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Abstract

In this paper the left Bol split extension method is used to build left Bol Lie loops from the Lie groups H and K such
that H is a Lie subgroup of Aut(K). Furthermore, we investigated some of the properties of those loops constructed in
this way. Examples are given for finite and infinite dimensional left Bol Lie loops. Moreover, we showed that the twisted
semidirect product of Lie algebras is an Akivis algebra.
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1. Introduction

Non-associative semidirect product of groups are investigated in the last decades intensively in (Johnson & Sharma,1980;
Kinyon & Jones, 2000; Nagy & Strambach, 2008; Johnson & Smith, 2010; Greer & Raney, 2014). The twisted semidirect
product of groups is also a known object in loop theory, its first appearance is in (Johnson & Sharma, 1980), where they
called the method the left Bol split extension. The construction method was further surveyed and generalized by Johnson
and Smith (Johnson & Smith, 2010). In this paper the left Bol Lie loops that are formed by the twisted semidirect product
of Lie groups are investigated. We also explore examples of infinite dimensional left Bol Lie loops that are raised by the
action of Lie subgroups of GL(H) on the Hilbert spaceH over C.

It is well-known that semidirect product of Lie algebras is a Lie algebra, so we naturally asked this question for the twisted
semidirect product of Lie algebras of the Lie groups. We showed that twisted semidirect product of Lie algebras of the
Lie groups is a Lie algebra which turned out to an Akivis algebra.

2. Preliminaries

We use the function evaluation in the backwards. If α : X → Y is a function, then the function evaluation of α at the
point x ∈ X is denoted by (x)α or xα. Let β : Y → Z be another function, then the composition of α and β is the function
γ := αβ such that (x)αβ := (xα)β for all x in the domain of α. Let G be a group. The elements a, b of G is said to conjugate
if there exists a g ∈ G such that g−1ag = b where g−1ag := ag.

The nonempty set L with a binary operation, ⊕, is called a loop if there exists e ∈ L such that for all a ∈ L a⊕e = e⊕a = a,
and the equations a ⊕ x = b and y ⊕ a = b have always unique solutions x := a\b and y := b/a in L whenever a and b
are given in L. The uniqueness of x and y lead us to define two new maps that are called the left division \ : L × L → L
(a, b) 7→ a\b, and the right division / : L × L→ L (a, b) 7→ b/a such that a ⊕ (a\b) = b and (b/a) ⊕ a = b.

Let (L,⊕) be a loop. Given any x ∈ L, let Lx : L→ L and Rx : L→ L be two maps defined by (a)Rx := a⊕ x, (b)Lx := x⊕b
where a, b ∈ L. The maps Lx and Rx are called the left and the right translation maps respectively for x. It is well known
that if (L,⊕) is a loop, then the left and the right translation maps are bijective. The loop (L,⊕) is called a left Bol loop if
the left Bol identity given in (1) is valid for all a, b, and c in L:

a ⊕ (b ⊕ (a ⊕ c)) = (a ⊕ (b ⊕ a)) ⊕ c. (1)

Further readings on Bol loops can be found in (Robinson, 1966; Pflugfelder, 1990; Kiechle 2002). Next we define some
groups acting on L, namely right multiplication group and left multiplication group. Right multiplication group, Rmlt(L),
of L is the permutation group generated by all right translations of L. The left multiplication group, Lmlt(L), is defined
similarly. The multiplication group of L, Mlt(L), is the permutation group generated by all right and left translations of L.
Hence, Mlt(L) = ⟨La,Rb : a, b ∈ L⟩.
G is called a Lie group if G is a group and G is a smooth manifold such that multiplication and inversion maps are smooth
(Knapp, 2016). A Lie loop L is a loop and a smooth manifold such that multiplication, right and left division maps are all
smooth (Nagy & Strambach, 2008). In this paper we mainly focus on the examples of Lie loops that are obtained from
the twisted semidirect product of matrix Lie groups.
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Let M(n,C) be the set of matrices of size n by n with complex entries and let GL(n,C) be the general linear group. A
matrix Lie group is a closed subgroup of GL(n,C). The list of matrix Lie groups can be found in (Wallach, 1988; Hein,
1990). The left, the right and the middle nuclei of (L,⊕) can be defined respectively as follows:

Nl = {a ∈ L|(a ⊕ x) ⊕ y = a ⊕ (x ⊕ y); ∀x, y ∈ L} . (2)
Nr = {a ∈ L|(x ⊕ y) ⊕ a = x ⊕ (y ⊕ a); ∀x, y ∈ L} . (3)
Nm = {a ∈ L|(x ⊕ a) ⊕ y = x ⊕ (a ⊕ y); ∀x, y ∈ L} . (4)

Note that Nl,Nr, and Nm are all subgroups of L. The nucleus, N(L), and the centrum, C(L), of (L,⊕) are defined as follow:

N(L) : = Nl ∩ Nr ∩ Nm. (5)
C(L) : = {x ∈ L| x ⊕ y = y ⊕ x ∀y ∈ L} . (6)

The center of L is denoted by Z(L) such that Z(L) := C(L) ∩ N(L). It is well known that the nucleus and the center of L
are subgroups of L, see (Pflugfelder, 1990).

Let G be a group and A be a set, and suppose G acts on A from the right. We use A f f (A,G) to denote the set of maps,
f(a,g), such that (b) f(a,g) = a + b.g where a, b ∈ A and g ∈ G. If G acts on A by function evaluation, then (b) f(a,g) = a + bg.

2.1 Semidirect and Twisted Semidirect Products

Let H and K be groups such that H ≤ Aut(K) and consider G := K × H as a set and define the multiplication, ⊙, on G as
follow:

(k1, h1) ⊙ (k2, h2) = (k1k2
h1
−1
, h1h2). (7)

Note that we used juxtapositions for the product in K and H. It is well known that (G,⊙) is a new group with the identity
element (eK , eH). The product given in (7) is called semidirect product of K by H and denoted by G = K o H, see
(Hall, 1999). Note that if H is acting on K trivially, then the semidirect product is the usual direct product. The sets
KG = {(k, eH) : k ∈ K} and HG = {(eK , h) : h ∈ H} have a trivial intersection, and KG � K and HG � H such that KG is
normal subgroup of G.

If we replace h−1
1 with h1 in (7), then we obtain a new binary operation ⊙ on K × H as given in (8). Johnson and Sharma

(1980) named the K × H with ⊙ the left Bol split extension and they showed that if H is a non-abelian group of Aut(K),
then (K ×H,⊙) is a left Bol loop. In the current paper we use the term twisted semidirect product for the binary operation
⊙.

(k1, h1)⊙(k2, h2) = (k1k2
h1 , h1h2). (8)

Each element of H is an automorphism from K to K and the notation k2
h1 stands for the image of k2 under h1. In general

the twisted semidirect product is not necessarily associative.

2.2 Lie Algebra and Akivis Algebra

A Lie algebra, see (Humphreys, 1972; Knapp, 2016), is a vector space g over a field F that endowed with bracket operation
[., .] : g × g→ g, (x, y) 7→ [x, y] that satisfies the following axioms:

1. The bracket operation is bilinear.

2. [x, x] = 0 for all x ∈ g.

3. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The last axiom is called the Jacobi identity. Note that combining the first two axioms yields that [x, y] = −[y, x] for all
x, y ∈ g. Therefore, the bracket operation is skew-symmetric in a Lie algebra. A homomorphism, ϕ, of Lie algebras from
g1 to g2 is a linear map that preserves the brackets that is ([x, y])ϕ = [(x)ϕ, (y)ϕ] for x, y ∈ g1. A derivation of a Lie
algebra g over a field F is a linear map f : g→ g such that ([x, y]) f = [(x) f , y]+ [x, (y) f ] for all x, y ∈ g (Hein, 1990). The
set of all derivation of g over F is denoted by DerF(g). The derivation is a Lie algebra if the bracket operation is defined
as [ f , g] = g f − f g for f , g ∈ DerF(g). A Lie subalgebra h is a vector subspace of g such that h is closed under bracket
operation. A Lie subalgebra h of g is called an ideal of g if [h, g] ⊆ h.

An Akivis algebra (A, [., .], ⟨., ., .⟩) is a real vector space with a bilinear skew-symmetric map (x, y) 7→ [x, y] : A×A → A,
called the commutator map, and a trilinear map (x, y, z) 7→ ⟨x, y, z⟩ : A × A × A → A, called the associator map, such
that the following identity (called the Akivis identity) holds (Figula & Strambach, 2007).
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[[x, y], z] + [[y, z], x] + [[z, x], y] = ⟨x, y, z⟩ + ⟨y, z, x⟩ + ⟨z, x, y⟩ − (⟨x, z, y⟩ + ⟨y, x, z⟩ + ⟨z, y, x⟩) (9)

IfA is a Lie algebra, then the left hand-side of the equality is zero by the Jacobi identity.

Let k, h be Lie algebras over the same field F, and suppose ρ : h → DerF(k), h 7→ (h)ρ and k 7→ (k)(h)ρ, be a Lie algebra
homomorphism. The set k × h is a Lie algebra endowed with the bracket operation given in (10).

[(k1, h1), (k2, h2)] = ([k1, k2] + (k1)(h2)ρ − (k2)(h1)ρ, [h1, h2]) (10)

The new Lie algebra with the bracket defined in (10) is called a semidirect product of k and h, and it is denoted by koρl.
The following result is well known; see for example (Hein, 1990).

Theorem 2.1. Let h and k be two Lie algebras over the field F, and let ρ : h→ DerF(k) be a Lie algebra homomorphism.
Then,

1. l = koρh is a Lie algebra.

2. k = {(k, 0) : k ∈ k} � k such that k is an ideal of l, i.e., [k, l] ⊆ k.

3. h = {(0, h) : h ∈ h} � h such that h is a subalgebra of l, i.e., [h, h] ⊆ h.

We obtain a new bracket operation from (10) by interchanging k1
h2 and k2

h1 in (10). We call this new bracket operation,
given in (11), the twisted semidirect product of k and h. The set k× h with twisted semidirect product is denoted by koρh.

[(k1, h1), (k2, h2)] = ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]) (11)

3. Main Results

Theorem 3.1. Let H and K be Lie groups with H ≤ Aut(K) such that the evaluation map ev : K × H → K, (k, h) 7→ kh is
smooth. If L := (K × H,⊙), then

1. L is a Lie group if and only if H is an abelian Lie group.

2. If H is not abelian, then L is a left Bol Lie loop, not a Lie group.

Proof. We first prove the first argument. If L is a Lie group, then its group product ⊙ is associative. That is the equation
(12) holds for all (k1, h1), (k2, h2), and (k3, h3) in L

[(k1, h1)⊙(k2, h2)]⊙(k3, h3) = (k1, h1)⊙[(k2, h2)⊙(k3, h3)] (12)

The left hand side of the equation (12) is equal to (k1kh1
2 k3

h1h2 , (h1h2)h3) and the right hand side is equal to (k1kh1
2 k3

h2h1 , h1(h2h3)).
Two sides are equal if and only if k3

h1h2 = k3
h2h1 , but this forces that H is an abelian Lie group. Conversely, suppose that H

is an abelian Lie group, then L is a smooth manifold as a cartesian product of smooth manifolds K ×H. Let eK and eH be
the identity elements of K and H respectively, then it can be verified that (eK , eH) is the identity element of L. Moreover,
for any arbitrary element (k, h) of L the following equation is satisfied, hence the two sided inverse of (k, h) exists.

(k, h)⊙((k−1)h−1
, h−1) = ((k−1)h−1

, h−1)⊙(k, h) = (eK , eH). (13)

The group product ⊙ of L is associative as shown below:

[(k1, h1)⊙(k2, h2)]⊙(k3, h3) = (k1kh1
2 , h1h2)⊙(k3, h3) (14)

= ((k1kh1
2 )k3

h1h2 , (h1h2)h3) (15)

= ((k1kh1
2 )k3

h2h1 , (h1h2)h3) (16)

= (k1(kh1
2 k3

h2h1 ), h1(h2h3)) (17)

= (k1(kh1
2 (k3

h2 )h1 ), h1(h2h3)) (18)

= (k1(k2kh2
3 )h1 , h1(h2h3)) (19)

= (k1, h1)⊙(k2kh2
3 , h2h3) (20)

= (k1, h1)⊙[(k2, h2)⊙(k3, h3)]. (21)
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Note that we used the assumption that H is abelian in (16) to write h1h2 = h2h1, and we used the fact that h1 is an
automorphism over K to write kh1

2 k3
h2h1 = (k2kh2

3 )h1 in (19). We conclude that L satisfies all group axioms, so it is a group
besides its smooth manifold structure. To show it is actually a Lie group requires to show that the group product and the
inversion maps are smooth.

Let µL : L × L → L such that ((k1, h1), (k2, h2))µL = (k1k2
h1 , h1h2) and i : L → L such that (k, h)i = ((k−1)h−1

, h−1). Let
µK and µH be the multiplication maps of K and H respectively and let iK and iH be the inversion maps of K and H. By
assumption µK , µH and iK , iH are all smooth maps. Observe that

((k1, h1), (k2, h2))µL = ((k1, k
h1
2 )µK , (h1, h2)µH) (22)

= (((k1)id, (k2, h1)ev)µK , (h1, h2)µH) (23)
= (((k1, (k2, h1)(id × ev))µK , (h1, h2)µH) (24)
= ((k1, (k2, h1))((id × ev) ◦ µK), (h1, h2)µH) (25)
= ((k1, (k2, h1)), (h1, h2))((id × ev) ◦ µK) × µH . (26)

µL is smooth since the direct product of smooth maps and composition of smooth maps are smooth. Similar to multipli-
cation the inversion map is also smooth that can be shown below.

(k, h)iL = ((k−1)h−1
, h−1) (27)

= (((k)iK , (h)iH)ev, (h)iH) (28)
= ((k, h)(iK × iH) ◦ ev), (h)iH) (29)
= ((k, h), h))((iK × iH) ◦ ev) × iH . (30)

Therefore, L is a Lie group.

For the proof of the second argument let H be a non-abelian subgroup of Aut(K), then (K × H,⊙) is a left Bol loop which
has been shown in (Johnson & Sharma, 1980). For the convenience of readers we prefer to provide the proof. Suppose
that H is non-abelian, then there exists h1, h2 ∈ H such that h1h2 , h2h1. That means there exists a k3 ∈ K such that
k3

h1h2 , k3
h2h1 , then for nonzero k1, k2 ∈ K, (k1k2

h1 )k3
h1h2 , (k1k2

h1 )k3
h2h1 which is equivalent to:

[(k1, h1)⊙(k2, h2)]⊙(k3, h3) , (k1, h1)⊙[(k2, h2)⊙(k3, h3)]. (31)

Therefore, if H is not abelian, then the product on L is not associative, so L is not a Lie group. On the other hand, L is a
smooth manifold as the cartesian product of smooth manifolds K and H. Moreover, for all (k, h) ∈ L

(k, h)⊙(eK , eH) = (eK , eH)⊙(k, h) = (k, h) (32)

hence (eK , eH) is the neutral element of L. We can always find unique (xk, xh) and (yk, yh) in L that satisfy the given
equations in (33) and (34).

(k1, h1)⊙(xk, xh) = (k2, h2) where (xk, xh) := (k1, h1)\(k2, h2). (33)

(yk, yh)⊙(k2, h2) = (k1, h1) where (yk, yh) := (k1, h1)/(k2, h2). (34)

The solutions (xk, xh) = ((k−1
1 k2)h−1

1 , h−1
1 h2) and (yk, yh) = ((k1(k−1

2 )h1h−1
2 , h1h−1

2 ) can be derived easily. We conclude that L
is a loop. To show it is a Lie loop we also need to show that the twisted semidirect product, the left and the right division
maps are all smooth. Based on (33) and (34) the right and the left division maps are derived as follow:

\ : L × L → L such that ((k1, h1), (k2, h2)) 7→ ((k−1
1 k2)h−1

1 , h−1
1 h2) (35)

/ : L × L → L such that ((k1, h1), (k2, h2)) 7→ ((k1(k−1
2 )h1h−1

2 , h1h−1
2 ) (36)

We have already showed in the proof of first argument that the twisted semidirect product is smooth. On the other hand,
the left and the right division maps can be written as direct products of smooth maps, thus they are also smooth as given
below:

(k1, h1)\(k2, h2) = (((k1, k2), h1), (h1, h2))(((iK × idK)µK) × idH)ev × (iH × idH)µH (37)
(k1, h1)/(k2, h2) = (k1, (k2, (h1, h2)))(idK × ((iK × (idH × iH)µH)ev)µK × (idH × iH)µH (38)

We conclude that if H is non-abelian, then L is a left Bol Lie loop that is not a Lie group. �
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Notice that if we set h1 = h2 in (35) and k1 = k2 in (36), then the following corollary is obtained.

Corollary 3.1.1. Let H and K be groups such that H ≤ Aut(K) and let L := (K × H,⊙). Then

1. (k1, h1)\(k2, h2) = (eK , h−1
1 h2) if k1 = k2.

2. (k1, h1)/(k2, h2) = (k1k−1
2 , eH) if h1 = h2.

Example 3.2. Let C be the field of complex numbers and let n be a positive integer. It is well known that Cn is an additive
Lie group and GL(n,C) � Aut(Cn) after fixing a basis of Cn. Suppose ϕ : GL(n,C) → Aut(Cn) is the isomorphism and
i : G → GL(n,C) be the inclusion map, where G is a non-abelian closed subgroup of GL(n,C). A closed subgroup of
GL(n,C) is a Lie group, hence G is a Lie group. The map Φ := i ◦ ϕ is a homomorphism of Lie groups from G to Aut(Cn).
On the other hand, the evaluation map is smooth since matrix multiplication is smooth. Therefore, (Cn × G,⊙) is a left
Bol Lie loop by Theorem 3.1.

Example 3.3. For any matrix A ∈ M(n,C) we use A⊤ and A∗ to denote the transpose of A and conjugate transpose of A

respectively. Let p, q ∈ N and p + q ≥ 1 and let α :=
[
Ip 0
0 −Iq

]
and β :=

[
0 In

−In 0

]
, where Ip, Iq, and In are the identity

matrices. The pseudo-unitary group U(p, q) and the symplectic group S p(n,C) are well-known non-abelian classical Lie
groups given below:

U(p, q) =
{
A ∈ GL(p + q,C) : AαA⊤ = α

}
. (39)

S p(n,C) = {A ∈ GL(2n,C) : AβA∗ = β} . (40)

Similar to example 3.2, (Cp+q × U(p, q),⊙) and (C2n × S p(n,C),⊙) are both left Bol Lie loops.

Example 3.4. Let a, b, and c be arbitrary real numbers. The Heisenberg group, H, consists of 3 by 3 matrices in form of1 a b
0 1 b
0 0 1

 . (41)

Heisengerg group is a closed subgroup of GL(3,R), so it is a matrix Lie group. The evaluation map, ev : R3 × H → R3,
(v, A) 7→ v⊤A is smooth. It can be checked that the matrix multiplication in H is not commutative. Therefore, (R3 × H,⊙)
is a left Bol Lie loop.

Corollary 3.4.1. Let V be either finite or infinite dimensional linear space over a field F and let G be any non-abelian
subgroup of Aut(V), then L := (V ×G,⊙) is a left Bol loop such that:

1. Lmlt(L) ⊆ A f f (V,G) ×G.

2. N(L) = {0} × Z(G).

3. Z(L) = {(0, id)}.

Proof. L is a left Bol loop is immediate by Theorem 3.1 since G is a non-abelian subgroup of Aut(V) and V is a linear
space that means V is an additive group. The twisted semidirect product over V ×G is written as below:

(v1, g1)⊙(v2, g2) = (v1 + (v2
g1 ), g1g2)

We first prove (1). Let L(v,g) be any left translation of Lmlt(L), and let (w, h) be any element of L. Then

(w, h)L(v,g) = (v, g)⊙(w, h) (42)
= (v + wg, gh) (43)
= ((w)ϕ(v,g), (h)Lg) (44)
= (w, h)(ϕ(v,g) × Lg). (45)

For each (w, h) ∈ L, (w, h)L(v,g) = (w, h)(ϕ(v,g)×Lg), thus L(v,g) = ϕ(v,g)×Lg, and this implies Lmlt(L) ⊆ A f f (V,G) × Lmlt(G).
Note that Lmlt(G) = G since G is a group, so Lmlt(L) ⊆ A f f (V,G) ×G.
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To see (2), we will determine the left, the middle and the right nuclei of L. Let (v1, g1) and (v2, g2) be arbitrary elements
of L.

Nl(L) =
{
(w, h) ∈ L : [(w, h)⊙(v1, g1)]⊙(v2, g2) = (w, h)⊙[(v1, g1)⊙(v2, g2)]

}
=
{
(w, h) ∈ L : (w + v1

h, hg1)⊙(v2, g2) = (w, h)⊙(v1 + v2
g1 , g1g2)

}
=
{
(w, h) ∈ L : (w + v1

h + v2
hg1 , (hg1)g2) = (w + v1

h + v2
g1h, h(g1g2))

}
=
{
(w, h) ∈ L : v2

hg1 = v2
g1h
}
.

The condition v2
hg1 = v2

g1h is independent from w, so w can be anything in V . Moreover, if v2
hg1 = v2

g1h for all v2 in V ,
then hg1 = g1h for all g1 ∈ G, thus h ∈ Z(G). Therefore, Nl(L) = V × Z(G). In left Bol loops the left and the right nuclei
are same (Robinson, 1966), hence we only need to find Nr(L).

Nr(L) =
{
(w, h) ∈ L : [(v1, g1)⊙(v2, g2)]⊙(w, h) = (v1, g1)⊙[(v2, g2)⊙(w, h)]

}
=
{
(w, h) ∈ L : (v1 + v2

g1 , g1g2)⊙(w, h) = (v1, g1)⊙[(v2 + wg2 , g2h)
}

= {(w, h) ∈ L : (v1 + v2
g1 + wg1g2 , (g1g2)h) = (v1 + v2

g1 + wg2g1 , g1(g2h))}
= {(w, h) ∈ L : wg1g2 = wg2g1 } .

wg1g2 = wg2g1 for all g1, g2 ∈ G, so w = 0. On the other hand, wg1g2 = wg2g1 is independent from h, so h can be anything in
G, thus Nr(L) = {0} ×G.

The nucleus of L is the intersection of left, right and middle nuclei. Therefore, N(L) = {0} × Z(G).

Finally, let (w, h) be in the center of L, then (w, h) is in the nucleus of L. Therefore w = 0 and h ∈ Z(G), but (0, h) is also
in the centrum, hence (0, h)⊙(v, g) = (v, g)⊙(0, h) for all (v, g) ∈ L. That is (vh, hg) = (v, gh) if and only if vh = v for all
v ∈ V if and only if h is the identity operator in G. Therefore, Z(L) = {(0, idV )} where idV is the identity map from V to
V . �

Example 3.5. Let GL(H) be the group of invertible operators inside the space of bounded linear operators L(H), where
H is an infinite dimensional Hilbert space over C. The infinite dimensional Hilbert spaceH over C is an additive group
with the neutral element 0. It is an infinite dimensional manifold since it is locally homeomorphic to itself, and the addition
and inversion maps are smooth. On the other hand, the group of invertible operators GL(H) is open in L(H) with respect
to operator norm, so it is a Banach-Lie group. Therefore, H × GL(H) is a smooth manifold as a cartesian product of
smooth manifolds. Furthermore, if the evaluation map ev : H × GL(H) → H; (h,T ) 7→ hT is smooth, then the twisted
semidirect product, the left and the right division maps are smooth, hence (H ×GL(H),⊙) is an infinite dimensional left
Bol Lie loop by corollary 3.4.1.

Lemma 3.6. Any Lie algebra l, is an Akivis algebra with the trilinear operation defined by ⟨x, y, z⟩ : l × l × l → l;
(x, y, z) 7→ [[x, y], z] − [x, [y, z]].

Proof. Let l be a Lie algebra, then there exists a bilinear skew-symmetric operation, [., .] : l × l → l; (x, y) 7→ [x, y]. To
see that l is indeed an Akivis algebra, we need to verify the Akivis identity: [[x, y], z]+ [[y, z], x]+ [[z, x], y] = α−β where
α and β given below.

α = ⟨x, y, z⟩ + ⟨y, z, x⟩ + ⟨z, x, y⟩ (46)
β = ⟨x, z, y⟩ + ⟨y, x, z⟩ + ⟨z, y, x⟩ (47)

Let γ = [[x, y], z]+ [[y, z], x]+ [[z, x], y], then we want to show that γ = α−β. Since l is a Lie algebra it satisfies the Jacobi
identity and this forces that γ = 0, hence we only need to show that α = β

α = [[x, y], z] − [x, [y, z]] + [[y, z], x] − [y, [z, x]] + [[z, x], y] − [z, [x, y]]
= ([[x, y], z] + [[y, z], x] + [[z, x], y]) − ([x, [y, z]] + [y, [z, x]] + [z, [x, y]])
= 2([[x, y], z] + [[y, z], x] + [[z, x], y])
= 2(0) = 0

We can similarly show that β = 0, so α = β = 0. Therefore, any Lie algebra l is an Akisvis algebra if the trilinear operation
defined as in Lemma 3.6. �
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Theorem 3.7. Let h and k be two Lie algebras over the field F, and let ρ : h→ DerF(k) be a Lie algebra homomorphism.
Then,

1. l = koρh is an Akivis algebra with bracket and trilinear operations given in (48) and (49) below respectively.

[(k1, h1), (k2, h2)] = ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]) for all k1, k2 ∈ k and h1, h2 ∈ h. (48)
⟨x, y, z⟩ = [[x, y], z] − [x, [y, z]] for all x, y, z ∈ l. (49)

2. k = {(k, 0) : k ∈ k} � k is an ideal of l, i.e., [k, l] ⊆ k.

3. h = {(0, h) : h ∈ h} � h is a subalgebra of l, i.e., [h, h] ⊆ h.

Proof. 1. The bracket on l is skew symmetric as follows:

[(k1, h1), (k2, h2)] = ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]) (50)
= (−[k2, k1] − ((k1)(h2)ρ − (k2)(h1 )ρ),−[h2, h1]) (51)
= −([k2, k1] + (k1)(h2)ρ − (k2)(h1)ρ, [h2, h1]) (52)
= −[(k2, h2), (k1, h1)] (53)

The bracket on l is bilinear since the bracket operations on k and h are bilinear. On the other hand (h)ρ is linear
for each h ∈ h. Therefore, we only need to verify the Jacobi identity on l, and this can be seen as follow: Let
x = [[(k1, h1), (k2, h2)], (k3, h3)], y = [[(k2, h2), (k3, h3)], (k1, h1)], and z = [[(k3, h3), (k1, h1)], (k2, h2)]. We want to show
that x + y + z = (0, 0). Notice that:

x = [[(k1, h1), (k2, h2)], (k3, h3)] (54)
= [([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, [h1, h2]), (k3, h3)] (55)
= ([[k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ, k3] + (k3)([h1,h2])ρ − ([k1, k2] + (k2)(h1)ρ − (k1)(h2)ρ)(h3)ρ, [[h1, h2], h3]) (56)
= ([[k1, k2], k3] + [k2

(h1)ρ, k3] − [k1
(h2)ρ, k3] + k3

([h1,h2])ρ − [k1, k2](h3)ρ − k2
(h1)ρ(h3)ρ + k1

(h2)ρ(h3)ρ, [[h1, h2], h3]). (57)

The map ρ is a Lie algebra homomorphism, so ([h1, h2])ρ = [(h1)ρ, (h2)ρ], and [(h1)ρ, (h2)ρ] = (h2)ρ(h1)ρ − (h1)ρ(h2)ρ
since DerF(k) is a Lie algebra with [ f , g] = g f − f g for each f , g ∈ DerF(k). Therefore,

k3
([h1,h2])ρ = k3

(h2)ρ(h1)ρ − k3
(h1)ρ(h2)ρ (58)

On the other hand, (h)ρ is a derivation on k, so (h)ρ preserves the Leibniz rule, and this gives that:

[k1, k2](h3)ρ = [k1
(h3)ρ, k2] + [k1, k2

(h3)ρ] (59)

If we let x = (x1, x2), then x1 and x2 coordinates are written as follow.

x1 = [[k1, k2], k3]+[k2
(h1)ρ, k3]−[k1

(h2)ρ, k3]+k3
(h2)ρ(h1)ρ−k3

(h1)ρ(h2)ρ−[k1
(h3)ρ, k2]−[k1, k2

(h3)ρ]−k2
(h1)ρ(h3)ρ+k1

(h2)ρ(h3)ρ (60)

x2 = [[h1, h2], h3] (61)

We can similarly find y = (y1, y2) and z = (z1, z2) such that

y1 = [[k2, k3], k1]+[k3
(h2)ρ, k1]−[k2

(h3)ρ, k1]+k1
(h3)ρ(h2)ρ−k1

(h2)ρ(h3)ρ−[k2
(h1)ρ, k3]−[k2, k3

(h1)ρ]−k3
(h2)ρ(h1)ρ+k2

(h3)ρ(h1)ρ (62)

y2 = [[h2, h3], h1]) (63)

z1 = [[k3, k1], k2]+[k1
(h3)ρ, k2]−[k3

(h1)ρ, k2]+k2
(h1)ρ(h3)ρ−k2

(h3)ρ(h1)ρ−[k3
(h2)ρ, k1]−[k3, k1

(h2)ρ]−k1
(h3)ρ(h2)ρ+k3

(h1)ρ(h2)ρ (64)

z2 = [[h3, h1], h2] (65)

The second coordinate of x+ y+ z is x2 + y2 + z2 = [[h1, h2], h3]+ [[h2, h3], h1]+ [[h3, h1], h2] = 0 since h is a Lie algebra.
Moreover, a part of the first coordinate of x+ y+ z is [[k2, k3], k1]+ [[k2, k3], k1]+ [[k3, k1], k2] = 0 since k is a Lie algebra.
The rest of the first coordinate of x + y + z is rewritten as:
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([k2
(h1)ρ, k3] − [k2

(h1)ρ, k3]) + (−[k1
(h2)ρ, k3] − [k3, k1

(h2)ρ]) + (k3
(h2)ρ(h1)ρ − k3

(h2)ρ(h1)ρ) + (−k3
(h1)ρ(h2)ρ + k3

(h1)ρ(h2)ρ)
+ (−[k1

(h3)ρ, k2] + [k1
(h3)ρ, k2]) + (−[k1, k2

(h3)ρ] − [k2
(h3)ρ, k1]) + (−k2

(h1)ρ(h3)ρ + k2
(h1)ρ(h3)ρ) + (k1

(h2)ρ(h3)ρ − k1
(h2)ρ(h3)ρ)

+ ([k3
(h2)ρ, k1]− [k3

(h2)ρ, k1])+ (k1
(h3)ρ(h2)ρ − k1

(h3)ρ(h2)ρ)+ (k2
(h3)ρ(h1)ρ − k2

(h3)ρ(h1)ρ), and this sum is zero since the sum in each
parentheses is zero. Therefore, x + y + z = (0, 0), and we conclude that the twisted semidirect product of Lie algebras is a
Lie algebra. Therefore, l is an Akivis Algebra by Lemma 3.6.

2. The first claim, k � k, is clear. We will show that [k, l] ⊆ k. Let (k, 0) ∈ k, and let (k∗, h) ∈ l. Then, [(k, 0), (k∗, h)] =
([k, k∗] + (k∗)(0)ρ − (k)(h)ρ, [0, h]) where (k∗)(0)ρ = (k∗)id = k∗ and [0, h] = 0, so [(k, 0), (k∗, h)] = ([k, k∗] − k∗ + ((k)(h)ρ, 0) =
(k∗∗, 0) ∈ k, where k∗∗ = [k, k∗] − k∗ + (k)(h)ρ. Therefore, k is an ideal of l.

3. h � h is clear. Let (0, h), (0, h∗) ∈ h, then [(0, h), (0, h∗)] = ([0, 0] + (0)(h)ρ − (0)(h∗)ρ, [h, h∗]) = (0, h∗∗) ∈ h. Therefore,
[h, h] ⊆ h, so h is a subalgebra of l. �
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