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Abstract 

This paper extends and improves the feedback control strategies. In detailed, the ordinary feedback, dislocated feedback, 

speed feedback and enhancing feedback control for a several dynamical systems are discussed here. It is noticed that there 

some problems by these strategies. For this reason, this Letter proposes a novel approach for treating these problems. The 

results obtained in this paper show that the strategies with positive feedback coefficients can be controlled in two cases 

and failed in another two cases. Theoretical and numerical simulations are given to illustrate and verify the results. 

Keywords: Modified hyperchaotic Pan system, hyperchaotic Lorenz system, hyperchaotic Liu system feedback control 

strategies, Routh-Hurwitz method. 

1. Introduction 

Chaos control, an important topic in nonlinear dynamical science (Dou, Sun, Duan, & Lü, 2009; Tao & Yang, 2008; Yang, 

Tao & Wang, 2010) and is one of the main features of chaos applied in practical engineering (Yassen, 2003; Zhu, 2009; 

Zhu & Chen, 2008). and its play a very important role in the study of dynamical systems and has great significance in the 

application of chaos. Since Ott et al,1990, first introduced in the notation of chaos control (AL-Azzawi, 2012; Pang & Liu 

2011).Various kinds of control schemes and techniques such as OGY method, time-delay feedback, Lyapunov method, 

impulsive control, sliding method control, differential geometric, H  control, adaptive control, chaos suppression 

method, and so on have been successfully applied to achieve chaos control (Aziz & AL-Azzawi 2016; Tao, Yang, Luo, 

Xiong & Hu 2005). Among them, the feedback control is especially attractive and has been commonly applied to practical 

implementation due to its simplicity in configuration and implementation (Tao & Yang, 2008). Generally speaking, there 

are  two main approaches for controlling chaos: feedback control and non-feedback control. The feedback control 

approach offers many advantages such as robustness and computational complexity over the non- feedback control 

method (Yang, Tao, & Wang, 2010; Zhu & Chen 2008). 

On the other hand,  there are some problems with this approach and one of these problems is that we get a negative 

feedback coefficient and the second problem is that when the feedback coefficient vanishes, Consequently, these 

strategies are failing. However, in a feedback control strategies the necessary condition for suppressing the dynamical 

system is that the feedback coefficient must be positive. Most of the previous work on chaos control was mostly focused 

on classical dynamical systems under this condition such as the Liu system (Dou, Sun, Duan, & Lü, 2009; Zhu & Chen 

2008), L𝑢̈ system (Pang & Liu 2011), Unified system (Tao, Yang, Luo, Xiong, & Hu 2005), Lorenz system (Zhu, 2010), 

Chen system (Yan, 2005), and et al. But in works (Aziz, & AL-Azzawi 2015; Zhu, 2010) founded some cases it can't be 

controlled, although with positive feedback coefficients. 

This paper answer this equation and it focused on these problems and we suggest a new method which includes four cases: 

two cases have at least two positive feedback coefficients and other cases have only one positive feedback coefficient. 

Finally, we found the system can be controlled if there is an intersection between these coefficients and they can't be 

controlled if it there is not for the first two cases. 

Briefly, this study presents three fundamental questions. First, when can we get a positive feedback coefficient and can 

suppress a system? Second, when can we get a positive feedback coefficient and can't suppress the system? And third, 

how can we distinguish between these two cases? This paper begins with the suggestion of a new method that will answer 

these questions. 

2. Problem Formulation and Our Methodology Using Feedback Control Strategies 

In this section, we describe the problem formulation for the chaos control for dynamical systems and our methodology 

using feedback control strategies. 

mailto:aziz_maysoon@yahoo.com


 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                        Vol. 9, No. 1; 2017 

40 

Let us consider the dynamical system in the following form: 

𝑋̇ = 𝐴𝑋 + 𝑓(𝑋)
                                       

 (1)  

where 𝑋(𝑡) = ,𝑥𝑖-
𝑇 = ,𝑥1, 𝑥2, … . . , 𝑥𝑛-

𝑇 ∈ 𝑅𝑛×1 , 𝑖 = 1, 2, … , 𝑛, is the state of the system, 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is the matrix 

of the system parameters  and 𝑓: 𝑅𝑛 → 𝑅𝑛  is the nonlinear part of the system. 

If we add the controller 𝑈 = ,𝑢𝑖-
𝑇 = ,𝑢1, 𝑢2, … . . , 𝑢𝑛-

𝑇 ∈ 𝑅𝑛×1 into the system (1), then the controlled system is given 

by: 

𝑋̇ = 𝐴𝑋 + 𝑓(𝑋) + 𝑈                                      (2) 

The purpose of the control problem is to choose a feedback controller 𝑈 such that lim𝑡→∞‖𝑋(𝑡)‖ = 0. 

As we know, there are four standard kinds of feedback control techniques: ordinary, dislocated, speed and enhancing 

feedback control. and the definition of each kind as: 

Definition 1 Ordinary feedback control 

The system's variable is often multiplied by a coefficient as the feedback gain, and the feedback gain is added to the right 

-hand of the corresponding equation (Aziz & AL-Azzawi, 2015; Zhuang, 2012; Zhuang & Chai, 2012). 

Definition 2 Dislocated feedback control 

If a system variable multiplied by a coefficient and its added to the right -hand of another equation, this strategy is called 

a dislocated feedback control (Zhuang & Chai, 2012; Pang & Liu 2011; Tao & Yang, 2008; Zhu, 2010). 

Definition 3 Speed feedback control 

The independent variable of a system function is often multiplied by a coefficient as the feedback gain, so the method is 

called displacement feedback control. Similarly, if the derivative of an independent variable is multiplied by a coefficient 

as the feedback gain(Tao, Yang, Luo, Xiong & Hu 2005; Zhuang, 2012; Yan, 2005; Zhu & Chen 2008). 

Definition 4 Enhancing feedback control 

It is difficult for a complex system to be controlled by only one feedback variable, and in such cases the feedback gain is 

always very large. So we  consider  using multiple variables multiplied by a proper coefficient as the feedback gain. This 

method is called enhanced feedback control(Aziz, & AL-Azzawi, 2015; Zhuang, 2012; Dou, Sun, Duan, & Lü, 2009; Zhu, 

& Chen, 2008; Pang & Liu 2011). 

Obviously, from the above definitions,  the three first feedback control strategies take just a single controller while in 

enhancing feedback control includes more than one feedback controller. Consequently, the controller  𝑈  can represent 

for each kind as: 

                   𝑈 = 𝑢𝑖 =

{
 
 

 
 

−𝑘𝑥𝑖            ;     𝑖𝑓     𝑖 = 𝑗       ( 𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦)

  −𝑘𝑥𝑗            ;     𝑖𝑓     𝑖 ≠ 𝑗       (𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑒𝑑)

−𝑘𝑥̇𝑗            ;     𝑖𝑓     𝑖 ≠ 𝑗         (   𝑠𝑝𝑒𝑒𝑑  )

  −𝑘,𝑥𝑖-𝑖=1
𝑛      ;     𝑖𝑓     𝑖 = 𝑗        (𝑒𝑛𝑕𝑎𝑛𝑐𝑖𝑛𝑔) 

    

 

                          (3) 

where k is called a feedback coefficient, and 𝑘 > 0. when substitute one of these formulations in Eq. 2 and in order to 

find the feedback coefficients, we can use the following formula: 

  𝑋̇ = 𝐴𝑋 + 𝑈                                          (4) 

i.e. deals with linear terms only of this strategy, but with other methods such as nonlinear feedback method, adaptive and 

active techniques etc. deals with linear and nonlinear terms. 

At some time, by this strategy we got more than one positive feedback coefficient based on Routh-Hurwitz method and k 

is interval, in order to select a suitable feedback coefficient we used the following formulation 

𝑘 = ∩𝑖=1
𝑛 𝑘𝑖  = 𝑘1 ∩ 𝑘2 ∩ …… ..  ∩ 𝑘𝑛                               (5) 

According to above these strategies, the system can control it if we have a positive feedback coefficient. This condition is 

necessary and sufficient for the controlled hyperchaotic systems. But in some cases, we establish that the system can't be 

controlled, although satisfied this condition. In order to overcome this problem and this weakness, we improve and extend 

these strategies by the following a novel approach. 

Novel approach: The control problem by applying feedback control strategies for dynamical systems has posed four cases 

with a positive feedback coefficient, these cases as the following: 

1. Control it if it has more than one positive feedback coefficients and there are intersection between them. 
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2. No control if it has more than one positive feedback coefficients and there are not an intersection 

between them. 

3. Control it if it  has only one positive feedback coefficient and satisfied all Routh-Hurwitz conditions. 

4. No control if it has only one positive feedback coefficient and it does not satisfy any one of Routh-Hurwitz 

conditions. 

3. Applications 

In this section, we take several four–dimensional hyperchaotic systems, for example to show how to use the results 

obtained in this paper to analyze the controlling a class of hyperchaotic systems. 

3.1. Modified hyperchaotic Pan system 

The modified hyperchaotic Pan system is described by the following dynamical system(Aziz & AL-Azzawi 2015; Aziz & 

AL-Azzawi 2016). 

{ 

𝑥̇ = 𝑎(𝑦 − 𝑥)       
𝑦̇ = 𝑐𝑥 − 𝑥𝑧 + 𝑤
𝑧̇ = 𝑥𝑦 − 𝑏𝑧         
𝑤̇ = − 𝑑𝑦             

                                      (6)  

where(𝑥, 𝑦, 𝑧, 𝑤) ∈ 𝑅4 , and 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅  are constant parameters. When parameters 𝑎 = 10,  𝑏 = 8 3⁄ ,  𝑐 = 28  
and 𝑑 = 10 , system (6) is hyperchaotic and has two positive Lyapunov exponents, i.e. 𝐿𝐸1 = 0.24784 , 𝐿𝐸2 = 0.08194. 
The system (6) has only one equilibrium 𝑂(0,0,0,0), and the equilibrium is an unstable under these parameters. This 

system is similar to the Lorenz system, but it is not topological equivalent. 

Theorem 1. For system (6) with control 𝑈 = ,0,0,0, 𝑢4-
𝑇, i.e. 𝑢4 = −𝑘𝑤 based on ordinary feedback control, where the 

feedback coefficients 
 
𝑘 < 0.3571  and  𝑘 > 12.1139.  then system (6) can't be control although we have two 

positive feedback. 

Proof. According to the previous discussion, and based on formulation (4), system (6) with this control is 

[

𝑥
𝑦
𝑧
𝑤̇
̇
̇
̇

] = [

−10 10     0     0
28 0     0      1
0
0

0
−10

−8 3⁄
  0

 
0
0

] [

𝑥
𝑦
𝑧
𝑤

] + [

0
0
0

−𝒌𝐰

]                        (7) 

then the characteristic equation is 

(λ + 8 3⁄ )(λ3 + (𝑘 + 10)λ2 + (10𝑘 − 270)λ + 100 − 280𝑘) = 0                 (8) 

the above equation can be rewritten as: 

 (λ + 8 3⁄ )(λ3 + 𝐴λ2 + 𝐵λ + 𝐶) = 0 

where 𝐴 = 𝑘 + 10 , 𝐵 = 10𝑘 − 270 , 𝐶 = 100 − 280𝑘 

Now, according to the Routh-Hurwitz method, the Jacobian matrix (7) has four negative real part eigenvalues if satisfied 

the following three conditions 

1)  𝐴 > 0, 

     2) 𝐶 > 0 , 

                3) 𝐴𝐵 − 𝐶 > 0 . 

Obviously 𝐴 = 𝑘 + 10 > 0 , from 𝐶 = 100 − 280𝑘
 
 we have a positive feedback coefficient such that 𝑘 < 0.3571. 

Finally, from third condition, we have quadratic equation form: 

10𝑘2 + 110𝑘 − 2800 > 0                              (9) 

Solving above inequality (Eq. 9) we get another positive feedback coefficient as 𝑘 > 12.1139. 

Therefore, we find two positive feedback coefficients by this scheme. But, which feedback coefficient that effective in 

system? After testing, we noticed that both of a positive coefficients can't be effective and active on the system (6), Fig.1 

with 𝑘 = 0.3 and Fig.2 with 𝑘 = 12.5 explain this result numerically. For this reason, we use our new approach to 

knowledge the cause of this problem. 

Let us the two positive feedback coefficients as 𝑘1 < 0.3571 , 𝑘2 > 12.1139. 

Now, based on formulation (5) and  a novel approach then 
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     𝑘 = 𝑘1 ∩ 𝑘2 = (0, 0.3571) ∩ (12.1139,∞) = ∅ 

Hence, there is no intersection between them, according to a second case  of a new approach. So, this strategy fails to 

control the system (6). Thus the proof is complete. 

Remark1. We can apply theoretical and numerical methods for of a positive feedback coefficient. 

Theorem 2. For hyperchaotic system (6), let control  𝑈 = ,0, 𝑢2, 0,0-
𝑇, i.e 𝑢2 = −𝑘𝑤 based on dislocated feedback 

control, where the feedback coefficients 
 
𝑘 < 1. Then the system (6) can't be controlled although we has a single 

positive feedback. 

Proof. According to the formulation (4), system (6) with this control is 

  [

𝑥
𝑦
𝑧
𝑤̇
̇
̇
̇

] = [

−10 10     0     0
28 0     0      1
0
0

0
−10

−8 3⁄
  0

 
0
0

] [

𝑥
𝑦
𝑧
𝑤

] + [

0
−𝒌𝐰
0
0

]                       (10) 

then the characteristic equation is 

(λ + 8 3⁄ )(λ3 + 10λ2 − (10𝑘 − 270)λ + 100(1 − 𝑘)) = 0               (11) 

Where 𝐴 = 10 , 𝐵 = −(10𝑘 − 270) ,   𝐶 = 100(1 − 𝑘) 

According to the Routh-Hurwitz method, system (10) has only one positive feedback coefficient as 𝑘 < 1. To test this 

coefficient theoretically, let substitute the value of feedback coefficients  𝑘 = 1 (critical value) in above Equation we get  

the following Equation as 

 (λ + 8 3⁄ )( λ3 + 10λ2 + 260λ) = 0                          (12) 

and the roots of  Equation (12) are λ1 = 0 , λ2,3 = −5 ± 15.3297𝑖 and  λ4 = −8 3⁄ , Consequently, the roots of Eq (12) 

don't contain a simple pair imaginary, So, we don't get a Hopf bifurcation, therefore, the feedback coefficients is not 

effective in a system (6). Also Fig.3 justifies this result numerical with positive feedback coefficient 𝑘 = 0.5. In order to 

discover the main causes for this problem, we used new approach. Obviously, one condition of Routh-Hurwitz method is 

not satisfied (third condition of Routh-Hurwitz), Therefore, this strategy is failing to control system (6) according to the 

four case of the new approach, the proof is complete.  

Remark 2. In the context of ordinary differential equations ODEs the word "bifurcation" has come to mean any marked 

change in the structure of the orbits of a system (usually nonlinear) as a parameter passes through a critical value [1], 

Bifurcation refers to qualitative changes in the solution structure of dynamical systems with slight variation in system 

parameters as well as one conditions of bifurcation that dynamical system has a simple pair of pure imaginary 

eigenvalues and no other eigenvalues with zero real parts. 

Theorem 3. For system (6) with control 𝑈 = ,0,0,0, 𝑢4-
𝑇, i.e. 𝑢4 = −𝑘𝑥̇ (speed feedback control) where the feedback 

coefficients 𝑘 > 28. Then the system (6) can be controlled. 

Proof. System (6) with  this control can be reformulated in the following form: 

  [

𝑥
𝑦
𝑧
𝑤̇
̇
̇
̇

] = [

−10 10     0     0
28 0     0      1
0
0

0
−10

−8 3⁄
  0

 
0
0

] [

𝑥
𝑦
𝑧
𝑤

] + [

0
0
0

𝟏𝟎𝒌(𝒙 − 𝒚)

]                      (13) 

then the characteristic equation is 

(λ + 8 3⁄ )(λ3 + 10λ2 + (10𝑘 − 270)λ + 100) = 0                       (14) 

Where  𝐴 = 10 , 𝐵 = 10𝑘 − 270 ,   𝐶 = 100
 

Based on Routh-Hurwitz method, we Obvious 𝐴, 𝐶 > 0 , from the condition 𝐴𝐵 > 𝐶 , we get inequality form 

100𝑘 − 2800 > 0 imply that 𝑘 > 28
 
and Fig.4 show the convergence to equilibrium point with 𝑘 = 29. Consequently, 

this strategy is success to control the system (6). Therefore, satisfied the three case of a new approach, the proof is 

complete. 

Theorem 4. For system (6) with control 𝑈 = ,𝑢1, 𝑢2, 0, 𝑢4-
𝑇, i.e. 𝑢1 = −𝑘𝑥, 𝑢2 = −𝑘𝑦 and 𝑢4 = −𝑘𝑤 (enhancing 

feedback control) then system (6) can be controlled when 𝑘 > 11.9298. 

Proof. According to the formulation (4), The Jacobi matrix defined as: 
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[

𝑥
𝑦
𝑧
𝑤̇
̇
̇
̇

] = [

−10 10     0     0
28 0     0      1
0
0

0
−10

−8 3⁄
  0

 
0
0

] [

𝑥
𝑦
𝑧
𝑤

] + [

−𝒌𝐱
−𝒌𝐲
0

−𝒌𝐰

]                        (15)

   

then the characteristic equation is 

(λ + 8 3⁄ )(λ3 + (3𝑘 + 10)λ2 + (10𝑘 − 270)λ + 𝑘3 + 10𝑘2 − 270𝑘 + 100) = 0         (16) 

where 𝐴 = 3𝑘 + 10 , 𝐵 = 10𝑘 − 270  and  𝐶 = 𝑘3 + 10𝑘2 − 270𝑘 + 100
 

According to the Routh-Hurwitz method, Obvious 𝐴 = 3𝑘 + 10 > 0 and second condition contains inequality form 

cubic equation, Solving this inequality we have  two appositive feedback coefficient 𝑘 > 11.9218  and 𝑘 > 0.3758. 

Finally, the third condition of Routh-Hurwitz gives the following inequality 8𝑘3 + 80k2 − 340k − 2800 > 0
 
, solving 

this inequality we get another appositive feedback coefficient 𝑘 > 6.1528. According to the new method, and based on 

formulation (5), Let us the three positive feedback coefficients as  𝑘1 > 6.1528 , 𝑘2 > 0.3758   and 𝑘3 > 11.9298. 

then 

𝑘 = 𝑘1 ∩ 𝑘2 ∩ 𝑘3 = (11.9218,∞) ∩ (0.3758,∞) ∩ (6.1528,∞) = (11.9218,∞)  

𝑘 ∈ (11.9218,∞)  

∴ 𝑘1 ∩ 𝑘2 ∩ 𝑘3 ≠ ∅  

Hence there is an intersection between them. Consequently, this strategy is success to control system (6). Satisfied first 

case of the new method. The proof is complete. 

In the light of this study, the necessary and sufficient condition for the control hyperchaotic systems to be asymptotically 

stable is we get a positive feedback coefficient. But in theorem 1 and theorem 2 we get a positive feedback coefficient and 

can't control it. And a new approach given causes for each case. These cases are one problem of feedback control 

strategies. 

In adding, there are other problems when that vanished the feedback coefficient as the following dislocated feedback 

controller: 

𝑈 = [

−𝒌𝒛
0
0
0

]                                        (17) 

Consequently, this strategy has failed to control the system (6). According to the above discussion, we found some 
problems and weakness of feedback control strategies. In table 1, we can briefly describe all cases that we have a positive 

feedback coefficient via these strategies. 

3.2 Hyperchaotic Lorenz system 

The nonlinear differential equations that describe the hyperchaotic Lorenz system are 

{ 

𝑥̇ = 𝑎(𝑦 − 𝑥)              
𝑦̇ = 𝑐𝑥 − 𝑦 − 𝑥𝑧 + 𝑤
𝑧̇ = 𝑥𝑦 − 𝑏𝑧                 
𝑤̇ = − 𝑑𝑥                     

                               (18) 

Where 𝑎, 𝑏, 𝑐, 𝑑 are conctant parameters. and the system (18) is hyperchaotic when parameter takes the values 

𝑎 = 10, 𝑏 = 8 3⁄ , 𝑐 = 28 and  𝑑 = 5 and has two positive Lyapunov exponents, i.e.  𝐿𝐸1 = 0. 3997 and  𝐿𝐸2 =
0.3113. And it has  a unique unstable equilibrium 𝑂(0,0,0,0) (Dou, Sun, Duan, & L𝑢̈, 2009). 

In order to focus on the goal and the main idea of this search will be shortened and we are going to reduce some 

mathematical steps. 

Theorem 5. Let the dislocated feedback control strategy be defined as 𝑈 = ,𝑢1, 0,0,0-
𝑇, i.e 𝑢1 = −𝑘𝑦, then the system 

(18) can asymptotically converge to the unstable equilibrium when  𝑘 ∈ (9.6485,10). 

Proof. System (18) with a new control can be rewritten as 

  [

𝑥
𝑦
𝑧
𝑤̇
̇
̇
̇

] = [

−10   10     0     0
  28 −1     0      1
   0
−5

  
0
0

−8 3⁄
  0

 
0
0

] [

𝑥
𝑦
𝑧
𝑤

] + [

−𝒌𝐲
0
0
0

]                       (19) 
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the characteristic equation is 

(λ + 8 3⁄ )(λ3 + 11λ2 + (28𝑘 − 270)λ + 50 − 5k) = 0                   (20) 

then we have 𝑘1 < 10, 
 
𝑘2 > 9.6485 based on Routh-Hurwitz method. 

Now, According to the novel approach, 

𝑘 = 𝑘1 ∩ 𝑘2 = (0,10) ∩ (9.6485,∞) = (9.6485,10) 

∴ 𝑘 ∈ (9.6485,10) 

𝑘 = 𝑘1 ∩ 𝑘2 ≠ ∅ 

So, this strategy satisfy the first case of a novel approach. Therefore the system can be controlled by this strategy. The 

proof is now complete. 

In addition, if we make simple changes into above control 𝑈 = ,𝑢1, 0,0,0-
𝑇  i.e. 𝑢1 = −𝑘𝑤,then the system (18) 

can't asymptotically converge to the unstable equilibrium although we have one a positive feedback s.t. 𝑘 < 10 and the 

characteristic equation is 

(λ + 8 3⁄ )(λ3 + 11λ2 − (270 + 5𝑘)λ + 50 − 5k) = 0                  (21) 

 

because one condition of Routh-Hurwitz is not satisfied. Consequently, this a positive feedback coefficient is not active 

and the system can't be controlled by this strategy based on four case of a novel approach ,The proof is now complete. 

Similarly, if we make another simple change in to above control based on the speed feedback control 𝑈 = ,𝑢1, 0,0,0-
𝑇  ,i.e. 

𝑢1 = −𝑘𝑤̇ ,then the system (18) can't be controlled, although we have two positive feedbacks such that 
 
𝑘1 < 2.2 and  

𝑘2 > 2.2355 . where the characteristic equation is 

(λ + 8 3⁄ )(λ3 + (11 − 5𝑘)λ2 − (270 + 5𝑘)λ + 50) = 0                (22) 

and according to the novel approach, second case, there are no intersection between these two positive feedback  

coefficients 

𝑘 = 𝑘1 ∩ 𝑘2 = (0,2.2) ∩ (2.2355,∞) = ∅ 

𝑘 = 𝑘1 ∩ 𝑘2 = ∅ 

Consequently, the system can't be controlled by this strategy. 

Also, if we take the control based on enhancing feedback as  𝑈 = ,𝑢1, 0, 𝑢3, 0-
𝑇 i.e.  𝑢1 = −𝑘𝑥 and 𝑢3 = −𝑘𝑧, then 

the system (18) can  be control with single a positive feedback s.t. 𝑘 < 270.1778 according to the third case of a novel 

approach  

3.2 Hyperchaotic Liu System 

The four-dimensional autonomous Liu system is described by 

{ 

𝑥̇ = 𝑎(𝑦 − 𝑥)          
𝑦̇ = 𝑐𝑥 − 𝑔𝑥𝑧 + 𝑤

𝑧̇ = 𝑕𝑥2 − 𝑏𝑧         
𝑤̇ = − 𝑑𝑥                 

 

Where 𝑎, 𝑏, 𝑐, 𝑑, 𝑔, 𝑕  are conctant parameters, when parameters 𝑎 = 10, 𝑏 = 2.5 , 𝑐 = 40, 𝑑 = 10.6, 𝑔 = 1  and 

𝑕 = 4 system (23) is hyperchaotic and has only equilibrium 𝑂(0,0,0,0), and the equilibrium is an unstable saddle node 

under these parameters (Zhu, 2010). 

Theorem 6. If the ordinary feedback control is designed as 𝑈 = ,, 0, 𝑢2, 0,0-
𝑇, i.e. 𝑢2 = −𝑘𝑦, Then the zero solution of 

the hyperchaotic system (23) is globally asymptotically stable when  𝑘 > 40.211. 

Proof. System (23) with a new control is 

[

𝑥
𝑦
𝑧
𝑤̇
̇
̇
̇

] = [

−10   10     0    0
  40 0     0     1
   0

−10.6
0
0

−2.5
 0

 
0
0

] [

𝑥
𝑦
𝑧
𝑤

] + [

0
−𝒌𝐲
0
0

]                        (24) 

the characteristic equation is 

(λ + 8 3⁄ )(λ3 + (𝑘 + 10)λ2 + (10𝑘 − 400)λ + 106) = 0                  (25) 

Here, we get only one positive feedback coefficient i.e.  𝑘 > 40.211 based on Routh-Hurwitz method and satisfied all 
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conditions of this method. Consequently, the third case of a novel approach is satisfied by this strategy. 

On the other hand, if design control based on dislocated feedback control as  𝑈 = ,𝑢1, 0,0,0-
𝑇, i.e. 𝑢1 = −𝑘𝑦, then the 

zero solution of the hyperchaotic system(23) can't be control when  𝑘1 < 10 and  𝑘2 > 10. where the characteristic 

equation is 

(λ + 8 3⁄ )(λ3 + 10λ2 + (40𝑘 − 400)λ + 106 − 106k) = 0 

The cause in this case, by basing novel approach, second case, we find there are no intersection between these two positive 

feedbacks 

𝑘 = 𝑘1 ∩ 𝑘2 = (0,10) ∩ (10,∞) 

𝑘 = 𝑘1 ∩ 𝑘2 ≠ ∅ 

Therefore the system (23) can't be controlled by this strategy. The proof is now complete. 

In addition, if we make a simple change in the dislocated feedback control such that 𝑈 = ,0, 𝑢2, 0,0-
𝑇  i.e. 𝑢2 =

−𝑘𝑤 ,then the system (23) can't asymptotically converge to the unstable equilibrium although we have one a positive 

feedback s.t. 𝑘 < 10.6. and the characteristic equation is 

(λ + 8 3⁄ )(λ3 + 10λ2 − 400λ + 10𝑘 − 106) = 0                                                       (26) 

because one condition of Routh-Hurwitz is not satisfied. Consequently, this a positive feedback coefficient is not active on 

a system, So this strategy failed to control this system based on four case of a novel approach, The proof is now complete. 

Finally, if design control based on enhancing feedback control as 𝑈 = −,𝑘𝑥, 𝑘𝑦, 0, 𝑘𝑤-𝑇, then system (23) can be control 

it with three positive feedback (𝑘1 > 7.8576), (𝑘2 > 15.4484) and (𝑘3 > 0.2668), where the characteristic equation 

is 

            (λ + 8 3⁄ )(λ3 + (3𝑘 + 10)λ2 + (3𝑘2 + 20𝑘 − 400)λ + 𝑘3 + 10𝑘2 − 400𝑘 + 106) = 0           (27) 

And the active value of positive feedback calculated based on formulation (4) as 

𝑘 = 𝑘1 ∩ 𝑘2 ∩ 𝑘3 = (7.8576, ∞) ∩ (15.4484,∞) ∩ (0.2668,∞) = (15.4484,∞) 

∴ 𝑘 ∈ (15.4484,∞) 

 𝑘 = 𝑘1 ∩ 𝑘2 ∩ 𝑘3 ≠ ∅ 

Hence, there are intersection between three positive feedback coefficients, So, this strategy satisfy fist case of a novel 

approach. Therefore the system can be controlled by this strategy. The proof is now complete. 

Remark 3. Most of previous works used the following formulation 𝑘 = 𝑚𝑎𝑥*𝑘𝑖+ to find the a positive, active feedback 

coefficient when we get more than one positive, but this formulation failed in some time and theorem 5 with control 

𝑈 = ,−𝑘𝑦, 0,0,0-𝑇 is example, in this case, So prefer using the formulation (5) always. 

 

Figure 1. system (6) with control  = ,𝟎, 𝟎, 𝟎, 𝟎. 𝟑 - 
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Table 1. Relationship between appositive feedback controller and suppressed for system (6) according to the new method 

Type of 

feedback 

control 

 

Control 

𝑈 = ,𝑢𝑖-
𝑇  

Number 

of  a 

positive 

feedback 

 

Feedback 

controller 

 

Intersection 

𝑘 =∩𝑖=1
𝑛 𝑘𝑖 

Satisfied 

all 

Routh-Hu

rwitz 

 

Result 

ordinary    

 𝑈 = −,0, 𝑘𝑦, 0,0-𝑇       

one  𝑘 > 27.2683  yes control 

ordinary 𝑈 = −,0,0,0, 𝑘𝑤-𝑇 two  𝑘1 < 0.3571 

𝑘2 > 12.1139 

𝑘 = 𝑘1 ∩ 𝑘2 

= ∅ 

yes not control 

dislocated 𝑈 = −,𝑘𝑦, 0,0,0-𝑇 one 𝑘 > 10  yes control 

dislocated 𝑈 = −,𝑘𝑤, 0,0,0-𝑇 

 

two 𝑘1 > 10 

𝑘2 < 0.3571 

∅ yes not  

control 

dislocated 𝑈 = −,0, 𝑘𝑥, 0,0-𝑇 one 𝑘 > 28  yes control 

dislocated 𝑈 = −,0, 𝑘𝑤, 0,0-𝑇 one 𝑘 < 1  no not 

control 

speed 𝑈 = −,0, 𝑘𝑤̇, 0,0-𝑇 two 𝑘1 > 1.0268 

𝑘2 < 1 

 

∅ 

yes not  

control 

speed 𝑈 = −,0,0,0, 𝑘𝑥̇-𝑇 one 𝑘 > 28  yes control 

speed 𝑈 = −,0,0,0, 𝑘𝑦̇-𝑇 one 𝑘 > 27.2683  yes control 

enhancing 𝑈 = −𝑘,𝑥, 𝑦, 0,0-𝑇 one 𝑘 > 12.3620  yes control 

enhancing 𝑈 = −𝑘,𝑥, 0,0, 𝑤-𝑇 two 𝑘1 > 9.4923 

𝑘2 < 0.3703 

 

∅ 

yes not 

control 

enhancing 𝑈 = −𝑘,0, 𝑦, 𝑧, 0-𝑇 one 𝑘 > 27.2683 …… yes control  

enhancing 𝑈 = −𝑘,0, 𝑦, 0, 𝑤-𝑇 two 𝑘1 > 27.6381 

𝑘2 > 7.6751 

= (27.6381,∞) 

≠ ∅ 

yes control 

enhancing 𝑈 = −𝑘,0,0, 𝑧, 𝑤-𝑇 

 

two 𝑘1 > 12.1139 

𝑘2 < 0.3571 

 

∅ 

yes not 

control 

enhancing 𝑈 = −𝑘,𝑥, 𝑦, 𝑧, 0-𝑇 one 𝑘 > 12.3620  yes control  

 

enhancing 

 

𝑈 = −𝑘,𝑥, 0, 𝑧, 𝑤-𝑇 

 

two 

𝑘1 > 9.4923 

𝑘2 < 0.3703 

 

∅ 

yes not 

control  

 

enhancing 

 

𝑈 = −𝑘,0, 𝑦, 𝑧, 𝑤-𝑇 

 

two 

𝑘1 > 27.6381 

𝑘2 < 7.6751 

(27.6381,∞) 

≠ ∅ 

yes  

 control 

 

enhancing 

 

𝑈 = −𝑘,𝑥, 𝑦, 0, 𝑤-𝑇 

 

three 

𝑘1 > 6.1528 

𝑘2 > 0.3758 

𝑘3 > 11.9298 

(11.9298,∞) 

≠ ∅ 

 

yes 

 

control 

 

enhancing 

 

𝑈 = −𝑘,𝑥, 𝑦, 𝑧, 𝑤-𝑇 

 

 

three 

𝑘1 > 6.1528 

𝑘2 > 0.3758 

𝑘3 > 11.9298 

 

(11.9298,∞) 

≠ ∅ 

 

yes 

 

control 
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Figure 2. system (6) with control  = ,𝟎, 𝟎, 𝟎, 𝟏𝟐.   - 

 

 

Figure 3. system (6) with control  = ,𝟎, 𝟎.   , 𝟎, 𝟎- 

 

 

Figure 4. system (6) with control  = ,𝟎, 𝟎, 𝟎, 𝟐 𝟎(𝒙 − 𝒚)- 
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The following flow chart explains briefly the new method 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

      

 

 

 

 

 

 

 

 

Figure 5. Flow chart which described briefly a new method 

4. Conclusions 

The results obtained in this paper show that the strategies with positive feedback coefficients can be controlled in two 

cases and failed in another two cases, which are performed in the above theorems. 

Also we consider the weakness of feedback control strategies, when we get positive feedback coefficients and can't 

suppress the system. This is a try to understand this problem, when it happen and what is that reason? So, we suggest a 

new method which includes answers to all these questions. Explain this method, theoretical, numerical and justify the 

results. Finally, we can apply this method for another chaotic and hyper chaotic systems to check the control of these 

systems. 
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