
Journal of Mathematics Research; Vol. 9, No. 1; February 2017
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Extremal Dependence Modeling with Spatial and Survival
Distributions

Diakarya Barro1
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Abstract

This paper investigates some properties of dependence of extreme values distributions both in survival and spatial context.
Specifically, we prospose a spatial Extremal dependence coefficient for survival distributions. Madogram is characterized
in bivariate case and multivariate survival function and the underlying hazard distributions are given in a risky context.
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1. Introduction

Extreme values (EV) analysis finds wide applications in many areas including climatology, environment sciences (Beir-
lant, J., et al., 2005), risk management (Balkema, G. & Paul, E., 2007; Degen, M. & Embrechts, P., 2008) and survival
analysis (Hougaard, P., 2000). The distributions of this domain can be obtained as limiting distributions of properly nor-
malized maxima of independent and identically distributed random variables. In particular if Z =

{
Zx; x ∈ R2

}
is a max

stable random field defined on a set X = {x1, ..., xk} , then the spatial EV analysis shows that Z results from observations
of a stochasltic process such as

Z (s) = lim
n→∞

{
max

1≤ i ≤ n

[
xi (s) − bn (s)

an (s)

]}
with s ∈ D; (1.1)

provided the limit exists, where {an (.) > 0; n ≥ 1} and {bn (.) , ; n ≥ 1} are sequences of real constants, s being a spatial
location of a domain D ⊂ Rd and Z (s), a random quantity (Padoan, S. A., et al., 2010).

Survival analysis is a subdomain of statistics which deals with failure or death time or natural catastroph. It is a important
topic in many areas including biomedical, biostatistics, environment, etc (Padoan, S. A., et al., 2010; Resnick, S. I., 2008).
One may distinguish three kind of models in survival analysis: the non parametric models, the semi-parametric models
and the parametric ones.

Let T = (T1, ..., Tn) be a vector of lifetimes of n individuals in a given population with distribution FT . If in particular T
describes the life long time, the fraction of the population which will survive past a given vector of times t = (t1, ..., tn) is
provided by the survival distribution, conventionally denoted ST , such as

S T (t1, ..., tn) = F̄T (t1, ..., tn) = P(T1 ≥ t1, ..., Tn ≥ tn). (1.2)

The hazard function hT of T specifies the instantaneous rate of failure (risk or mortality rate) at a given date t given that
the individual survived up to time t. If the margins are absolutly continuous the cumulative density function (cdf) is also
related to ST such as

hT (t1, ..., tn) =
fT (t1, ..., tn)

S T (t1, ..., tn)
and fT (t1, ..., tn) = (−1)n ∂

nS (t1, ..., tn)
∂t1...∂tn

. (1.3)

Spatial analysis is a key component of statistic involving a collected from different locations. In particular, while studying
in biostatistics, epidemiology, environment sciences, data have a common, that they are collected from different spatial
locations and they are nether independent nor identically distributed. So, that in spatial framework, when survival times
are spatially referenced, some of clusters of high or low times might be apparent on a visual inspection of the data. The
question which naturally arises as to whether these observed spatial survival patterns can be explained by incorporating
appropriate covariates into the model or whether, in order the unexplained spatial variation.

The main contribution of this paper is to investigate some asymptotic properties of multivariate dependence models both
in survival and spatial context. Section 2 deals with spatial measures of extremal dependence. In particular the extremal
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dependance spatial coefficient is modeled and survival madogram is characterized in bivariate case. In Section 3, the
survival and hazard distributions are given in a risky context.

2. Survival Framework for Modeling Spatial Extremal Dependance

2.1 Spatial Extremal Dependence Coefficient

In multivariate extreme values (EV) analysis, many related measures have been proposed for quantifying the magnitude of
the extremal dependence when the random vector exhibits asymptotic dependence. In particular, in univariate EV study,
even in spatial and survival framework, three types of distributions can summary the asymptotic behavior of conveniently
normalized maximum of distributions (Beirlant, J., et al., 2005).

For a fixed k in N∗ let Y =
(
Yk,1; ...; Yk,s

)
denote independent copies of stochastic process observed at given ereas s of a

domain S. Assume that the process {Y (s) , s ∈ S } is parametric max-stable distribution. Then the asymptotic distribution
modeling the stochastic behavior is the same type like one of the three extremal spatial distributions

F (yi (si)) =


exp

{− exp (−yi (si))
}
= Λ(yi (si)); yi (si) ∈ R, (Gumbel)

exp
{
− (yi (si))−θ

}
= Φθ(yi (si)); yi (si) > 0; (Fréchet)

exp
(
− (−yi (si))θ

)
= Ψθ(yi (si)); yi (si) ≤ 0,(Weibull)

. (2.1)

Let Ts = (T1 (s) , ..., Tn (s)) be a vector of lifetimes of n individuals in a given population observed at a given site s of
spatial domain S =

{
(s1, ...., sm) , s j ∈ R2

}
. The process Ts is the survival and stochastic random vector which with joint

distribution Fs =
(
Fs,1; ...; Fs,n

)
. Therefore, for all realization y,

Fs (y) =
(
F1,s (y1) , ..., Fn,s (yn)

)
= (F1 (y1 (s1)) , ..., Fn (yn (sn))) = F (y (s)) .

In all this study, our key assumption is that the process Ts is continuous, stationary and is max-stable with generalized
Fréchet margins. So, for a given site s in S ξ

S ξ = {si ∈ S ;σi (si) + ξi (si) (yi (si) − µi (si)) > 0} ⊂ S .

where u+ = max (u, 0) and
{
µχ (x) ∈ R

}
,
{
σχ (x) > 0

}
and ξχ (x) ∈ R,

Fθ (yi (si)) = Φθ (yi (si)) = exp
{
−

(
yi(si)−µi(si)
σi(si)

)−θ
+

}
; θ > 0.

Notice that such an assumption implies no loss of generality since even in survival and space-varying context, every one-
dimensional EV distribution can be obtained by a functional transformation of another. In particular, if for a given site
s,

Y (xi) ∼ Φθ (yi (xi)) =⇒ Z (xi) = µxi +
σxi

ξxi

[
Y (xi)ξxi − 1

]
. (2.2)

Among measures of extremal dependence there are the extremal coefficient (Hougaard, P., 2000) or the madogram and
its nested model the link between two sets of Rd (Cooley, D., et al., 2006). Moreover and for simplicity reason let’s
denote like in (Barro, D., et al., 2016) that: F̃ s j

i (xi) = Fi

(
xi

(
s j

))
and x̃s j

i = xi

(
s j

)
. Under the restriction to the simplest

case where Fi

(
xi

(
s j

))
= 0 if i , j, the following result allows us to provide a characterisation of the spatial extremal

dependence (SED) in a survival field.

Theorem 1 Let Ts be a vector of lifetimes of n individuals in a given population with distribution F̃ s satisfying the key
assumption.

i) The one-dimensional marginal law
{
F̃ s j

i ; 1 ≤ i ≤ n
}

of F̃s is a max-stable process, that is there exists survival parametric
normalizing sequences {σi (si) > 0} and {µi (si) ∈ R} and {ξi (xt) ∈ R}such that, for all i, 1 ≤ i ≤ n

[
F̃ s j

i

(
σi

n

(
x̃s j

i

)
+ µi

n (si)
)]n →

n→+∞


[
1 + ξi (si)

(
x̃si

i −µi(si)
σi(si)

)] −1
ξi(si)

+
if ξi (si) , 0

exp
{
−

(
x̃si

i − µi (si)
σi (si)

)}
if ξi (si) = 0

(2.3)

on Dξ (si) =
{
si ∈ S , x̃si

i − µi (si) > 0
}
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ii) There exists spatio-survival parametric measure of probability Pξ(s) defined on R2 × {s} and a non-decreasing function
gs defined on Dξ such that the survival and spatial extremal coefficent θs

(
hi j

)
of the process is given by

Psi j,ξs = g
[
si, θs

(
hi j

)]
; (2.4)

where hi j =
∣∣∣si − s j

∣∣∣ is the separating distance between these sites si and s j.

Proof. By assumption the distribution function Ts of the process is max-stable. So, for all site s, there exist vectors of
constants

{
σn,s > 0

}
and

{
µn,s ∈ R

}
such that,

lim
n−→+∞

P

 n∩
i=1

 Mi

(
x̃si

i

)
− µi (si)

σi (si)
≤ yi (si)


 = Gi

(
yi

(
x̃si

i

))
(2.5)

where Gi is an EV distribution and Mi (xi) is the spatial survival vector of the maximum

Mi

(
xs j

i

)
=

(
max

1 ≤ j ≤ m

(
xs j

i

))T

.

But since Fi is the marginal distribution of Ts then, it lies on the max-domain of attraction of Gi. Thus, for all site si , the
relation (2.5) is equivalent to the generalized EV model, given by

lim
n→+∞

[
F̃ s j

i

(
σi

n

(
x̃s j

i

)
+ µi

n (si)
)]n
=


[
1 + ξi (si)

(
x̃si

i −µi(si)
σi(si)

)] −1
ξi(si)

+
if ξi (si) , 0

exp
{
−

(
x̃si

i −µi(si)
σi(si)

)}
if ξi (si) = 0

.

where {σi (si) > 0} and {µi (si) ∈ R} and {ξi (xt) ∈ R} such that, for all i,1 ≤ i ≤ n are respectively the spatio-survival
parameters of location, scale and shape of the observation at the parametric site si.

ii) In bivariate case and for all pair of sites si and s j the extremal dependence parametric coefficient θ
(
si, s j

)
= θi j = θ

(
hi j

)
depends on the of separating distance hi j.

It follows that

P
[
F̃ s

(
x̃si

i

)
≤ y; F̃ s

(
x̃s j

j

)
≤ y

]
= exp

−θ
(
hi j

)
y

 . (2.6)

Moreover, using in the relation (2.6) the general form of a univariate EV model with normalizing coefficients σ > 0,
µ ∈ R, ξi (si) ∈ R, it comes, in the particular bivariate context, that

P
(
F̃ s

(
x̃s j

i

)
≤ y, F̃ s

(
x̃s j

i

)
≤ y

)
= exp

[
−θ

(
hi j

) ([
1 + ξ

(
x̃si

i −µi(si)
σi(si)

)] 1
ξi(si)

+

)]
. (2.7)

Then, by introducing the concept of probability measure the relation (2.7) is equivalent to

P
(
F̃ s

(
x̃s j

i

)
≤ y, F̃ s

(
x̃s j

i

)
≤ y

)
= exp

[
−θ

(
hi j

) ([
1 + ξ

(
x̃si

i −µi(si)
σi(si)

)] 1
ξi(si)

+

)]
= Psi j,ξs

and finally
Psi j,ξs = g

[
si, θs

(
hi j

)]
Thus we obtain (2.4) as asserted

The following proposition provides a consequence of theorem 1

Corollary 2 Let {T s; s ∈ S } a spatial process satisfying the key assumption. Then, f or all site si ∈ S

i) the marginal survival parametric extremal density fξi is given by

fξi
(
ti
(
x̃s j

i

))
=



ti
(
x̃si

i

) (
1 + ξ log

(
ti
(
x̃si

i

)))1+ 1
ξi(si)

exp
[
−

(
1 + ξ log

(
ti
(
x̃si

i

))) 1
ξi(si)

] i f ξs j , 0

1

t2
i

(
x̃si

i

) exp

 −1

ti
(
x̃si

i

)  i f ξs j = 0

. (2.8)
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ii) the parametric hazard functions hξ (t) are given

hξi (t) =



{
exp

((
1 + ξlog

(
ti
(
x̃si

i

)))− 1
ξi(si)

)
− 1

}
ti
(
x̃si

i

) (
1 + ξlog

(
ti
(
x̃si

i

))) 1
ξi(si)

+1
i f ξs j , 0

1

ti(xi(si))2

exp


1

ti
(
x̃si

i

) −1


i f ξs j = 0

. (2.9)

Proof. In such a case, the parametric survival function

S ξ(t1, ..., tn) = Pξ(T1 ≥ t1, ..., Tn ≥ tn)

is given marginally by

S ξ (ti) =

1 − exp
[
− (1 + ξlogti)

− 1
ξi(si)

]
i f ξi (si) , 0

1 − exp
(
− 1

ti

)
i f ξi (si) = 0

.

Hence, the hazard function hξ (t) =
fξ (t)
S t (t)

is given by

hξ (t) =


1

t(1+ξlogt)
1
ξ +1

{
exp

(
(1+ξlogt)−

1
ξ

)
−1

} i f ξi (si) , 0

1
t2(exp( 1

t )−1) i f ξi (si) = 0
(2.10)

2.2 Distortional Function of Spatial Extremal Model

The following result characterizes a multivariate survival distribution via a spatial and distortional measure of dependence.

Proposition 3 Let {T s; s ∈ S } a spatial process satisfying the key assumption. Then there exists a spatial conditional
dependence measure such as Ds defined on the spatial unit simplex, for all x̃s =

(
x̃s1

1 , ..., x̃
sn
n

)
∈ R̄n;

S̃ s
n =

(t1 (s) ..., tn (s)) ∈ [0, 1]n ;
n∑

i=1

ti (s) = 1

 (2.11)

such that,

F̃ s (x̃s) = 1 − exp
{∑n

i=1

ti(x̃si
i )

(1+ξ log(ti(x̃si
i )))1+ 1

ξ
Ds

(
x̃si

i∑n
i=1 x̃si

i
, . . . ,

x̃sm−1
m−1∑n
i=1 x̃si

i

)}
. (2.12)

Proof. The EV analysis results from asymptotic normalized vector of maxima of a random vector which converges to a
non degenerated multivariate EV model G. One of extremal study approach is the Peacks-over threshold (POT). Then the
vector of exceedances of the same sample have a generalized Pareto model H.

Particularly if the extremal function F̃ s underlying the survival process TS . It follows that its spatio-survival associated
POT model H̃s satisfies, for all x̃s =

(
x̃s1

1 , ..., x̃
sn
n

)
∈ R̄n, the relationship by

H(xs) = 1 +

 n∑
i=1

x̃si
i

 Ãs

 x̃s1
1∑n

i=1 x̃si
i
, . . . ,

x̃sm−1
m−1∑n

i=1 x̃si
i

 = 1 + log F(x̃s); (2.12)

where ÃF is a spatio-survival dependence function of Pickands associated to F̃ .

Furthermore, for a given 1 ≺ N ≺ n let consider the N-partition of the spatial domain S proposed in [9]

S =
{
(s1, ...., sm) , s j ∈ R2

}
= S N ∪ S N̄ .

Then, it follows that the corresponding distorsional probability δ̃s is such that;

δ̃s (x) = δ̃
(
x̃s1

1 , ..x̃
si
n

)
= 1 −

P
(
T j ≤ x̃s j

j ; N ≤ j ≤ n
)

P (Ti ≤ xi ;1 ≤ i ≤ N-1)
.
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Moreover let F̃ s
N and F̃ s

N̄
be the corresponding partitional distributions functions. So, it comes that

δ̃
(
x̃s1

1 , ..x̃
si
n

)
= 1 −

F̃ s
N̄

(
x̃sN

N ; ...; x̃si
n

)
F̃ s

N

(
x̃s1

1 ; ...; x̃si
N−1

) .
Furthermore, from results due to Dossou et al. (Dossou,-G. S., 2009) both the partitional distributions functions F̃ s

N and
F̃ s

N̄
lie also in the max-domain of attraction of two multivariate EV distribtutions. And by noting ÃN and ÃN̄ the Pickands

dependence functions of t F̃ s
N and F̃ s

N̄
respectively, it come that, even in a spatio-survival context

δ̃
(
x̃s1

1 , ..., x̃
si
n

)
= exp

−
 n∑

i=1

x̃si
i

 Ãs

(
x̃s1

1∑n
i=1 x̃si

i
, . . . ,

x̃sm−1
m−1∑n

i=1 x̃si
i

)
+ n∑

i=1

x̃si
i

 Ãs

 x̃s1
1∑n

i=1 x̃si
i
, . . . ,

x̃sm−1
m−1∑n

i=1 x̃si
i


Which can be written equivalently,

δ̃
(
x̃s1

1 , ..x̃
si
n

)
= exp

−
 n∑

i=1

x̃si
i

 D̃s

 x̃s1
1∑n

i=1 x̃si
i
, . . . ,

x̃sm−1
m−1∑n

i=1 x̃si
i


where D̃s being a distortional spatial and survival dependence function

D(t (x̃s)) = A
(
t1

(
x̃s1

1

)
, . . . , tm−1

(
x̃sm−1

m−1

))
+

(
1 − t1

(
x̃s1

1

))
AN̄1

(
t2(x̃s1

2 )
1−t2(x̃s1

2 ) , . . . ,
tm−1

1−t2(x̃s1
2 )

)
Particularly in bivariate case it is easy to show that D(t (x̃s)) is defined from R+ to

[
−1
2 , 1

]
by

D(t (x̃s)) = A
(

1
1 − t (x̃s))

)
− t

1 + t (x̃s)
.

Specially, for the logistic model:

F š
θ

(
x̃si

1 , x̃
si
2

)
= exp

{
−

((
x̃si

1

)θ
+

(
x̃si

1 , x̃
si
2

)θ) 1
θ

}
the spatial conditional measure is

Dš
θ,t(x) =

xt

1 + xt

[(
1 + x−θt

) 1
θ − 1

]

which is given graphically has follows

Figure 1. Bivariate logistic model for θ1 = θ2 = 2
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2.3 A New Charaterization of Survival Madogram

Madogram is a measure of the full pairwise extremal dependence function to evaluate dependence among extreme regional
observation. Some extensions of this tool have been proposed. Specifially while modeling spatial extreme variablity of
an isotropic and max-stable field, Cooley (Cooley, D., et al., 2006) proposed the F-madogram γF (h) which transforms the
process via its marginal F. The following result provides a parametrization of characterizing of the madogram.

Proposition 4 Let {T s; s ∈ S } a spatial process satisfying the key assumption with distribution F̃ s. Then, the survival
λ-madogram associated to the bivariate margins of F is given by the ratio

γλ (h) =
P(Dh, λ, si)

Q (Dh (λ, 1 − λ) + λ) ; (2.13)

where P and Q are convenient polynoms and Dh being a distortional spatial dependence measure.

Proof. In the previous proposition, the bivariate case implies that, particularly in bivariate case it is easy to shows that
D(t (x̃s)) is defined from R+ to

[
−1
2 , 1

]
by

D(t (x̃s)) = A
(

1
1 − t (x̃s))

)
− t

1 + t (x̃s)
.

Furthermore, in condional study, Proposition 6 of the paper (Barro, D. et al., 2012) provides that, under additional con-
traints, the λ−madogram can be expressed as

γλ (h) =
1

Dh (λ, 1 − λ) + λ − c (λ) with c (λ) =
2λ (1 − λ) + 1

2 (λ + 1) (2 − λ) (2.14)

where Dh is a conditional spatial measure convex defined on the unit simplex of R2.

In our context by replacing D(t (x̃s)) by D(t (x̃s)) it follows easily that

γλs (h) =
− [2λ (1 − λ1) + 1] (Dh (λ, 1 − λ) + λ) 2 (λ + 1) (2 − λ)

(Dh (λ, 1 − λ) + λ) [2 (λ + 1) (2 − λ)] =
P(Dh, λ, si)

Q (Dh (λ, 1 − λ) + λ) (2.15)

where Dh is a conditional spatial measure convex defined on the unit simplex of R2

Figure 2. Bivariate distortional λ − madogram
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3. Survival and Hazard Distributions in a Risky Context

In epidemiological studies, the intensity of contamination must change over time. For example, at begining of the epidemy,
the intensity is high but it decreases when the sanitaries autorities take some dispositions epidemy.

Let Ts = (T1 (s) , ..., Tn (s)) be the survival, continuous and stochastic random vector T satisfying the key assumption.
Consider H as a closed half space in Rn where P (Ts ∈ H) > 0. As in the high scenarios defined by Degen (see [1], [5]
and [6]), the following results characterize the spatial and survival risk and some derivative properties.

Definition The spatial and survival high risk scenario T H
s associated to the process Ts is defined as the vector T(s)

conditioned to lie in the half space H. The spatial probability distribution function (pd f ) FH
Ts

of T H
s on R2 is such that

FH
Ts
= P ◦ T−1

s ., then ZH
s has the high risk distribution πH given by

dFH
Ts

(z (s)) = δH (z (s)) dπ (z (s)) /π (H) . (3.1)

One obtains the following relation between T and its canical parametrisation in a risky context.

Proposition If Ts has the distribution F̃s, then TH
s has the high risk distribution F̃H

s given by, , for all i = 1, . . . ,m.

F̃H
s (t1, . . . , td) = f̃ H

s (t̃s,1, . . . , t̃s,d)
d∏

i=1

δHi (ti)F̃
H
1,s(t1)/πi(Fi) (3.2)

where, t̃s,i = F̃H
i,s(ti) are the marginals distributions functions of the distribution TH and given

f̃ H
s (u1, ..., um) =

f
(
F−1

1 (u1), ..., F−1
m (um)

)
f1

(
F−1

1 (u1),
)
..., fm

(
F−1

m (um)
) (3.3)

for all (u1, ..., um) ∈ [0, 1]m .

Proof. Let (X1, ..., Xn) , n ∈ N, be a vector of random i.i.d variables with a joint distribution F with continuous margins Fi.
According to Sklar’s theorem (see [15]), there exists a unique copula, CT providing a canonical parameterisation of F via
its univariate marginal quantile functions F−1

i such that,

F−1
i (u) = inf {xi ∈ R, Fi (xi) ≥ u} ;

for all x = (x1, ..., xm) ∈ (R ∪ {±∞})m .

F(x1, ..., xm) = CT [F1(x1), ..., Fm(xm)]. (3.4)

Or conversively, for CF providing a canonical parameterisation of F via its univariate marginal quantile functions F−1
i

such that:
CF (u1, ..., un) = F

(
F−1

1 (u1) , ..., F−1
n (un)

)
. (3.5)

Differentiating the formula (3.4) shows that the density function of the copula is equal to the ratio of the joint density h of
H to the product of marginal densities hi such as, for all (u1, ..., un) ∈ [0, 1]n ,

c(u1, ..., un) =
∂nC (u1, ..., un)
∂u1...∂um

=
f
[
F−1

1 (u1), ..., F−1
n (un)

]
f1

[
F−1

1 (u1)
]
× ... × hn

[
F−1

n (un)
] . (3.6)

Let Z be a random vector in Rm and H = H1 × . . . × Hm ⊂ Rm a closed half space with P(Z ∈ H) > 0. Let’s suppose that
zi ∈ ℵ = H1 ∩ . . . ∩ Hd, for all i = 1, . . . ,m. If the marginals distributions of the high risk scenarios distribution πH are all
continuous, then the density of the F̃s is given by

c(u1, . . . , un) =
δHdπ

(
ũH1

1 , . . . , ũ
Hm
m )

)
/π(H)

dπ1

(
ũH1

1

)
× . . . × dπm

(
ũHm

m

)
/(π1(H1) × . . . × πm(Hm))

(3.7)
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where ũHi
i = (πHi

i )(−1)(ui) , the inverses of the marginals distributions (πHi
i ). Suppose that the high risk scenarios margins

πH1
1 , . . . , π

Hd
d are continuous. Using the relation, it comes that

c(πH1
1 (z1), . . . , πHd

d (zd)) =
dπH(z1, . . . , zd)∏d

i=1 δHi (zi)dπi(zi)/πi(Hi)

If zi ∈ ℵ, ∀ i = 1, . . . , d then we get this relation :

c(u1, . . . , ud) =
dπH

(
ũHi

i , . . . , ũ
Hd
d )

)
∏d

i=1 δHi (zi)dπi(zi)/πi(Hi)

where πHi
i (zi) = ui or zi = (πHi

i )(−1)(ui).

This gives

c(u1, . . . , ud) =
δHdπ

(
ũH1

1 , . . . , ũ
Hm
m

)
/π(H)

δℵdπ1

(
ũH1

1

)
× . . . × dπd

(
ũHm

m

)
/(π1(H1) × . . . × πm(Hm))

Since δℵ = 1, then it follows that zi ∈ ℵ =
∩d

i=1 Hi.

Finally we obtain

f̃ H
s (u1, ..., um) =

f
(
F−1

1 (u1), ..., F−1
m (um)

)
f1

(
F−1

1 (u1),
)
..., fm

(
F−1

m (um)
) (3.8)

Thus, we obtain the relation (3.3) as asserted

4. Conclusion

The results of this study show that the survial and spatial framework are also convenient to model extremal dependence.
Tools of dependence such as the extremal dependance coefficient, the multivariate dependence function, the madogram
have been modeled both in spatial and survival context. The survival and hazard distributions are given in a risky context.
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