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Abstract

We study, the asymptotic behavior of solutions to a class of higher order quasilinear neutral difference equations under the
assumptions that allow applications to even and odd-order difference equations with delayed and advanced arguments, as
well as to functional difference equations with more complex arguments that may for instance, alternate infinitely between
delayed and advanced types. New theorems extend a number of results reported in the literature. Illustrative examples are
presented.
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1. Introduction

In this paper, we study the asymptotic behavior of solutions to a class of higher-order quasilinear neutral functional
difference equations

∆
(
r(n)

(
∆m−1z(n)

)α)
+ q(n)xβ(σ(n)) = 0 (1)

where n ≥ n0 ∈ N0 = {n0, n0 + 1, n0 + 2, · · · }, z(n) = x(n)+ p(n)x(τ(n)) and ∆ is the forward difference operator defined by

∆x(n) = x(n + 1) − x(n) and ∆ix(n) = ∆
(
∆i−1x(n)

)
, i = 1, 2, · · · ,m − 1.

We assume the following conditions on equation (1), without further mention

(c1) {r(n)}, {σ(n)} and {τ(n)} are positive sequences of real numbers such that ∆r(n) ≥ 0, r(n) > 0, lim
n→∞
σ(n) = ∞.

(c2) {p(n)} and {q(n)} are sequences of positive real numbers such that q(n) ≥ 0 and q(n) does not vanish eventually.

(c3) α and β ∈ R where R stands for the set consisting of all quotients of odd positive integers.

Analysis of qualitative properties of equation (1) is important not only for the sake of further development of the oscillation
theory, but for practical reasons too. In fact, an Emden-Fowler type differential equation(

r(t)
(
x(n−1)(t)

)α)′
+ q(t)xβ(σ(t)) = 0 (2)

has numerous applications in physics and engineering: that is; for instance, the papers by Ou and Wong [2004].

By a solution of equation (1), we mean a real sequence {x(n)} which is defined for n ≥ −µ = max{sup{τ(n), σ(n)} and
which satisfies the equation (1) for n ≥ n0. We deal only with proper solution x(n) of (1) that satisfy the condition
sup{|x(n)| : n ≥ N} > 0 for all N ≥ Nµ and tacitly assume that (1) possesses such solutions. A solution of (1) is said to be
oscillatory if it has arbitrarily large zeros on n ≥ Nµ. Otherwise, it is termed nonoscillatory.

For several decades, an increasing interest in obtaining sufficient conditions for oscillatory and nonoscillatory behavior of
different classes of difference equations has been observed; see, for instance, the monographs [Agarwal, 1992; Agarwal
and Wong, 1997; Elaydi, 1995; Gyori and Ladas, 1991; Lakshmikanthan and Trigiante, 1988], the papers [Graef et al,
1996; Guan and Yang, 1999; He, 1993; Jurang and Bin, 1997; Karpuz, 2009; Sundar and Kishorkumar, 2014; Wong,
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1975; Yu and Wang, 1994; Zafer, 1995] and the references cited therein. Let us briefly comment on a number of related
results which motivated our study.

S.S. Cheng and W.T. Patula [1993] studied the difference equation

∆ (∆yk−1)p−1 + skyp−1
k = 0 (3)

where p > 1 and proved an existence theorem for the equation (3).

X.Zhou and J. Yan [1998] studied the difference equation

∆
[
pn−1 (∆yn−1)δ

]
+ snyδn = 0 (4)

and they obtained some comparison results and necessary and sufficient conditions for the oscillation of equation (4).

I. Kvbiaczyk and S.H. Sekar [2002] studied the second order sublinear delay difference equation

∆ (pn (∆xn)) + qnxγn−τ = 0, 0 ≤ γ ≤ 1. (5)

By using Riccati transformation techniques the authors obtained oscillation criteria for the equation (5) under the condi-
tions

∞∑
n=n0

1
pn
= ∞ and

∞∑
n=n0

1
pn
< ∞.

Y. Bolat and O. Alzabot [2012] considered the half-linear delay difference equation

∆
[
pn

(
∆m−1 (

xn + qnxτ(n)
))α]
+ γnxβσn = 0, n ≥ n0 (6)

under the condition
∞∑
n0

1
(pn)1/α < ∞ and with using that ∆pn ≥ 0 and derived some oscillation and asymptotic criteria for

the equation (6).

M.K. Yildiz and O. Ocalan [2007] studied the neutral difference equation

∆m (yn − pnyn−k) + qnyαn−l = 0, n ≥ n1 (7)

where 1 > α > 0 is a quotient of odd positive integers and {pn} satisfies −1 < pn < 1.

J. Luo in 2002 [2002] considered the second order quasilinear neutral delay difference equation

∆
[
an−1 |∆ (xn−1 + pn−1xn−1−σ)|α−1 ∆ (xn−1 + pn−1xn−1−σ)

]
+ qn f (xn−τ) = 0 (8)

under the condition
∞∑ 1

a1/α
n

= ∞ and obtained several oscillation results.

Pon. Sundar and E. Thandapani [2000], considered the second order quasilinear functional difference equation

∆
(
|∆y(n)|α−1 ∆y(n)

)
+ f (n, y(σ(n))) = 0, n ≥ n0 (9)

and established some necessary and sufficient conditions for the equation (9) to have various types of nonoscillatory
solutions.

Our principal goal is to analyze the asymptotic behavior of solutions to (1) in the case where the condition

∞∑
n0

1
(r(n))1/α < ∞ (10)

holds. We provide sufficient conditions which ensure that solution to (1) are either oscillatory or approach zero at infinity.
In some cases, we reveal oscillatory nature of (1).

As usual, all functional inequalities are supposed to hold for all t large enough. Without loss of generality, we deal only
with positive solutions of (1) since, under our assumptions, if x(n) is a solution, then −x(n) is a solution of this equation
too.
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In the sequel, we denote by τ−1 the function which is inverse to τ. We also adopt the following notations for the compact
presentation of our results.

A(n) =
∞∑
n

1
(r(n))1/α

Q(n) = min {q(n), q(τ(n))}
R(n) = max {r(n), r(τ(n))}

Qγ(n) = Q(n)
(

(η1(n))m−1

γ1/α(η1(n))

)γ
Qβ(n) = Q(n)((σ(n))(m−2))β, Q̃β(n) = Q(n)

(
(η1(n))(m−1)

γ1/β(η1(n))

)β
Qθ(n) = Q(n)

 ∞∑
η3(n)

(η − η3(n))(m−3) A(η(n))

θ

Q̄β(n) = Q(n)

 ∞∑
η3(n)

(η − η3(n))(m−3) A(η(n))

β

Q̂β(n) = Q(n)
 σ(m−1)

n

γ1/β(σ(n))

β , Q̃γ(n) = Q(n)
(
σ(m−1)(n)
γ1/α(σ(n))

)γ
where the meaning of γ, θ, ηi and η3 will be explained later.

2. Asymptotic Behavior of Solutions to Even-order Equations

In what follows, τ(n) can be both a delayed or an advanced argument. Throughout this section, in addition to the basic
assumptions listed in the introduction, it is also supposed that (10) holds along with

(c4) 0 ≤ p(n) ≤ p0 < ∞ for some constant p0;

(c5) ∆τ(n) ≥ τ∗ > 0 and τ ◦ σ = σ ◦ τ

We shall need the following lemmas which are useful is the sequel.

Lemma 1. [Gyori and Ladas, 1991] Assume that q(n) ≥ 0 for all n ∈ N and

lim inf
n→∞

n−1∑
n−l

q(s)

 > (
l

l + 1

)l+1

. (11)

Then,

(i) v(n + 1) − v(n) + q(n) v(n − l) ≤ 0, n ∈ N has no eventually positive solution.

(ii) v(n + 1) − v(n) + q(n) v(n − l) ≥ 0, n ∈ N has no eventually negative solution

(iii) v(n + 1) − v(n) + q(n) v(n − l) = 0 is oscillatory.

Lemma 2. [Agarwal, 1992](Discrete Kingser’s Theorem) Let z(n) be defined for n ≥ a, and z(n) > 0 with ∆mz(n) of
constant sign for n ≥ a and not identically zero. Then, there exists an integer j, 0 ≤ j ≤ m with (m+ j) odd for ∆mz(n) ≤ 0
and (m + j) even for ∆mz(n) ≥ 0, such that

j ≤ m − 1 implies (−1) j+i∆iz(n) > 0, for all n ≥ a, j ≤ i ≤ m − 1, (12)

and

j ≥ 1 implies ∆iz(n) > 0 for all large n ≥ a, 1 ≤ i ≤ j − 1. (13)
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Lemma 3. [Agarwal, 1992] Let z(n) be defined for n ≥ a and z(n) > 0 with ∆mz(n) ≤ 0 for n ≥ a and not identically
zero. Then, there exists a large n1 ≥ a such that

z(n) ≥ (n − n2)(m−1)

(m − 1)!
∆(m−1)z(2m− j−1)(n), n ≥ n1, (14)

where λ =
(

1
2m−1

)(m−1)

and j is defined us in Lemma 2. Further z(n) is increasing, then

z(n) ≥ λ

(m − 1)!
n(m−1)∆m−1z(n), n ≥ 2m−1n. (15)

Lemma 4. Assume that A ≥ 0, B ≥ 0, α ≥ 1. Then

(A + B)α ≥ Aα + Bα.

Proof. If A = 0 or B = 0, then the inequality holds trivially. For A , 0, setting x = B
A . The inequality takes the form

(1 + x)α ≥ 1 + xα which is for x > 0 evidently true.

Lemma 5. Assume that A ≥ 0, B ≥ 0, 0 < α ≤ 1. Then

(A + B)α ≥ Aα + Bα

21−α .

Proof. We may assume that 0 < A < B. Consider the function f (n) = uα. Since ∆α f (n) < 0 for n > 0, the sequence f (n)
is concave down; that is

f
(A + B

2

)
≥ f (A) + f (B)

2

which implies the desired inequality.

Theorem 6. Let m ≥ 2 be even and 0 < β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist two real
numbers γ, λ ∈ R such that γ ≤ β ≤ λ and γ < α < λ. Suppose further that there exist two sequence η(n)

1 , η
(n)
2 such that

η1(n) ≤ σ(n) ≤ η2(n), η1(n) < n < τ(n) ≤ η2(n) (16)

lim
n→∞
η1(n) = ∞.

If

∞∑
Qγ(n) = ∞ (17)

and
∞∑

Qβ(n)∆λ(η2(n)) = ∞. (18)

Then every solution x(n) of (1) is either oscillatory or satisfies

lim
n→∞

x(n) = 0. (19)

Proof. Assume that equation (1) has a nonoscillatory solutions x(n) which is eventually positive and such that

lim
n→∞

x(n) , 0. (20)

Then z(n) satisfies

z(σ(n)) = x(σ(n)) + p(σ(n))x(τ(σ(n)))
≤ x(σ(n)) + p0x(τ(σ(n))). (21)
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In view of (1), we have

0 = pβ0∆
[
r(τ(n))

(
∆m−1z(τ(n))

)α]
+ pβ0q(τ(n))xβ(σ(τ(n))) (22)

Using (22), we obtain

q(n)xβ(σ(n)) + pβ0q(τ(n))xβ(σ(τ(n)))

= q(n)xβ(σ(n)) + pβ0q(τ(n))xβ(τ(σ(n)))

≥ Q(n)zβ(σ(n)). (23)

It follows from equation (1), (22) and (23) that

∆
[
r(n)(∆m−1z(n))α + pβ0r(τ(n))(∆m−1z(τ(n)))α

]
+ Q(n)zβ(σ(n)) ≤ 0. (24)

Then there exist two possible cases:

(i)

z(n) > 0, ∆m−1z(n) > 0, ∆mz(n) ≤ 0, ∆
[
r(n)(∆m−1z(n))α

]
≤ 0 (25)

(ii)

z(n) > 0, ∆m−2z(n) > 0, ∆m−1z(n) < 0, ∆
[
r(n)(∆m−1z(n))α

]
≤ 0 (26)

for n ≥ n1 where n1 ≥ n0 is large enough.

Case 1: Suppose first that conditions (25) hold. Using inequality (24) and assumption η1(n) ≤ σ(n), we conclude that

∆
[
r(n(∆m−1z(n))α) + pβ0r(τ(n))(∆m−1z(τ(n)))α

]
+ Q(n)zβ(η1(n)) ≤ 0. (27)

Furthermore, by the monotonicity of z(n), there exists a constants M > 0 such that

zβ(η1(n)) = zβ−γ(η1(n))zγ(η1(n)) ≥ Mβ−γzγ(η1(n)). (28)

Combining (27) and (28), we have

∆
[
r(n)(∆m−1z(n))α + pβ0r(τ(n))(∆m−1z(τ(n)))α

]
+ M1Q(n)zγ(η1(n)) ≤ 0, (29)

where M1 = Mβ−γ. An application of conditions (25) allows us to deduce that the sequence

w(n) = r(n)(∆m−1z(n))α (30)

is positive and nonincreasing. By Lemma 3, we have

z(n) ≥ λn(m−1)

(m − 1)!r1/α(n)
r1/α∆m−1z(n)

=
λn(m−1)

(m − 1)!r1/αw1/α(n) (31)

for every λ ∈ (0, 1) and for sufficiently large n. Using (31) in (29), we conclude that w(n) is a positive solution of a delay
difference inequality

∆ (w(n) + p0w(τ(n))) + M1

(
λ

(m − 1)!

)γ
Qr(n)wγ/α(η1(n)) ≤ 0. (32)

Define now a function y(n) by

y(n) = w(n) + p0w(τ(n)). (33)
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Then by the monotonicity of w(n),

y(n) ≤ w(n)(1 + pβ0). (34)

Substituting (34) into (32), we observe that y(n) is a positive solution of a delay difference inequality

∆y(n) + M1

(
λ

(m − 1)!

)γ  1

1 + pβ0

γ/α Qγ(n)yγ/α(η1(n)) ≤ 0. (35)

Then, by virtue of [Gyori and Ladas, 1991], the associated delay difference equation

∆y(n) + M1

(
λ

(m − 1)!

)  1

1 + pβ0

 Qγ(n)yγ/α(η1(n)) = 0 (36)

also has a positive solution. However, by Lemma 1 implies that, under assumption (17), equation (36) is oscillatory.
Therefore, (1) cannot have positive solutions.

Case 2: Assume now that conditions (26) hold. By virtue of (20), we have that

lim
n→∞

z(n) , 0. (37)

An application of Lemma 3 yields

z(n) ≥ λ

(m − 2)!
n(m−2)∆m−2z(n) (38)

for any λ ∈ (0, 1) and for sufficiently large n. Hence, by (24) and (38), we obtain

∆
[
r(n)

(
∆m−1z(n)

)α
+ pβ0r(τ(n))

(
∆m−1z(τ(n))

)α]
+

(
λ

(m − 2)!

)β
Qβ(n)

(
∆m−2z(σ(n))

)β ≤ 0. (39)

Using conditions ∆m−1z(n) < 0, σ(n) ≤ η2(n), and inequality (39), we have

∆
[
r(n)

(
∆m−1z(n)

)α
+ pβ0r(τ(n))

(
∆m−1z(τ(n))

)α]
+

(
λ

(m − 2)!

)β
Qβ(n)

(
∆m−2z(η1(n))

)β ≤ 0. (40)

Furthermore, by the monotonicity of ∆m−2z(n), there exists a constant N > 0 such that(
∆m−2z(η1(n))

)β
=

(
∆m−2z(η1(n))

)β−λ (
∆m−2z(η1(n))

)λ
≥ Nβ−λ

(
∆m−2z(η1(n))

)λ
(41)

Combining (40) and (41), we arrive at

∆
[
r(n)

(
∆m−1z(n)

)α
+ pβ0r(τ(n))

(
∆m−1z(τ(n))

)α]
+ N1

(
λ

(m − 2)!

)β
Qβ(n)

(
∆m−2z(η2(n))

)λ ≤ 0 (42)

where N1 = Nβ−λ. Using the monotonicity of w(n), for s ≥ n ≥ n1 we conclude that

r1/α(s)∆m−1z(s) ≤ r1/α∆m−1z(n). (43)

Dividing (43) by r1/α(s) and summing the resulting inequality from n to l − 1, we obtain

∆m−2z(l) ≤ ∆m−2z(n) + r1/α(n)∆m−1z(n)
l−1∑
n

1
r1/α(s)

. (44)

Passing to the limit as l→ ∞, we deduce that

0 ≤ ∆m−1z(n) + r1/α∆m−1z(n)A(n) (45)
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which yields

∆m−2z(n) ≥ −A(n)r1/α(n)∆m−1z(n) = −A(n)w1/α(n) (46)

Combining (42) and (46), we have

∆
[
r(n)

(
∆m−1z(n)

)α
+ pβ0r(τ(n))

(
∆m−1z(τ(n))

)α]
− N1

(
λ

(m − 2)!

)β
Qβ(n)Aλ(η2(n))wλ/α(η2(n)) ≤ 0 (47)

Using the monotonicity of w(n), we conclude that

y(n) ≥ w(τ(n))[1 + pβ0] (48)

Using (48) into (47), we observe that y(n) is a negative solution of an advanced difference inequality

∆y(n) − N1

(
λ

(m − 2)!

)β  1

1 + pβ0

λ/α Qβ(n)Aλ(η2(n))Aλ(η2(n))yλ/α(τ−1(η2(n))) ≤ 0 (49)

which implies that u(n) = −y(n) is a positive solution of an advanced difference inequality

∆u(n) − N1

(
λ

(m − 2)!

)β  1

1 + pβ0

λ/α Qβ(n)Aλ(η2(n))Aλ(η2(n))uλ/α(τ−1(η2(n))) = 0 (50)

consequently, by virtue of [Gyori and Ladas, 1991] the associated advanced difference equation

∆u(n) − N1

(
λ

(m − 2)!

)β  1

1 + pβ0

λ/α Qβ(n)Aλ(η2(n))Aλ(η2(n))uλ/α(τ−1(η2(n))) = 0 (51)

also has a positive solution. However, by [Sundar and Murugesan, 2010] implies that, under assumption (18) equation
(51) is oscillatory. Therefore, (1) cannot have a positive solution this contradiction with initial assumption completes the
proof.

Theorem 7. Let m ≥ 2 be even, and let 0 < α = β ≤ 1. Assume that conditions (c4) and (c5) hold, and there exist two
sequences η1(n), η2(n) satisfying (16). Suppose also that conditions

1
((m − 1)!)β

1

(1 + pβ0)
lim inf

n→∞

n−1∑
η1(n)

Q̃β(n) >
(

k
k + 1

)k+1

(52)

where k is the delay argument and

1
((m − 2)!)β

1

(1 + pβ0)
lim inf

n→∞

τ−1(η2(n))−1∑
n

Qβ(s)Aβ(η2(s)) >
(

l − 1
l

)l

(53)

where l is the advance argument are satisfied. Then conclusion of Theorem 6 remains in fact.

Proof. Assume that x(n) is an eventually positive solution of equation (1) that satisfies (20). Proceeding as in the proof
of Theorem 6, one comes to the conclusion that, for every λ ∈ (0, 1), a delay difference equation

∆y(n) +
(
λ

(m − 1)!

)β 1

1 + pβ0
Q̃β(n)y(η1(n)) = 0 (54)

and an advanced difference equation

∆y(n) −
(
λ

(m − 2)!

)β 1

1 + pβ0
Qβ(n)Aβ(η2(n))u(τ−1(η1(n))) = 0 (55)

both have positive solutions. On the other hand, condition (52) and [Gyori and Ladas, 1991] imply that equation (54) is
oscillatory, a contradiction. Likewise, by virtue of [Sundar and Murugesan, 2010, Lemma 2.3.2] condition (53) yields
that equation (55) is oscillatory. This contradiction completes the proof.

154



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 6; 2016

Theorem 8. Let m ≥ 2 be even and 0 < β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist two
numbers λ, γ ∈ R as in Theorem 6 and two real sequences η1(n), η2(n) such that

η1(n) ≤ σ(n) ≤ η2(n), η1(n) < τ(n) ≤ n < η2(n), lim
n→∞
η1(n) = ∞. (56)

If conditions (17) and (18) hold, the conclusion of Theorem 6 remains infact.

Proof. As above let x(n) be an eventually positive solution of equation (1) that satisfies (20). As in the proof of Theorem
6, we split the arguments into two parts.

Case 1: Assume first that (25) is satisfied. If has been established in the proof of Theorem 6 that the sequence w(n) defined
by (30) is positive, nonincreasing and satisfies inequality (32). Introducing again y(n) by (33) and using the monotonicity
of w(n), we conclude that

y(n) ≤ w(τ(n))(1 + pβ0) (57)

substituting of (57) into (32) implies that, for sufficiently large n, y(n) is a positive solution of a delay difference inequality

∆y(n) + M1

(
λ

(m − 1)!

)γ  1

1 + pβ0

γ/α Qγ(n)yγ/α(τ−1η1(n)) ≤ 0 (58)

Then, the associated difference equation

∆y(n) + M1

(
λ

(m − 1)!

)γ  1

1 + pβ0

γ/α Qγ(n)yγ/α(τ−1η1(n)) = 0 (59)

also has a positive solution. However, by [Sundar and Murugesan, 2010, Lemma 2.3.2] implies that , under assumption
(17) equation (59) is oscillatory. Therefore equation (1) cannot have positive solutions.

Case 2: Assume that (26) is satisfied. It has been established in the proof of Theorem 6 that the sequence w(n) defined by
(30) is negative, nonincreasing and satisfies the inequality (47). Introducing again y(n) by (33) and using the monotonicity
of w(n), we conclude that

y(n) ≥ w(n)(1 + pβ0) (60)

substituting (60) into (47), we observe that y(n) is a negative solution of an advanced difference inequality

∆y(n) − N1

(
λ

(m − 2)!

)β  1

1 + pβ0

λ/α Qβ(n)Aλ(η2(n))yλ/α(η2(n)) ≤ 0. (61)

That is, u(n) = −y(n) is a positive solution of an advanced difference equality

∆u(n) − N1

(
λ

(m − 2)!

)β  1

1 + pβ0

λ/α Qβ(n)Aλ(η2(n))uλ/α(η2(n)) ≥ 0. (62)

Then, by virtue of [Gyori and Ladas, 1991] the associated advanced difference equation

∆u(n) − N1

(
λ

(m − 2)!

)β  1

1 + pβ0

λ/α Qβ(n)Aλ(η2(n))uλ/α(η2(n)) = 0. (63)

also has a positive solution. However, by [Sundar and Murugesan, 2010, Lemma 2.3.2] implies that; under assumption
(18), equation (63) is oscillatory. Therefore, equation (1) cannot have positive solutions. This contradiction with our
initial assumption complete the proof.

Theorem 9. Let m ≥ 2 be even and 0 < α = β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist two
real sequences η1(n), η2(n) satisfying (56). Suppose also that

1

((m − 1)!)β(1 + pβ0)
lim inf

n→∞

n−1∑
τ−1(η1(n))

Q̃β(s) >
(

k
k + 1

)k+1

(64)
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where k denotes the delay arguments and

1

((m − 2)!)β(1 + pβ0)
lim inf

n→∞

η1(n)−1∑
n

Qβ(s)Aβ(η2(s)) >
(

l − 1
l

)l

(65)

where l denotes the advance arguments, are satisfied. Then conclusion of Theorem 6 remains infact.

Proof. Assume that x(n) is an eventually positive solution of equation (1) that satisfies (20) and proceeding as in the
proof of Theorem 8, one concludes that; for every λ ∈ (0, 1) a delay difference equation

∆y(n) +
(

λ

((m − 1)!

)β 1

1 + pβ0
Q̃β(n)y(τ−1(η1(n))) = 0 (66)

and an advanced difference equation

∆u(n) −
(
λ

(m − 1)!

)β 1

1 + pβ0
Qβ(n)Aβ(η2(n))u(η1(n)) = 0 (67)

have positive solutions. On the other hand, application of condition (64) along with [Gyori and Ladas, 1991] imply that
equation (66) is oscillatory, a contradiction. Likewise, by virtue of [Sundar and Murugesan, 2010, Lemma 2.3.2] condition
(65) yields that equation (67) is oscillatory. This contradiction completes the proof.

Note that Theorems 6 to 9 ensure that every solution x(n) of equation (1) is either oscillatory or tends to zero as n → ∞
and unfortunately cannot distinguish solutions with different behaviors. In the remaining part of this section, we establish
several results which guarantee that all solutions of equation (1) are oscillatory.

Theorem 10. Let m ≥ 4 be even and 0 < β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist there
numbers γ, λ, θ ∈ R such that γ ≤ β ≤ λ, γ < α < λ, θ ≥ β and θ > α. Suppose further that there exist three real sequences
η1(n), η2(n), η3(n)

η3(n) ≥ σ(n), η3(n) > c(n) (68)

and such that (16) holds. Assume that conditions (17), (18) and

∞∑
Qθ(n) = ∞ (69)

hold. Then equation (1) is oscillatory.

Proof. Without loss of generality, suppose that x(n) is a nonoscillatory solution of equation (1) which is eventually
positive. As in the proof of Theorem 6, we obtain (24). In view of equation (1) and Lemma 2, in addition to the case
(25), there are two more possible types of behavior of solutions for n ≥ n1 where n1 ≥ n0 is large enough in the proof of
Theorem 6. Namely, one can also have

z(n) > 0, ∆z(n) > 0, ∆m−2z(n) > 0, ∆m−1z(n) < 0, ∆
[
r(n)(∆m−1z(n))α

]
≤ 0 (70)

or

z(n) > 0, ∆ jz(n) < 0, ∆ j+1z(n) > 0, ∆m−1z(n) < 0, ∆
[
r(n)(∆m−1z(n))α

]
≤ 0 (71)

for all odd integers j ∈ {1, 2, · · · ,m − 3}. However conditions (17) and (18) yields that neither (24) nor (70) is possible.
Therefore, we have to analyze the only remaining case, and we assume now that all the conditions in (71) are satisfied.
Then, inequality (46) holds. Summing (46) from n to∞ (n − 2) times, we obtain

z(n) ≥ −
∞∑
n

(η − n)(m−3)

(m − 3)!
A(η)r1/α(n)∆m−1z(n)

= −
∞∑
n

(η − n)(m−3)

(m − 3)!
A(η)w1/α(n) (72)

where w(n) is defined by (30). Taking into account that ∆z(n) < 0, σ(n) ≤ η3(n) and using (24), we have

∆
[
r(n)(∆m−1z(n))α + pβ0r(τ(n))

(
∆m−1z(τ(n))

)α]
+ Q(n)zβ(η3(n)) ≤ 0. (73)
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By virtue of monotonicity of z(n), there exists a constant M2 > 0 such that

zβ(η3(n)) = zβ−θ(η3(n))zθ(η3(n)) ≥ M2zθ(η3(n)) (74)

combining (73) and (74), we obtain

∆
[
r(n)(∆m−1z(n))α + pβ0r(τ(n))

(
∆m−1z(τ(n))

)α]
+ M2Q(n)zθ(η3(n)) ≤ 0. (75)

Using (72) in (75), we conclude that in this case, the sequence w(n) defined by (30) is negative, nonincreasing, and satisfies
the inequality

∆
[
r(n)(∆m−1z(n))α + pβ0r(τ(n))

(
∆m−1z(τ(n))

)α]
+

M2

((m − 3)!)θ
Qθ(n)wθ/α(η3(n)) ≤ 0. (76)

Introduction again y(n) by (33) and using the monotonicity of w(n), we arrive at (48). Substitution of (48) into (76) leads
to the conclusion that y(n) is a negative solution of an advanced difference equation

∆y(n) − M2

((m − 3)!)θ

 1

1 + pβ0

θ/α Qθ(n)yθ/α(η3(n)) ≤ 0. (77)

In which case the function u(n) = −y(n) is a positive solution of an advanced difference inequality

∆u(n) − M2

((m − 3)!)θ

 1

1 + pβ0

θ/α Qθ(n)uθ/α(τ−1(η3(n))) ≥ 0. (78)

Then, by [Gyori and Ladas, 1991], the associated advanced difference equation

u(n) − M2

((m − 3)!)θ

 1

1 + pβ0

θ/α Qθ(n)uθ/α(τ−1(η3(n))) = 0, (79)

also has a positive solution. However, by [Sundar and Murugesan, 2010, Lemma 2.3.2] implies that (79) is oscillatory un-
der assumption (69). Therefore, equation (1) cannot have positive solutions. This contradiction with our initial assumption
completes the proof.

Theorem 11. Let m ≥ 4 be even and 0 < α = β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and that there
exist three real sequences η1(n), η2(n) and η3(n) as in Theorem 10. Suppose also that conditions (52) and (55) hold. If

1

((m − 3)!)β(1 + pβ0)
lim inf

n→∞

τ−1(η3(n))−1∑
n

Q̃β(s) >
(

l − 1
l

)l

(80)

where l denotes the advanced argument, then equation (1) is oscillatory.

Proof. Let x(n) be a nonoscillatory solution of (1) which is eventually positive. As in the proof of Theorem 10, one can
have either (25) or (70) or (71). However, conditions (51) and (53) exclude cases (25) and (70). Then all the inequalities
in (71) should be satisfied. Along the same lines as in the proof of Theorem 10, one comes to the conclusion that an
advanced difference equation

∆u(n) − 1

((m − 3)!)β(1 + pβ0)
Q̄β(n)u(τ−1(η3(n))) = 0

has positive solutions. On the other hand, if condition (80) holds, then by virtue of [Sundar and Murugesan, 2010] implies
that equation (80) is oscillatory. This contradiction completes the proof.

Theorem 12. Let m ≥ 4 be even, 0 < β ≤ 1, and assume that conditions (c4) and (c5) are satisfied. Suppose further
that there exist three numbers λ, γ, θ ∈ R as in Theorem 11 and three real sequences η1(n), η2(n), η3(n) such that (56) is
satisfied, η3(n) ≥ σ(n) and η3(n) ≥ n. If (17), (18) and (69) hold, then equation (1) is oscillatory.

Proof. Let x(n) be an eventually positive nonoscillatory solution of equation (1). The same argument as in the proof of
Theorem 10 yields that (71) holds. Define the sequence w(n) by (30). From the proof of Theorem 10, we already know
that w(n) is negative, nonincreasing and satisfies the inequality (76). Introducing the sequence y(n) by (32) and using
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the monotonicity of w(n), we arrive at (60). Substituting (60) into (76) we observe that y(n) is a negative solution of an
advanced difference inequality

∆y(n) − M2

((m − 3)!)θ

 1

1 + pβ0

θ/α Qθ(n)yθ/α(η3(n)) ≤ 0, (81)

while u(n) = −y(n) is a positive solution of an advanced difference inequality

∆u(n) − M2

((m − 3)!)θ

 1

1 + pβ0

θ/α Qθ(n)uθ/α(η3(n)) ≥ 0. (82)

In this case, the result due to Gyori [1991] allows one to deduce that the associated advanced difference equation

∆u(n) − M2

((m − 3)!)θ

 1

1 + pβ0

θ/α Qθ(n)uθ/α(η3(n)) = 0, (83)

also has a positive solution. However, it has been established [Sundar and Murugesan, 2010, Lemma 2.3.2] that if
condition (69) is satisfied, then equation (83) is oscillatory. Therefore equation (1) cannot have positive solutions, and this
contradiction with the assumptions of the theorem completes the proof.

Theorem 13. Let m ≥ 4 be even and 0 < α = β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist
three real sequences η1(n), η2(n) and η3(n) as in Theorem 12. Suppose further that (64), (65) hold, and

1

((m − 3)!)θ(1 + pβ0)
lim inf

n→∞

η3(n)−1∑
n

Q̄β(s) >
(

l − 1
l

)l

(84)

where l denotes the advanced argument. Then equation (1) is oscillatory.

Proof. Assume that x(n) is an eventually positive nonoscillatory solution of equation (1) and increasing as in the proof
of Theorem 10 one concludes that (71) holds. As in the proof of Theorem 12 we observed that an advance difference
equation

∆u(n) − 1

((m − 3)!)θ(1 + pβ0)
Q̄β(n)u(η3(n)) = 0, (85)

has positive solution. On the other hand, if condition (84) is satisfied, a result reported by [Sundar and Murugesan, 2010,
Lemma 2.3.2] yields that equation (85) is oscillatory. This contradiction completes the proof.

3. Asymptotic Behavior of Solutions to Odd-Order Equations

In this section, in addition to conditions (c4), (c5) and (10), we also assume that

(c6) σ(n) < n.

The validity of the following four propositions can be established in the same manner as it has been done for Theorems 6,
9. Therefore, to avoid unnecessary repetition, we only formulate counterparts of Theorems 9 and following for the case
of odd-order equations.

Theorem 14. Let m ≥ 3 be odd and 0 < β ≤ 1. Assume that conditions (c4) − (c6) are satisfied, and there exist two real
numbers γ, λ ∈ R as in Theorem 6 and a real sequence η4(n) such that n ≤ τ(n) < η4(n). Suppose further that

∞∑
Q̃γ(n) = ∞ (86)

and

∞∑
Qβ(n)Aλ(η4(n)) = ∞. (87)

Then the conclusion of Theorem 6 remains intact.
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Theorem 15. Let m ≥ 3 be odd, and let 0 < α = β ≤ 1. Assume that conditions (c4) − (c6) are satisfied, and there exists
a real sequence η4(n) as in Theorem 14. Suppose also that

1
((m − 1)!)β

1

1 + pβ0
lim inf

n→∞

n−1∑
σ(n)

Q̂β(s) >
1
e

(88)

and

1
((m − 2)!)β

1

1 + pβ0
lim inf

n→∞

τ−1(η4(n))−1∑
n

Qβ(s)Aβ(η4(s)) >
1
e
. (89)

Then the conclusion of Theorem 6 remains intact.

Theorem 16. Let m ≥ 3 be odd and let 0 < β ≤ 1. Assume that conditions (c4) − (c6) are satisfied, and there exist two
real numbers γ, λ ∈ R as in Theorem 6 and a sequence η4(n) such that σ(n) < τ(n) ≤ n ≤ η4(n). Suppose further that
conditions (86) and (87) are satisfied. Then the conclusion of Theorem 6 remains intact.

Theorem 17. Let m ≥ 3 be odd, and 0 < α = β ≤ 1. Assume that conditions (c4) − (c6) are satisfied, and there exists a
real sequence η4(n) as in Theorem 16. If

1
((m − 1)!)β

1

1 + pβ0
lim inf

n→∞

n−1∑
τ−1(σ(n))

Q̂β(s) >
1
e

(90)

and

1
((m − 2)!)β

1

1 + pβ0
lim inf

n→∞

η4(n)−1∑
n

Qβ(s)Aβη4(s) >
1
e
. (91)

Then the conclusions of Theorem 6 remain intact.

Note that Theorems 14-17 apply only if σ is a delayed argument, σ(n) < n. Hence it is important to complement such
results with the following theorems that can be applied in the case where σ is an advanced argument, σ(n) ≥ n.

Theorem 18. Let m ≥ 3 be odd and let 0 < β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist two
real numbers γ, λ ∈ R as in Theorem 6 and two real sequences η1(n), η2(n) satisfying (16). Suppose also that

∞∑
n0

ξ(m−2)

 1
R(ξ)

∞∑
ξ

Q(s)

1/α

= ∞. (92)

If (17) and (18) are satisfied, then the conclusions of Theorem 6 remains intact.

Proof. Assume that equation (1) has an eventually positive solution x(n) satisfying (20). Proceeding as in the proof of
Theorem 6, we arrive at (23) and observe that equation (1) yields that either (24) or (25) holds. Indeed, it follows from
the condition ∆

[
r(n)(∆m−1z(n))α

]
≤ 0 that either ∆m−1z(n) > 0 or ∆m−1z(n) < 0. Assume first that ∆m−1z(n) < 0; this

immediately leads us to conditions (25).

On the other hand, if ∆m−1z(n) > 0, then ∆mz(n) ≤ 0 to the fact that ∆r(n) > 0. We claim that ∆z(n) > 0 eventually. Infact,
if this is not the case, then ∆z(n) < 0 eventually. Since z(n) > 0, ∆z(n) < 0, and (20) holds, there should exist a positive
constant a such that

lim
n→∞

z(n) = a. (93)

On the other hand, if ∆m−1z(n) > 0 and ∆mz(n) ≤ 0, there exists a constant b ≥ 0 such that

lim
n→∞
∆m−1z(n) = b ≥ 0. (94)

Hence,

lim
n→∞
∆(i)z(n) = 0, (95)
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for i = 1, 2, · · · ,m − 1. Summing (23) from n to∞ and using the fact that the limit

lim
n→∞

r(n)
(
∆m−1z(n)

)α ≥ 0 (96)

is finite, we have

−r(n)
(
∆m−1z(n)

)α − pβ0r(τ(n))
(
∆m−1z(τ(n))

)α
+

∞∑
n

Q(s)zβ(σ(s)) ≤ 0. (97)

Consequently,

−R(n)
[(
∆m−1z(n)

)α
+ ((pβ0)1/α)α

(
∆m−1z(τ(n))

)α]
+

∞∑
n

Q(s)zβ(σ(s)) ≤ 0. (98)

Assume first that α ≤ 1. Using Lemma 5, we obtain(
∆m−1z(n)

)α
+ ((pβ0)1/α)α

(
∆m−1z(τ(n))

)α
≤ 1

2α−1

[
∆m−1z(n) + (pβ0)1/α∆m−1z(τ(n))

]α
. (99)

Substituting (99) into (98), we have

−21−αR(n)
[
∆m−1z(n) + (pβ0)1/α∆m−1z(τ(n))

]α
+

∞∑
n

Q(s)zβ(σ(s)) ≤ 0 (100)

which implies

−
[
∆m−1z(n) + (pβ0)1/α∆m−1z(τ(n))

]α ≤ − 1
21−αR(n)

∞∑
n

Q(s)zβ(σ(s)). (101)

Therefore,

−
[
∆m−1z(n) + (pβ0)1/α∆m−1z(τ(n))

]
+

 1
21−αR(n)

∞∑
n

Q(s)zβ(σ(s))

1/α

≤ 0. (102)

Summing (102) (m − 2) times from n to ∞ and then one more time from n1 to ∞. Using (95) and changing the order of
summation, we obtain

∞∑
n1

(ξ − η1)(m−2)

(m − 2)!

 1
21−αR(ξ)

∞∑
ξ

Q(s)zβ(σ(s))

1/α

< ∞. (103)

Inequality (103) yields

∞∑
n1

ξ(m−2)

 1
R(ξ)

∞∑
ξ

Q(s)

1/α

< ∞, (104)

which contradicts (92).

For the case α > 1, one arises at the contradiction with the assumptions of the theorem by using Lemma 4. Then we
conclude that ∆z(α) > 0 eventually. The rest of the proof follows the same lines as in Theorem 6 and is omitted.

Combining the ideas exploited in the proofs of Theorems 7-9 and 18, one can derive the following results.

Theorem 19. Let m ≥ 3 be odd, and let 0 < α = β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there
exist two real sequence η1(n), η2(n) satisfying (16). If (52), (53) and (92) hold, then the conclusion of Theorem 6 remains
intact.

Theorem 20. Let m ≥ 3 be odd, and 0 < β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist two
real numbers γ, λ ∈ R as in Theorem 6 and two real sequences η1(n), η2(n) satisfying (56). If conditions (17) and (18) and
(92) are satisfied, the conclusion of Theorem 6 remains intact.
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Theorem 21. Let m ≥ 3 be odd, and 0 < α = β ≤ 1. Assume that conditions (c4) and (c5) are satisfied, and there exist
two real sequences η1(n), η2(n) satisfying (56). If conditions (64) and (65) and (92) are satisfied, then the conclusion of
Theorem 6 remains intact.

4. Examples and Discussions

The following examples illustrate applications of some of theoretical results presented in the previous sections. In all the
examples, p0 is a constant such that 0 ≤ p0 < ∞.

Example 1. For n ≥ 1, consider the fourth order neutral difference equation

∆
(
en

(
∆3 (x(n) + p0x(n − 2))

))
+ (1 + p0e)(1 −

√
e)3

(
1
√

e
− 1

)
en− 3

2 x(n − 1) = 0. (105)

Let η1(n) = n−3 and η2(n) = n+1. An application of Theorem 9 yields that every solution x(n) of equation (105) is either
oscillatory or satisfies lim

n→∞
x(n) = 0. As a matter of that x(n) = e−

n
2 is an exact solution to (105) satisfying lim

n→∞
x(n) = 0.

Example 2. For n ≥ 1, consider a fourth order neutral difference equation

∆
(
en

(
∆3 (x(n) + p0x(n + 2))

))
+ (e2 + 1)(1 + e3)(1 + p0e)2en+3x(n − 3) = 0. (106)

Let η1(n) = n− 3 and η2 = η3 = n+ 3. Using Theorem 11, we deduce that equation (106) is oscillatory. It is easy to verify
that one oscillatory solution of the equation x(n) = (−1)nen.

Example 3. For n ≥ 1, consider a third order neutral difference equation

∆
(
en

(
∆2 (x(n) + p0x(n − 2))

))
+ (1 + p0e)(

1
e
− 1)2(1 −

√
e)en− 1

2 x(n − 1) = 0. (107)

Let η(n) = n + 1. It follows from Theorem 17 that every solution x(n) of equation (107) is either oscillatory or satisfies
lim
n→∞

x(n) = 0 is x(n) = e−
n
2 .

Remark 1. By using inequality

xβ1 + xβ2 ≥ 21−β(x1 + x2)β (108)

which holds for any β ≥ 1 and for all x1, x2 ∈ [0,∞), results reported in this paper can be extended to equation (1)
for all β ∈ R which satisfy β > 1. In this case one has to replace Q(n) = min{q(n), q(τ(n))} with a function Q(n) =
21−βmin{q(n), q(τ(n))} and proceed in above.

Remark 2. Our main assumptions on functional arguments do not specify whether τ(n) is delayed or an advanced argu-
ment. Remarkably, σ(n) can even switch its nature between an advanced and delayed argument. However, such flexibility
is achieved at the cost of requiring that the function τ is monotonic and satisfies τ ◦σ = σ ◦ τ. The question regarding the
analysis of the asymptotic behavior of solutions to (1) with other methods that do not require these assumptions remains
open at the moment.
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