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Abstract 

The aim of this paper is to introduce some applications on similarities and dissimilarities. Using of a simplified diagram 

and tables to present the information about the similarities and dissimilarities account process and organization are also 

easy and we calculated the topology based on the similarity and topology views of the dissimilarity. For information 

system whose values are numeric, a method of classification is suggested. This method is based on constructing 

neighborhood relation on the universe of the resulted classification not generally a partition for the universe. 

Keywords: rough sets, topology, similarity relation 

1. Introduction 

Similarity is necessary for knowledge discovery. Granulation, classification, and cluster analysis each include some 

notion or a definition of similarity. The domain and distribution of the data are the base measurement of similarity were 

selected. Some similarity metrics may be considered more of use than others even within a specific domain. There is 

some uncertainty in quantitative measurement of similarity between records of mixed data. This uncertainty comes from 

the lack of scale that nominal and ordinal data have. Rough set theory is a tool that is developed for the sake of handling 

uncertainty. Rough sets may be used in dissimilarity analysis of qualitatively-collected data. It would seem that rough 

sets can be used in measuring similarity between records which contain quantitative and qualitative data for clustering 

the records.  Rough sets were considered one of the tools that have been developed to deal with uncertainty. Rough 

sets measure of similarity between our records that contain the data with same qualitative and quantitative data (Han 

and Kamber, 2001; Lin et al., 2002; Pawlak, 1982; Pawlak, 2002; Zhu, 2002). 

The knowledge can be express by Mathematics, whether the knowledge contains quantitative or qualitative. 

Data types 

1) Quantitative data is information regarding quantities, which is information that could be measured and written 

using numbers. 

For example: 

- Student's grades in school materials. 

- Degree heat of patients in the hospital. 

2) Qualitative data can be described as ordinal or nominal. Nominal data does not have order nor scale. 

For example: 

- Cities. 

Ordinal data has order without scale. For example: 

- Colors. 

2. Similarity and Dissimilarity in Rough Sets (Han and Kamber, 2001) 

Pawlak gives description for applying rough sets to measurement of dissimilarity between records of Boolean values. 

Example 1.1 

Let marks of 4- students, C= {c1, c2, c3, c4} and their subjects, A={ a1, …, a7}, where, a1= Mathematics, a2= History, 

a3=Geography, a4 =Science, a5= English, a6= Physics and a7 = Chemistry. 
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Table 1.1 

 a1 a2 a3 a4 a5 a6 a7 

c1 88 100 100 100 90 90 88 

c2 88 90 90 90 100 100 88 

c3 88 90 90 90 90 100 88 

c4 88 90 100 90 100 100 88 

We choose attributes a2, a3 and a5 from the Table 1.1, we get Table 1.2 

Possible modified set Table 1.2 

 a2 a3 a5 

c1 100 100 90 

c2 90 90 100 

c3 90 90 90 

c4 90 100 100 

∗Any attributes with the same value as another attribute for all records are disregarded. 

Each record has a node and a label edge between the nodes if deleting an attribute would place the records in the same 

class of equivalence. 

For example: degree is between c2  and c4  with the label a5. We get the result as the next figure as follow: 

 

a3 

C1                                C2                                           C4 
 

 
 
 

a5 
 

 
 
 

C3 

 

Figure 1.1 

 

Determining length of the shortest path between the nodes in the graph corresponding to the records is the way 

dissimilarity between two records is computed. For example: 

The dissimilarity between c3 and c4 would be 2. 

Definition 1.1 

The similarities are computed as:  (|Dmax-Dij)/Dmax|, where Dmax is the maximum dissimilarity over all pairs and Dij is the 

dissimilarity between ci and cj, Dmax is the previous example is 2. 

The dissimilarity is computed out of (through) the following: 

Discernibility Matrices:  

Definition 1.2 

An information system S defines a matrix MA, which is called discernibility matrix. Each entry MA(x, y) ⊆ A consists of a 

set of attributes that be used to discern between objects x, y ∊ U: 

MA is a |U|×|U| matrix; the discernibility matrix has the form: 

Mij ={a ∊ A:a(xi)≠ a(xj)} for i, j ∊{1, 2, …, n}, n=|   | .
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Table 1.3 pair wise similarities form Table 1.2 

 c1 c2 c3 c4 

c1 1 1 1 1 

c2 1 1 0.5 0.5 

c3 1 0.5 1 0 

c4 1 0.5 0 1 

Where c11 = (|Dmax-Dij)/Dmax|) = c12 = c13=c14 =2−0/2=1 

 

Table 1.4 Discerniblity matrix of Table 1.1 

 

 c1 c2 c3 c4 

c1 Ø {a2, a3, a4, a5, a6} {a2, a3, a4, a6} {a2, , a4, a5, a6} 

c2 {a2, a3, a4, a5, a6} Ø {a5} {a3} 

c3 {a2, a3, a4, a6} {a5} Ø {a3, a5} 

c4 {a2, a4, a5, a6} {a3} {a3, a5} Ø 

 
Table 1.5 dissimilarity 

 c1 c2 c3 c4 

c1 0 5 4 4 

c2 5 0 1 1 

c3 4 1 0 2 

c4 4 1 2 0 

Example 1.2 

Let U={c1, c2, c3, c4, c5, c6, c7, c8} be a mobile devices, A={ a1, a2, a3} be screen measurement, weight and accuracy of 

camera in the following Table 1.6 

Table 1.6 

U/A a1 a2 a3 

c1 5 116 8 

c2 4.8 130 13 

c3 4.8 130 8 

c4 5 133 13 

c5 4.8 116 13 

c6 4.3 133 13 

c7 4.3 116 8 

c8 5 116 13 
 

We draw the relation between the objects and attributes as follows 

a3                           a 2 

c1                                 c8                                c4 

 

a1                                   a1                             a1 

 

c7                                  c5
                                 

 c6 
 

 

                                           a2                                                                  

 

c3       a3
          c2 

Figure 1.2. Pair wise similarities for Table 1.6 
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Dmax in this example is 5 where, c11=5−0/5=1, c12=c16=5−3/5=2/5, c13=5−4/5=1/5, c14=c15=5−2/5=3/5, 

c17=c18=5−1/5=4/5. 

Table 1.7 

 c1 c2 c3 c4 c5 c6 c7 c8 

c1 1 2/5 1/5 3/5 3/5 2/5 4/5 4/5 

c2 2/5 1 4/5 2/5 4/5 1/5 1/5 3/5 

c3 1/5 4/5 1 1/5 3/5 0 0 2/5 

c4 3/5 2/5 1/5 1 3/5 4/5 2/5 4/5 

c5 3/5 4/5 3/5 3/5 1 2/5 2/5 4/5 

c6 2/5 1/5 0 4/5 2/5 1 1/5 3/5 

c7 4/5 1/5 0 2/5 2/5 1/5 1 3/5 

c8 4/5 3/5 2/5 4/5 4/5 3/5 3/5 1 

 

Table 1.8 Discernibility matrix of Table 1.6 

 c1 c2 c3 c4 c5 c6 c7 c8 

c1 Ø {a2, a3, a3} {a1, a2} {a2, a3} {a1, a3} {a2, a3, a3} {a1} {a3} 

c2 {a2, a3, a3} Ø {a3} {a1, a2} {a2} {a1, a2} {a2, a3, a3} {a1, a2} 

c3 {a1, a2} {a3} Ø {a2, a3, a3} {a2, a3} {a2, a3, a3} {a1, a2} {a2, a3, a3} 

c4 {a2, a3} {a1, a2} {a2, a3, a3} Ø {a1, a2} {a1} {a2, a3, a3} {a2} 

c5 {a1, a3} {a2} {a2, a3} {a1, a2} Ø {a1, a2} {a1, a3} {a1} 

c6 {a2, a3, a3} {a1, a2} {a2, a3, a3} {a1} {a1, a2} Ø {a2, a3} {a1, a2} 

c7 {a1} {a2, a3, a3} {a1, a2} {a2, a3, a3} {a1, a3} {a2, a3} Ø {a2, a3, a3} 

c8 {a3} {a1, a2} {a2, a3, a3} {a2} {a1} {a1, a2} {a2, a3, a3} Ø 

 
Table 1.9 Dissimilarity 

 c1 c2 c3 c4 c5 c6 c7 c8 

c1 0 3 2 2 2 3 1 1 

c2 3 0 1 2 1 2 3 2 

c3 2 1 0 3 2 3 2 3 

c4 2 2 3 0 2 1 3 1 

c5 2 1 2 2 0 2 2 1 

c6 3 2 3 1 2 0 2 2 

c7 1 3 2 3 2 2 0 3 

c8 1 2 3 1 1 2 3 0 

 

To compute Similarity matrix of Table 1.6 in the Table 1.10 with attribute a1 as follows 

|c(xi)-c(yj)|,  i, j∈{1,2,3,4,5,6,7,8}, where 
c11=x14= x18=|5-5|=0, c12= c13= c15=|5-4.8|=0.2, 

c16= c17=|5-4.3|=0.7. 
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Table 1.10 

a1 c1 c2 c3 c4 c5 c6 c7 c8 

c1 0 0.2 0.2 0 0.2 0.7 0.7 0 

c2 0.2 0 0 0.2 0 0.5 0.5 0.2 

c3 0.2 0 0 0.2 0 0.5 0.5 0.2 

c4 0 0.2 0.2 0 0.2 0.7 0.7 0 

c5 0.2 0 0 0.2 0 0.5 0.5 0.2 

c6 0.7 0.7 0.7 0.7 0.7 0 0 0.7 

c7 0.7 0.7 0.7 0.7 0.7 0 0 0.7 

c8 0 0 0 0 0 0.7 0.7 0 

 

To compute the Table 1.11 with attribute a2 as follows, where c11 = c15 =c17 = c18 

= ⎸116 ⎼ 116⎹ = 0, c12 = c13 = ⎸116 ⎼ 130 ⎸= 14, c14 = c16 = ⎹116 ⎼ 133⎹ =17.

 

Table 1.11 

a2 c1 c2 c3 c4 c5 c6 c7 c8 

c1 0 14 14 17 0 17 0 0 

c2 14 0 0 3 14 3 14 14 

c3 14 0 0 3 14 3 14 14 

c4 17 3 3 0 17 0 17 17 

c5 0 14 14 17 0 17 0 0 

c6 17 3 3 0 17 0 17 17 

c7 0 14 14 17 0 17 0 0 

c8 0 14 14 17 0 17 0 0 

The similarity values of Table 1.12 is compute as the fallow, where x11= x13= x17=|5-5|=0, x12= x14= x15= x16= 

x18=|8-13|=5. 

 

Table 1.12 

a3 c1 c2 c3 c4 c5 c6 c7 c8 

c1 0 5 0 5 5 5 0 5 

c2 5 0 5 0 0 0 5 0 

c3 0 5 0 5 5 5 0 5 

c4 5 0 5 0 0 0 5 0 

c5 5 0 5 0 0 0 5 0 

c6 5 0 5 0 0 0 5 0 

c7 0 5 0 5 5 5 0 5 

c8 5 0 5 0 0 0 5 0 

Example 1.3 

Let U={x1, x2, x3, x4} be patients, A ={a1, a2, a3} be Temperature, pressure and Diabetics in the following table: 
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Table 1.13 

 a1 a2 a3 

x1 37 100 70 

x2 40 120 70 

x3 37 120 70 

x4 45 100 70 

We graph the relation between attributes and objects as the next figure 

 

Figure 1.3 

To compute similarities for Table 1.14, where Dmax = 3 as follows 

Table 1.14 

 

 x1 x2 x3 x4 

x1 1 1/3 2/3 2/3 

x2 1/3 1 2/3 0 

x3 2/3 2/3 1 1/3 

x4 2/3 0 1/3 1 

Definition 1.3 

 

If (U, A, V, f) is an information system defines an information function f: U →V, where A is the set of attributes, V is 

the domain of the particular attributes in which the values V are real numbers. We define a relation Ri for each objects 

i(x) as follows: xRi y if |i(x)-i(y)|<λ, where λ is determined by an expert of the field. For example if the information is 

from medical field, the expert is a person interested in medicine and making in the problem. Thus for each i(x)∈U we 

can get a classification O ⁄Ri where O is a finite set, which is xRi={y:|i(x)-i(y)|<ε, x∈0}. 

Definition 1.4 

For each B ⊂ A, the relation RB ⊂U×U defined , where |B| is the cardinality of B and λ is a 

represented any number. 

Yao's method (Yao, 1999) 

Yao introduced a method for generalization of approximation space depending on the right neighborhood as showing: 

If U is a finite universe and R is a binary relation on U, then: 

The class of right neighborhood is . For a topological space (X, t), a subset A of X, we define the 

accuracy of Yao is  

Choose  is the ratio of specific similarity of the Table 1.14 and us finding the subbase information system as 

follows: 

x R y= {(x1, x2), (x2, x1), (x2, x4), (x3, x4), (x4, x2), (x4, x3)}, then 

x1R={x2}, x2R={x1, x4}, x3R={x4}, x4R={x2, x3} 
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(x)R={{x2}, {x1, x4}, {x4}, {x2, x3}} is a class right neighborhood as in Yao's method. 

SR={{x2}, {x1, x4}, {x4}, {x2, x3}} is a subbase of τR as in TAS's method.  

In TAS's method "Topological Approximation Space", we get: 

BR={Ø, {x2}, { x4}, {x1, x4}, {x2, x3}}, 

τR={Ø, X, {x2}, {x4}, {x1, x4}, {x2, x3}, {x2, x4}, {x1, x2, x4},{x2, x3, x4}} and 

={Ø, X, {x1, x3, x4}, {x1, x2, x3}, {x2, x3}, {x1, x4}, {x1, x3}, {x3},{x1}}. 

We find lower and upper approximation, closure and interior for all subset of U (2
4
=16 subset) to get the accuracy by 

using Yao's method and TAS's method as shown in Table 1.15. 

Table 1.15 

P(X) P(X
C
) 

Yao's method  

accuracy 

TAS's method  

accuracy 

Xint(x) Xcl(x) X X 

Ø X Ø Ø 0 Ø Ø 0 

{x1} {x2, x3, x4} Ø {x1} 0 Ø {x1, x4} 0 

{x2} {x1, x3, x4} {x2} {x2, x3} 1/2 {x2} {x2, x3} 1/2 

{x3} {x1, x2, x4} Ø {x3} 0 Ø {x2, x3} 0 

{x4} {x1, x2, x3} {x4} {x1, x4} 1/2 {x4} {x1, x4} 1/2 

{x1, x2} {x3, x4} {x2} {x1, x2, x3} 1/3 {x2} {x1, x2, x4} 1/3 

{x1, x3} {x2, x4} Ø {x1, x3} 0 Ø X 0 

{x1, x4} {x2, x3} {x1, x4} {x1, x4} 1 {x1, x4} {x1, x4} 1 

{x2, x3} {x1, x4} {x2, x3} {x1, x3} 1 {x2, x3} {x2, x3} 1 

{x2, x4} {x1, x3} {x2, x4} X 1/2 {x2, x4} X 1/2 

{x3, x4} {x1, x2} {x4} {x1, x3, x4} 1/3 {x4} X 1/3 

{x1, x2, x3} {x4} {x2, x3} {x1, x2, x3} 2/3 {x2, x3} X 2/3 

{x1, x2, x4} {x3} {x1, x2, x4} X 3/4 {x1, x2, x4} X 3/4 

{x2, x3, x4} {x1} {x2, x3, x4} X 3/4 {x2, x3, x4} X 3/4 

{x1, x3, x4} {x2} {x1, x4} {x1, x3, x4} 2/3 {x1, x4} X 1/2 

X Ø X X 1 X X 1 

 

3. Fusing Quantitative and Qualitative Information (Han and Kamber, 2001) 

Methods and metrics have become cluster data records that have quantitative or qualitative data only. It is possible to 

extract information by the fusion of the methods result or the various measures. 

Quantitative measures depend on the complete continuous interval while qualitative measures depend on a discrete linear 

subset of the interval [0, 1]. 

Example 1.4 

Let U={c1, c2, c3, c4, c5, c6, c7, c8} be a mobile devices, A={ a1,  a2,  a3, a4} be screen measurement, weight, 

accuracy of camera and colors in the following 
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Table 1.16 

 a1 a2 a3 a4 

c1 5 116 8 B 

c2 4.8 130 13 W 

c3 4.8 130 8 B 

c4 5 133 13 S 

c5 4.8 116 13 S 

c6 4.3 133 13 W 

c7 4.3 116 8 W 

c8 5 116 13 B 

 

Table 1.17 

a4 c1 c2 c3 c4 c5 c6 c7 c8 

c1 0 1 0 1 1 1 1 0 

c2 1 0 1 1 1 0 0 1 

c3 0 1 0 1 1 1 1 0 

c4 1 1 1 0 0 1 1 1 

c5 1 1 1 0 0 1 1 1 

c6 1 0 1 1 1 0 0 1 

c7 1 0 1 1 1 0 0 1 

c8 0 1 0 1 1 1 1 0 
 

Using Table 1.17and 1.12 to find Table 1.18 as follows 

Table 1.18 

(a3 +a4) / 2 c1 c2 c3 c4 c5 c6 c7 c8 

c1 0 3 0 3 3 3 1/2 5/2 

c2 3 0 3 1/2 1/2 0 5/2 1/2 

c3 0 3 0 3 3 3 1/2 5/2 

c4 3 1/2 3 0 0 1/2 3 1/2 

c5 3 1/2 3 0 0 1/2 3 1/2 

c6 3 0 3 1/2 1/2 0 5/2 1/2 

c7 1/2 5/2 1/2 3 3 5/2 0 3 

c8 5/2 1/2 5/2 1/2 1/2 1/2 3 0 

 

Using Table 1.10, 1.11 and 1.12 to find Table 1.19 as follows 

Table 1.19 

a1+a2+a3/3 c1 c2 c3 c4 c5 c6 c7 c8 

c1 0 6.4 4.73 7.33 1.73 7.57 0.23 1.67 

c2 6.4 0 1.67 1.07 4.67 1.17 6.5 4.73 

c3 4.73 1.67 0 2.73 6.33 2.83 4.83 6.4 

c4 7.33 1.07 2.73 0 5.73 0.23 7.57 5.67 

c5 1.73 4.67 6.33 5.73 0 5.83 1.83 0.07 

c6 7.57 1.23 2.9 0.23 5.9 0 7.33 5.9 

c7 0.23 6.57 4.9 7.57 1.9 7.33 0 1.9 

c8 1.67 4.67 6.33 5.67 0 5.9 1.9 0 

 

4. Conclusion 

This Paper discussed two of the approaches for the determination of the similarity between records of mixed data. We 

introduce in this paper some concept's and application, from the introduce application, we found that the relation between 

the general topology and the rough set. From the last, we heard that topology is father of rough set, but in this thesis 
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showed this relation. In the next paper we will this relation becomes fact. It may be noticed that because of the uncertainty 

and ambiguity of qualitative data and of trials to combine metrics leave rough set theory as an optional tool to be used. 

As mentioned in the discussion, an extra or another approach is required for the discovery of identical sets of records in 

data sets of mixed data. 

From Tables, we can notice that the cluster that includes the attributes, the most possible record in the same cluster would 

be attributing as it is in both approximations. One might use the union of the upper approximations to determine probable 

clusters. 
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