1}, \ldots, y_{m}\right\}$ with $n \geq 2, m \geq 3$. We assume that K is one the maximal complete subgraph of $\Gamma_{1} \otimes \Gamma_{2}$ and

$$
V(K)=\left\{\left(A_{i_{1}}, B_{j_{1}}\right),\left(A_{i_{2}}, B_{j_{2}}\right), \ldots,\left(A_{i_{k}}, B_{j_{k}}\right)\right\} .
$$

It is clear that for $1 \leq p \neq q \leq k, A_{i_{p}} \neq A_{i_{q}}, B_{j_{p}} \neq B_{j_{q}}$ and graph of spanned by the vertices $V_{1}=\left\{A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}\right\}$ is complete subgraph of Γ_{1} and graph of spanned by the vertices $V_{2}=\left\{B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{k}}\right\}$ is complete subgraph of Γ_{2}. It follows that $k \leq \min \{n, m\}$ from (Toker, 2016). Assume that $m \geq n$ so if we choose

$$
\begin{gathered}
V(\Pi)=\left\{\left(\left(x_{2}, x_{3}, \ldots, x_{n}\right),\left(y_{2}, y_{3}, \ldots, y_{m}\right)\right),\left(\left(x_{1}, x_{3}, \ldots, x_{n}\right),\right.\right. \\
\left.\left.\left(y_{1}, y_{3}, \ldots, y_{m}\right)\right), \ldots,\left(\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}\right),\left(y_{1}, y_{2}, \ldots, y_{n-1}, y_{n+1}, \ldots y_{m}\right)\right)\right\}
\end{gathered}
$$

and if $n \geq m$ is similar. Let Π be spanned graph by $V(\Pi)$. It is easy to see that Π is $\min \{n, m\}$ vertices complete subgraph of $\Gamma_{1} \otimes \Gamma_{2}$ and so $\omega\left(\Gamma_{1} \otimes \Gamma_{2}\right)=\min \{n, m\}$.
Thus $\chi\left(\Gamma_{1} \otimes \Gamma_{2}\right) \geq \min \{n, m\}$ from equation (1). Assume that $m \geq n$ and $\forall 1 \leq i \leq n ; A_{i}=X_{1} \backslash\{i\}$. In addition let

$$
\begin{aligned}
Q_{1} & =\left\{(B, v) \mid \varnothing \neq B \subseteq A_{1} \text { and } v \in V\left(\Gamma_{2}\right)\right\}, \\
Q_{2} & =\left\{(B, v) \mid \varnothing \neq B \subseteq A_{2} \text { and }(B, v) \notin Q_{1} \text { and } v \in V\left(\Gamma_{2}\right)\right\}, \\
& \vdots \\
Q_{n} & =\left\{(B, v) \mid \varnothing \neq B \subseteq A_{n} \text { and }(B, v) \notin \bigcup_{i=1}^{n-1} Q_{i} \text { and } v \in V\left(\Gamma_{2}\right)\right\} .
\end{aligned}
$$

It is clear if $(u, v) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$ then $(u, v) \in Q_{s}(1 \leq s \leq n)$ for unique s, moreover $\bigcup_{i=1}^{n} Q_{i}=V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$ and $Q_{i} \cap Q_{j}=\varnothing$ for $1 \leq i \neq j \leq n$. For each $1 \leq k \leq n$ if we choose a different colour for each Q_{k} and assign the chosen colour to the all
vertices in Q_{k}, there is no two adjacent vertices have same colour, and so $\chi\left(\Gamma_{1} \otimes \Gamma_{2}\right) \leq n$. Thus $\chi\left(\Gamma_{1} \otimes \Gamma_{2}\right)=\min \{n, m\}$. If $n \geq m$ is similar. So conjecture holds for $\Gamma_{1} \otimes \Gamma_{2}$.

Lemma 3.3 A graph is perfect if and only if it is Berge (Chudnovsky et all., 2006).
Therefore, a graph G is perfect if and only if neither G nor G^{c} contains an odd cycle of length at least 5 as an induced subgraph.
Theorem 3.4 If $\left|X_{1}\right|=2,\left|X_{2}\right| \geq 3$ then $\Gamma_{1} \otimes \Gamma_{2}$ is perfect graph but if $\left|X_{1}\right| \geq 3,\left|X_{2}\right| \geq 3$ then $\Gamma_{1} \otimes \Gamma_{2}$ is not perfect graph.
Proof. We assume that $X_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $X_{2}=\left\{y_{1}, \ldots, y_{m}\right\}$. Let $\left|X_{1}\right|=2$ and $\left|X_{2}\right| \geq 3$. It is clear that there is not any odd cycle at least 5 as induced subgraph of $\Gamma_{1} \otimes \Gamma_{2}$ since $\left|X_{1}\right|=2$. Let $G=\left(\Gamma_{1} \otimes \Gamma_{2}\right)^{c}$. For $k \geq 3$ we assume that there is an induced subgraph of G which is cycle with $2 k-1$ vertices, say

$$
C_{1}-C_{2}-\cdots-C_{2 k-1}-C_{1}
$$

Without loss of generality assume that $C_{1}=\left(x_{1}, B_{1}\right)$. Then $C_{3}=\left(x_{2}, B_{3}\right)$ and $C_{2 k-2}=\left(x_{2}, B_{2 k-2}\right)$ because C_{1} and C_{3} adjacent vertices in $\Gamma_{1} \otimes \Gamma_{2}$ and C_{1} and $C_{2 k-2}$ adjacent vertices in $\Gamma_{1} \otimes \Gamma_{2}$. Thus $C_{2}=\left(x_{1}, B_{2}\right)$ and $C_{2 k-1}=\left(x_{1}, B_{2 k-1}\right)$ because C_{2} and $C_{2 k-2}$ adjacent vertices in $\Gamma_{1} \otimes \Gamma_{2}$ and C_{3} and $C_{2 k-1}$ adjacent vertices in $\Gamma_{1} \otimes \Gamma_{2}$. But in this case C_{2} and $C_{2 k-1}$ adjacent vertices in G which is a contradiction. So if $\left|X_{1}\right|=2,\left|X_{2}\right| \geq 3$ then $\Gamma_{1} \otimes \Gamma_{2}$ is perfect graph. Let $\left|X_{1}\right| \geq 3,\left|X_{2}\right| \geq 3$ and $Y_{1}=X_{1} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}, Y_{2}=X_{2} \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$. Let $H=\left(\left\{x_{1}, x_{2}\right\} \cup Y_{1},\left\{y_{1}, y_{2}\right\} \cup Y_{2}\right)-\left(\left\{x_{3}\right\} \cup Y_{1},\left\{y_{2}, y_{3}\right\} \cup\right.$ $\left.Y_{2}\right)-\left(\left\{x_{1}, x_{2}\right\} \cup Y_{1},\left\{y_{1}, y_{3}\right\} \cup Y_{2}\right)-\left(\left\{x_{1}, x_{3}\right\} \cup Y_{1},\left\{y_{2}\right\} \cup Y_{2}\right)-\left(\left\{x_{2}, x_{3}\right\} \cup Y_{1},\left\{y_{1}, y_{3}\right\} \cup Y_{2}\right)-\left(\left\{x_{1}, x_{2}\right\} \cup Y_{1},\left\{y_{1}, y_{2}\right\} \cup Y_{2}\right)$. So H is cycle of length of 5 which subinduced graph of $\Gamma_{1} \otimes \Gamma_{2}$. Thus if $\left|X_{1}\right| \geq 3,\left|X_{2}\right| \geq 3$ then $\Gamma_{1} \otimes \Gamma_{2}$ is not perfect graph.
Lemma 3.5 Consider the graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with the same vertex set. Suppose that E_{1} is a matching such that no edge has both endvertices in $N_{G_{2}}\left[\Lambda_{G_{2}}\right]$. If the union graph $G=G_{1} \cup G_{2}$ has maximum degree $\Delta(G)=\Delta\left(G_{2}\right)+1$ then G is class-1 (Machado \& Figueiredo, 2010).
Theorem 3.6 If $\left|X_{1}\right|=n \geq 2,\left|X_{2}\right|=m \geq 3$ then

$$
\chi^{\prime}\left(\Gamma_{1} \otimes \Gamma_{2}\right)=\chi^{\prime}\left(\Gamma_{1}\right) \cdot \chi^{\prime}\left(\Gamma_{2}\right)=\left(2^{n-1}-1\right) \cdot\left(2^{m-1}-1\right)
$$

Proof. Let $(u, v) \in V\left(\Gamma_{1} \otimes \Gamma_{2}\right)$, if $|u| \geq 2,|v| \geq 2$ or if $|u|=1,|v| \geq 2$ or $|u| \geq 2,|v|=1$ then (u, v) is in core at graph from Theorem 2.2. Let $\left.B=\left\{\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right)-\left(X_{1} \backslash\left\{x_{i}\right\}, X_{2} \backslash\left\{y_{j}\right\}\right): x_{i} \in X_{1}, y_{j} \in X_{2}\right\}, G_{1}=\left(V\left(\Gamma_{1} \otimes \Gamma_{2}\right), B\right)\right)$ and $G_{2}=\left(V\left(\Gamma_{1} \otimes \Gamma_{2}\right), E\left(\Gamma_{1} \otimes \Gamma_{2}\right)_{\Delta}\right)$. So B is a matching such that no edge has both endvertices in $N_{G_{2}}\left[\Lambda_{G_{2}}\right]$. Also $\left(\Gamma_{1} \otimes \Gamma_{2}\right)=G_{1} \cup G_{2}$ and $\Delta\left(\Gamma_{1} \otimes \Gamma_{2}\right)=\Delta\left(G_{2}\right)+1$ so from Lemma 3.5, $\Gamma_{1} \otimes \Gamma_{2}$ is class-1.

References

Chartrand, G., \& Zhang, P. (2009). Chromatic Graph Theory. Charpman \& Hall/CRC, London.
Chudnovsky, M., Robertson, N., Seymour, P., \& Thomas, R. (2006). The strong perfect graph theorem. Ann. Math., 164, 51-229. http://dx.doi.org/10.4007/annals.2006.164.51
DeMeyer, F., \& DeMeyer, L. (2005). Zero divisor graphs of semigroups. J. Algebra, 283, 190-198. http://dx.doi.org/ 10.1016/j.jalgebra.2004.08.028

DeMeyer, F., McKenzie, T., \& Schneider., K. (2002). The zero-divisor graph of a commutative semigroup. Semigroup Forum, 65, 206-214. http://dx.doi.org/10.1007/s002330010128
Gross, J. L., \& Yellen, J. (2004). Handbook of Graph Theory. Charpman \& Hall/CRC, London.
Howie, J. M. (1995). Fundamentals of Semigroup Theory. Oxford University Press, New York.
Hedetniemi, S. (1966). Homomorphisms of graphs and automata. Technical Report, 03105-44-T, University of Michigan.
Machado£ R. C. S., \& Figueiredo de, C. M. H. (2010). Decompositions for edge-coloring join graphs and cobipartite graphs. Discrete Applied Mathematics, 158, 1336-1342. http://dx.doi.org/10.1016/j.dam.2009.01.009
Toker, K. (2016). On the zero-divisor graphs of finite free semilattices. Turkish Journal of Mathematics, 40(4), 824-831. http://dx.doi.org/10.3906/mat-1508-38

Vizing, V. G. (1964). On an estimate of the chromatic class of a p-graph. Diskret. Analiz., 3, 25-30.
Weichsel, P. M. (1962). The Kronecker product of graphs. Proc. Amer. Math. Soc., 13, 47-52. http://dx.doi.org/ 10.2307/2033769

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

