γ-Max Labelings of Graphs

Supaporn Saduakdee ${ }^{1}$ \& Varanoot Khemmani ${ }^{2}$
${ }^{1}$ Department of Mathematics, Srinakharinwirot University, Bangkok, Thailand
Correspondence: Supaporn Saduakdee, Department of Mathematics, Srinakharinwirot University, Sukhumvit 23, 10110 Bangkok, Thailand. E-mail: aa_o_rr@hotmail.com

Received: November 11, 2016 Accepted: December 5, 2016 Online Published: January 23, 2017
doi:10.5539/jmr.v9n1p90 URL: http://dx.doi.org/10.5539/jmr.v9n1p90

Abstract

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function $f: V(G) \rightarrow\{0,1,2, \ldots, m\}$ that induces an edge-labeling $f^{\prime}: E(G) \rightarrow\{1,2, \ldots, m\}$ on G defined by

$$
f^{\prime}(e)=|f(u)-f(v)|, \quad \text { for each edge } e=u v \text { in } E(G)
$$

The value of f is defined as

$$
\operatorname{val}(f)=\sum_{e \in E(G)} f^{\prime}(e)
$$

The maximum value of a γ-labeling of G is defined as

$$
\operatorname{val}_{\max }(G)=\max \{\operatorname{val}(f): f \text { is a -labeling of } G\} ;
$$

while the minimum value of a γ-labeling of G is

$$
\operatorname{val}_{\min }(G)=\min \{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\}
$$

In this paper, we give an alternative short proof by mathematical induction to achieve the formulae for val $\mathrm{max}\left(K_{r, s}\right)$ and $\operatorname{val}_{\text {max }}\left(K_{n}\right)$.

Keywords: γ-labeling, value of a γ-labeling

1. Introduction

Let G be a graph of order n and size m. A γ-labeling of G is defined in (Chartrand, Erwin, VanderJagt \& Zhang, 2005) as a one-to-one function $f: V(G) \rightarrow\{0,1, \ldots, m\}$ that induces an edge-labeling $f^{\prime}: E(G) \rightarrow\{1, \ldots, m\}$ on G defined by $f^{\prime}(e)=|f(u)-f(v)|$ for each edge $e=u v$ of G. The value of f is defined by

$$
\operatorname{val}(f)=\sum_{e \in E(G)} f^{\prime}(e)
$$

If the edge-labeling f^{\prime} of a γ-labeling f of a graph is also one-to-one, then f is a graceful labeling. Among all labelings of graphs, graceful labelings are probably the best known and most studied. Graceful labelings originated with a paper of Rosa (Rosa, 1966), who used the term β-valuations. A few years later, Golomb (Golomb, 1972) called these labelings "graceful" and this is the terminology that has been used since then.
Gallian (Gallian, 2009) has written an extensive survey on labelings of graphs. The subject of γ-labelings of graphs was studied in (Bullington, Eroh, \& Winters, 2010; Chartrand, Erwin, VanderJagt, \& Zhang, 2005; Crosse, Okamoto, Saenpholphat, \& Zhang, 2007; Fonseca, Saenpholphat, \& Zhang, 2013; Fonseca, Khemmani, \& Zhang, 2015; Fonseca, Saenpholphat, \& Zhang, 2011; Khemmani \& Saduakdee, 2015, 2016).

Obviously, since γ-labeling f of a graph G of order n and size m is one-to-one, it follows that $f^{\prime}(e) \geq 1$, for any edge e, and therefore, $\operatorname{val}(f) \geq m$. Moreover, G has a γ-labeling if and only if $m \geq n-1$ and every connected graph has a γ-labeling.
The maximum value and the minimum value of a γ-labeling of G are defined in (Chartrand, Erwin, VanderJagt, \& Zhang, 2005) as

$$
\operatorname{val}_{\max }(G)=\max \{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\}
$$

and

$$
\operatorname{val}_{\min }(G)=\min \{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\}
$$

respectively. A γ-labeling g of G is a γ-max labeling if $\operatorname{val}(g)=\operatorname{val}_{\max }(G)$ and a γ-labeling h is a γ-min labeling if $\operatorname{val}(h)=\operatorname{val}_{\min }(G)$. Figure 1 shows nine γ-labelings $f_{1}, f_{2}, \ldots, f_{9}$ of the path P_{5} of order 5 (where the vertex labels are shown above each vertex and the induced edge labels are shown below each edge). The value of each γ-labeling is shown in Figure 1 as well.
Since val $\left(f_{1}\right)=4$ and the size of $P_{5}=4$, it follows that f_{1} is a γ-min labeling of P_{5}. It is shown in (Chartrand, Erwin, VanderJagt, \& Zhang, 2005) that the γ-labeling f_{9} is a γ-max labeling of P_{5}.

Figure 1. Some γ-labelings of P_{5}

By the γ-spectrum of a graph G, we mean the set

$$
\operatorname{spec}(G)=\{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\} .
$$

Observe that $\operatorname{val}_{\min }(G), \operatorname{val}_{\max }(G) \in \operatorname{spec}(G)$ for every graph G.
For integers a and b with $a<b$, let

$$
[a, b]=\{a, a+1, \ldots, b\}
$$

be a consecutive set of integers between a and b.
Thus for every graph G,

$$
\operatorname{spec}(G) \subseteq\left[\operatorname{val}_{\min }(G), \operatorname{val}_{\max }(G)\right]
$$

The span of a γ-labeling f of a graph G is defined as

$$
\operatorname{span}(f)=\max \{f(v): v \in V(G)\}-\min \{f(v): v \in V(G)\} .
$$

Consequently, if $G \cong P_{5}$, then $\operatorname{spec}(G)=\{4,5,6,7,8,9,10,11\}$ and for each γ-labeling f of $G, \operatorname{span}(f)=4-0=4$.
For a γ-labeling f of a graph G of size m, the complementary labeling $\bar{f}: V(G) \rightarrow\{0,1, \ldots, m\}$ of f is defined by

$$
\bar{f}(v)=m-f(v) \text { for } v \in V(G) .
$$

Not only is \bar{f} a γ-labeling of G as well but $\operatorname{val}(\bar{f})=\operatorname{val}(f)$. This gives us the following.
Observation 1 (Chartrand, Erwin, VanderJagt, \& Zhang, 2005) Let f be a γ-labeling of a graph G. Then f is a γ-max labeling (γ-min labeling) of G if and only if \bar{f} is a γ-max labeling (γ-min labeling) of G.

The following result appeared in (Fonseca, Khemmani, \& Zhang, 2015) is useful to us.
Theorem 1 (Fonseca, Khemmani, \& Zhang, 2015) If fis a γ-max labeling of a nontrivial graph G of order n and size m, then $\{0, m\} \subseteq f(V(G))$.
In (Bullington, Eroh \& Winters, 2010; Chartrand, Erwin, VanderJagt, \& Zhang, 2005), the maximum and minimum values of a γ-labeling of path P_{n}, cycle C_{n}, complete graph K_{n}, double star $S_{p, q}$ and complete bipartite graph $K_{r, s}$ are determined.
For any positive integers n, m, Δ with $\Delta \geq m$, let G be a nontrivial graph of order n and size m, a γ^{Δ}-labeling of G is defined in (Fonseca, Saenpholphat, \& Zhang, 2013) as a one-to-one function $f: V(G) \rightarrow\{0,1, \ldots, m, m+1, \ldots, \Delta\}$ that
induces an edge-labeling $f^{\prime}: E(G) \rightarrow\{1,2, \ldots, \Delta\}$ on G defined by $f^{\prime}(e)=|f(u)-f(v)|$ for each edge $e=u v$ of G. The value of f is defined by

$$
\operatorname{val}(f)=\sum_{e \in E(G)} f^{\prime}(e)
$$

The maximum value of a γ^{Δ}-labeling of G is

$$
\operatorname{val}_{\max }^{\Delta}(G)=\max \left\{\operatorname{val}(f): f \text { is a } \gamma^{\Delta} \text {-labeling of } G\right\}
$$

The minimum value of a γ^{Δ}-labeling of G is

$$
\operatorname{val}_{\min }^{\Delta}(G)=\min \left\{\operatorname{val}(f): f \text { is a } \gamma^{\Delta} \text {-labeling of } G\right\}
$$

A γ^{Δ}-labeling g of G is a γ^{Δ}-max labeling if $\operatorname{val}(g)=\operatorname{val}_{\max }^{\Delta}(G)$ and a γ^{Δ}-labeling h is a γ^{Δ}-min labeling if $\operatorname{val}(h)=$ $\operatorname{val}_{\text {min }}^{\Delta}(G)$.
Note that $\operatorname{val}_{\max }(G)=\operatorname{val}_{\text {max }}^{\Delta}(G)$ and $\operatorname{val}_{\text {min }}(G)=\operatorname{val}_{\text {min }}^{\Delta}(G)$ when $\Delta=m$.
We first make the following observation for $\gamma^{\Delta}-\max$ and $\gamma^{\Delta}-\min$ labelings of graphs.
Observation 2 Let f be a γ^{Δ}-labeling of a graph G. Then f is a γ^{Δ}-max labeling (γ^{Δ}-min labeling) of G if and only if \bar{f} is a γ^{Δ}-max labeling (γ^{Δ}-min labeling) of G.
In 2010, the explicit formula for $\operatorname{val}_{\max }\left(K_{r, s}\right)$ and the standard form for γ-max labeling of complete bipartite graph $K_{r, s}$ were determined by Bullington, Eroh and Winters (Bullington, Eroh, \& Winters, 2010). Later, Fonseca, Khemmani and Zhang (Fonseca, Khemmani, \& Zhang, 2015) in 2015 presented the alternative proof of the formula for $\mathrm{val}_{\max }\left(K_{r, s}\right)$ that employs γ-min labelings of complete graphs, as we state next.
Theorem 2 (Bullington, Eroh \& Winters, 2010) For any two positive integers $r \geq s$,

$$
\operatorname{val}_{\max }\left(K_{r, s}\right)=r s\left(r s-\frac{1}{2}(r+s)+1\right)
$$

Theorem 3 (Bullington, Eroh, \& Winters, 2010) Let f be a γ-labeling of complete bipartite graph $K_{r, s}$ with partite sets V_{r} and V_{s} of cardinality r and s, respectively. Then f is a γ-max labeling of $K_{r, s}$ if and only if

$$
\begin{aligned}
& \text { 1. } f\left(V_{r}\right)=[0, r-1] \text { and } f\left(V_{s}\right)=[r s-(s-1), r s] \text {, or } \\
& \text { 2. } f\left(V_{r}\right)=[r s-(r-1), r s] \text { and } f\left(V_{s}\right)=[0, s-1] .
\end{aligned}
$$

In 2005, the maximum value of γ-labeling of complete graph K_{n} was determined by Chartrand et al. (Chartrand, Erwin, VanderJagt, \& Zhang, 2005). As well, the authors (Fonseca, Khemmani, \& Zhang, 2015) characterized the γ-max labeling of complete graph K_{n} in 2015.
Theorem 4 (Chartrand, Erwin, VanderJagt, \& Zhang, 2005) For every positive integer n,

$$
\operatorname{val}_{\max }\left(K_{n}\right)= \begin{cases}\frac{\left(n^{2}-1\right)\left(3 n^{2}-5 n+6\right)}{24} & \text { if } n \text { is odd } \\ \frac{n\left(3 n^{3}-5 n^{2}+6 n-4\right)}{24} & \text { if } n \text { is even }\end{cases}
$$

Theorem 5 (Fonseca, Khemmani, \& Zhang, 2015) Let f be a γ-labeling of a complete graph K_{n}. Then f is a γ-max labeling of K_{n} if and only if

$$
f\left(V\left(K_{n}\right)\right)= \begin{cases}\left.\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\begin{array}{c}
n \\
2
\end{array}\right)-\left\lfloor\frac{n}{2}\right\rfloor+1,\binom{n}{2}\right] & \text { if } n \text { is even } \\
\left.\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\begin{array}{c}
n \\
2
\end{array}\right)-\left\lfloor\frac{n}{2}\right\rfloor+1,\binom{n}{2}\right] \cup\{k\} & \text { if } n \text { is odd, }\end{cases}
$$

where $k \in\left[\left\lfloor\frac{n}{2}\right\rfloor,\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right]$.
The goal of this paper is to present an alternative approach to formulae for $\operatorname{val}_{\max }\left(K_{r, s}\right)$ and $\operatorname{val}_{\max }\left(K_{n}\right)$ proved by mathematical induction.
The reader is referred to Chartrand and Zhang (Chartrand \& Zhang, 2005) for basic definitions and terminology not mentioned here.

2. γ^{Δ}-max Labelings of Graphs

In this section, we begin our investigation for γ^{Δ}-max labeling of any nontrivial graph by presenting a useful lemma.
Lemma 1 Let f be a γ^{Δ}-max labeling of a nontrivial graph G of order n and size m. Let $u, w \in V(G)$ with $f(u)=$ $\min \{f(v): v \in V(G)\}$ and $f(w)=\max \{f(v): v \in V(G)\}$. Then neighborhoods of u and w are not empty.
Proof. For any nontrivial connected graph G, it is obvious that $|N(u)|$ and $|N(w)|$ are not empty. Let G be a disconnected graph. We will show that $|N(u)| \neq 0$ and $|N(w)| \neq 0$ Assume, to the contrary, that $|N(u)|=0$ or $|N(w)|=0$.
Case 1. $|N(u)|=0$.
Then u is an isolated vertex of G. Since G has a γ^{Δ}-max labeling, $\Delta \geq \mathrm{m} \geq \mathrm{n}-1$. Therefore, there is a component G_{1} of G with $\left|V\left(G_{1}\right)\right| \geq 2$. Let $x \in V\left(G_{1}\right)$ with $f(x)=\min \left\{f(v): v \in V\left(G_{1}\right)\right\}$. Let g be a γ^{Δ}-labeling of G defined by

$$
g(v)= \begin{cases}f(x) & \text { if } v=u \\ f(u) & \text { if } v=x \\ f(v) & \text { if } v \neq u, x\end{cases}
$$

Then

$$
\begin{aligned}
\operatorname{val}(g) & =\operatorname{val}(f)-\sum_{v \in N(x)}(f(v)-f(x))+\sum_{v \in N(x)}(g(v)-g(x)) \\
& =\operatorname{val}(f)-\sum_{v \in N(x)}(f(v)-f(x))+\sum_{v \in N(x)}(f(v)-f(u)) \\
& =\operatorname{val}(f)+|N(x)|(f(x)-f(u)) \\
& >\operatorname{val}(f)
\end{aligned}
$$

which is a contradiction.
Case 2. $|N(w)|=0$.
By a similar argument, this leads to a contradiction with the maximum value of a γ^{Δ}-labeling of G.
We now show formula for span of γ^{Δ}-max labelings of graphs.
Proposition 1 Let G be a nontrivial graph of order n and size m and f a γ^{Δ}-labeling of G. If f is a γ^{Δ}-max labeling of G, then $\operatorname{span}(f)=\Delta$.
Proof. Let f be a γ^{Δ}-max labeling of G. Let $u, w \in V(G)$ with $f(u)=\min \{f(v): v \in V(G)\}$ and $f(w)=\max \{f(v): v \in$ $V(G)\}$. Then $f(u) \geq 0$ and $f(w) \leq \Delta$. Assume, to the contrary, that $\operatorname{span}(f)<\Delta$. Then $f(w)-f(u)<\Delta$. Therefore, $f(u)>0$ or $\Delta-\mathrm{f}(\mathrm{w})>0$.
Case 1. $f(u)>0$.
Let g be a γ^{Δ}-labeling of G defined by

$$
g(v)= \begin{cases}0 & \text { if } v=u \\ f(v) & \text { if } v \neq u\end{cases}
$$

Then

$$
\begin{aligned}
\operatorname{val}(g) & =\operatorname{val}(f)-\sum_{v \in N(u)}(f(v)-f(u))+\sum_{v \in N(u)}(g(v)-g(u)) \\
& =\operatorname{val}(f)-\sum_{v \in N(u)}(f(v)-f(u))+\sum_{v \in N(u)}(f(v)-0) \\
& =\operatorname{val}(f)+|N(u)|(f(u)-0) \\
& >\operatorname{val}(f) \quad \text { (by Lemma 1), }
\end{aligned}
$$

which is a contradiction.
Case 2. $\Delta-\mathrm{f}(\mathrm{w})>0$.
A similar argument to the one used in Case 1 leads to a contradiction with the maximum value of a γ^{Δ} labeling of G.
This also provides the following corollary.
Corollary 1 Let G be a nontrivial graph of order n and size m and f a γ^{Δ}-labeling of G. If f is a γ^{Δ}-max labeling of G, then $\{0, \Delta\} \subseteq f(V(G))$.

3. γ-max Labelings of Complete Bipartite Graphs

We define the γ^{Δ}-spectrum of a graph G by

$$
\operatorname{spec}^{\Delta}(G)=\left\{\operatorname{val}(f): f \text { is a } \gamma^{\Delta} \text {-labeling of } G\right\}
$$

Consequently, $\left\{\operatorname{val}_{\min }^{\Delta}(G), \operatorname{val}_{\max }^{\Delta}(G)\right\} \subseteq \operatorname{spec}^{\Delta}(G)$ for every graph G. As an illustration, we now establish the γ^{Δ}-spectrum of a star $K_{1, s}$.
Proposition 2 For positive integers s, Δ with $\Delta \geq s$,

$$
\operatorname{spec}^{\Delta}\left(K_{1, s}\right)=\left\{\binom{\Delta-k+1}{2}-\binom{\Delta-s+1}{2}+\binom{k+1}{2}: 0 \leq k \leq \Delta\right\}
$$

Proof. Let $K_{1, s}$ be a star with $V\left(K_{1, s}\right)=\{v\} \cup V_{s}$ where v is a central vertex and $V_{s}=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ and f a γ^{Δ}-labeling of a graph $K_{1, s}$ with $f(v)=k$ where $0 \leq k \leq \Delta$.
If $k=0$, then we may assume that $f\left(v_{i}\right)=\Delta-(s-i)$ for all $1 \leq i \leq s$. Then

$$
\operatorname{val}(f)=\sum_{i=1}^{s}\left|f\left(v_{i}\right)-f(v)\right|=\sum_{i=1}^{s}(\Delta-(s-i))=\binom{\Delta+1}{2}-\binom{\Delta-s+1}{2}
$$

If $k=\Delta$, then by Observation 2,

$$
\operatorname{val}(f)=\binom{\Delta+1}{2}-\binom{\Delta-s+1}{2}
$$

If $0<k<\Delta$, then we may assume that

$$
f\left(v_{i}\right)= \begin{cases}i-1 & \text { if } 1 \leq i \leq k \\ \Delta-(s-i) & \text { if } k+1 \leq i \leq s\end{cases}
$$

Therefore,

$$
\begin{aligned}
\operatorname{val}(f) & =(k+(k-1)+\cdots+1)+((\Delta-(s-1))+(\Delta-(s-2))+\cdots+(\Delta-k)) \\
& =\binom{k+1}{2}+\binom{\Delta-k+1}{2}-\binom{\Delta-s+1}{2}
\end{aligned}
$$

as desired.
In Proposition 2, we considered γ^{Δ}-spectrum of a star $K_{1, s}$. We are now ready to compute the maximum value of a γ^{Δ}-labeling of $K_{1, s}$.
Corollary 2 For positive integers s, Δ with $\Delta \geq s$,

$$
\operatorname{val}_{\max }^{\Delta}\left(K_{1, s}\right)=\binom{\Delta+1}{2}-\binom{\Delta-s+1}{2}
$$

Moreover, let f be a γ^{Δ}-labeling of $K_{1, s}$ with

$$
f(v)=0 \quad \text { and } \quad f\left(V_{s}\right)=[\Delta-(s-1), \Delta]
$$

Then f and \bar{f} are only γ^{Δ}-max labelings of $K_{1, s}$.
Next, we show an alternative and yet simple proof employing mathematical induction of Theorem 3 which is proposed by Bullington, Eroh and Winters (Bullington, Eroh \& Winters, 2010) in 2010 and by Fonseca, Khemmani and Zhang (Fonseca, Khemmani \& Zhang, 2015) in 2015. In order to do this, first, let $K_{r, s}$ be a complete bipartite graph with partite sets V_{r} and V_{s} of cardinalities r and s, respectively, where $V_{r}=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $V_{s}=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ and then we discuss γ^{Δ}-max labelings of $K_{r, s}$ as follows.
Theorem 6 Let f be a γ^{Δ}-labeling of a complete bipartite graph $K_{r, s}$ with

$$
f\left(V_{r}\right)=[0, r-1] \quad \text { and } \quad f\left(V_{s}\right)=[\Delta-(s-1), \Delta]
$$

where $\Delta \geq r$. Then f and \bar{f} are only two γ^{Δ}-max labelings of $K_{r, s}$.

Proof. We proceed by induction on $r+s$. The result is certainly true for $r+s=2$. Assume that $r+s \geq 3$ and the result holds for $K_{r^{\prime}, s^{\prime}}$ when $2 \leq r^{\prime}+s^{\prime}<r+s$. By Corollary 2, hence the theorem holds when $r=1$. Suppose that $r \geq 2$. Let f be a γ^{Δ}-max labeling of $K_{r, s}$ with $f\left(u_{1}\right)<f\left(u_{2}\right)<\cdots<f\left(u_{r}\right)$ and $f\left(v_{1}\right)<f\left(v_{2}\right)<\cdots<f\left(v_{s}\right)$.
Assume that $f\left(u_{1}\right)<f\left(v_{1}\right)$. By Corollary $1, f\left(u_{1}\right)=0$. Furthermore, for each $j \in\{1,2, \ldots, s\}$ it follows that $f\left(v_{j}\right) \leq$ $\Delta-(s-j)$. Let $K_{r-1, s}$ be a complete bipartite graph with vertex set $V\left(K_{r-1, s}\right)=V\left(K_{r, s}\right)-\left\{u_{1}\right\}$ and partite sets $V_{r-1}=V_{r}-\left\{u_{1}\right\}$ and V_{s}. Consequently, let f_{1} be a $\gamma^{\Delta-1}$-labeling of $K_{r-1, s}$ defined by

$$
f_{1}(u)=f(u)-1 \text { for each } u \in V\left(K_{r-1, s}\right) .
$$

Then

$$
\operatorname{val}\left(f_{1}\right)=\sum_{\substack{2 \leq i \leq r \\ 1 \leq j \leq s}} f_{1}^{\prime}\left(u_{i} v_{j}\right) \leq \operatorname{val}_{\max }^{\Delta-1}\left(K_{r-1, s}\right)
$$

Let g_{1} be a $\gamma^{\Delta-1}$-max labeling of $K_{r-1, s}$. Since $\Delta-1 \geq(r-1) s$, by induction hypothesis, we have

$$
g_{1}\left(V_{r-1}\right)=[0, r-2] \quad \text { and } \quad g_{1}\left(V_{s}\right)=[(\Delta-1)-(s-1),(\Delta-1)] .
$$

We can extend g_{1} to a γ^{Δ}-labeling g of $K_{r, s}$ defined by

$$
g(u)= \begin{cases}0 & \text { if } u=u_{1} \\ g_{1}(u)+1 & \text { otherwise }\end{cases}
$$

Since

$$
\begin{aligned}
\operatorname{val}_{\max }^{\Delta}\left(K_{r, s}\right) & =\operatorname{val}(f) \\
& =\sum_{\substack{2 \leq i \leq r \\
1 \leq j \leq s}} f^{\prime}\left(u_{i} v_{j}\right)+\sum_{j=1}^{s}\left|f\left(v_{j}\right)-f\left(u_{1}\right)\right| \\
& \leq \operatorname{val}\left(f_{1}\right)+\sum_{j=1}^{s}|\Delta-(s-j)-0| \\
& \leq \operatorname{val}_{\max }^{\Delta-1}\left(K_{r-1, s}\right)+\sum_{j=1}^{s}|\Delta-(s-j)-0| \\
& =\operatorname{val}\left(g_{1}\right)+\sum_{j=1}^{s}|\Delta-(s-j)-0| \\
& =\operatorname{val}(g) \\
& \leq \operatorname{val}_{\max }^{\Delta}\left(K_{r, s}\right),
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\sum_{j=1}^{s}\left|f\left(v_{j}\right)-f\left(u_{1}\right)\right|=\sum_{j=1}^{s}|\Delta-(s-j)-0| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{val}\left(f_{1}\right)=\operatorname{val}_{\max }^{\Delta-1}\left(K_{r-1, s}\right) \tag{2}
\end{equation*}
$$

From (1), we have

$$
f\left(V_{s}\right)=[\Delta-(s-1), \Delta] .
$$

From (2), we have $f_{1}\left(V_{r-1}\right)=[0, r-2]$, hence

$$
f\left(V_{r-1}\right)=[1, r-1]
$$

and we have $f\left(u_{1}\right)=0$. Therefore,

$$
f\left(V_{r}\right)=[0, r-1] \quad \text { and } \quad f\left(V_{s}\right)=[\Delta-(s-1), \Delta] .
$$

On the other hand, if $f\left(v_{1}\right)<f\left(u_{1}\right)$, then a similar argument to the one used shows that

$$
f\left(V_{s}\right)=[0, s-1] \quad \text { and } \quad f\left(V_{r}\right)=[\Delta-(r-1), \Delta] .
$$

The following result is the consequence of Theorem 6 when $\Delta=r s$.
Theorem 7 Let $K_{r, s}$ be a complete bipartite graph with partite sets V_{r} and V_{s} of cardinalities r and s, respectively, let f be a γ-labeling of $K_{r, s}$ with

$$
f\left(V_{r}\right)=[0, r-1] \text { and } f\left(V_{s}\right)=[r s-(s-1), r s]
$$

Then f and \bar{f} are only two γ-max labelings of $K_{r, s}$.

4. γ-max Labelings of Complete Graphs

The γ-max labelings of complete graphs K_{n} were characterized in (Fonseca, Khemmani \& Zhang, 2015). In this section, we present characterization of γ^{Δ}-max labelings and γ-max labeling of complete graphs K_{n}, by applying a similar fashion to the one used in the proof of Theorem 6.
Theorem 8 Let f be a γ^{Δ}-labeling of a complete graph K_{n} with

$$
f\left(V\left(K_{n}\right)\right)= \begin{cases}{\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\Delta-\left\lfloor\frac{n}{2}\right\rfloor+1, \Delta\right]} & \text { if } n \text { is even } \\ {\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\Delta-\left\lfloor\frac{n}{2}\right\rfloor+1, \Delta\right] \cup\{k\}} & \text { if } n \text { is odd }\end{cases}
$$

where $\Delta \geq\binom{ n}{2}$ and $k \in\left[\left\lfloor\frac{n}{2}\right\rfloor, \Delta-\left\lfloor\frac{n}{2}\right\rfloor\right]$. Then f and \bar{f} are only two γ^{Δ}-max labelings of K_{n}.
Proof. Let K_{n} be a complete graph with $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Assume that n is even. We use mathematical induction on n. When $n=2$, the result is obvious. Assume that $n \geq 4$ and the result holds for $K_{n^{\prime}}$ when n^{\prime} is even and $2 \leq n^{\prime}<n$. Let f be a γ^{Δ}-max labeling of K_{n} with $f\left(u_{1}\right)<f\left(u_{2}\right)<\cdots<f\left(u_{n}\right)$. By Corollary $1, f\left(u_{1}\right)=0$ and $f\left(u_{n}\right)=\Delta$. Let f_{1} be a $\gamma^{\Delta-2}$-labeling of a complete graph K_{n-2} with vertex set $V\left(K_{n-2}\right)=\left\{u_{2}, u_{3}, \ldots, u_{n-1}\right\}$ defined by

$$
f_{1}\left(u_{i}\right)=f\left(u_{i}\right)-1 \text { for each } 2 \leq i \leq n-1
$$

Let g_{1} be a $\gamma^{\Delta-2}$-max labeling of K_{n-2}. Since $\Delta-2 \geq\binom{ n-2}{2}$, by induction hypothesis, we have

$$
g_{1}\left(V\left(K_{n-2}\right)\right)=\left[0,\left\lfloor\frac{n-2}{2}\right\rfloor-1\right] \cup\left[(\Delta-2)-\left\lfloor\frac{n-2}{2}\right\rfloor+1,(\Delta-2)\right]
$$

We can extend g_{1} to a γ^{Δ}-labeling g of K_{n} defined by

$$
g(u)= \begin{cases}0 & \text { if } u=u_{1} \\ \Delta & \text { if } u=u_{n} \\ g_{1}(u)+1 & \text { if } u \neq u_{1}, u_{n}\end{cases}
$$

Since

$$
\begin{aligned}
\operatorname{val}_{\max }^{\Delta}\left(K_{n}\right) & =\operatorname{val}(f) \\
& =\operatorname{val}\left(f_{1}\right)+\sum_{i=2}^{n-1}\left(f\left(u_{i}\right)-f\left(u_{1}\right)\right)+\sum_{i=2}^{n-1}\left(f\left(u_{n}\right)-f\left(u_{i}\right)\right)+\left(f\left(u_{n}\right)-f\left(u_{1}\right)\right) \\
& \leq \operatorname{val}_{\max }^{\Delta-2}\left(K_{n-2}\right)+\sum_{i=2}^{n-1}(\Delta-0)+(\Delta-0) \\
& =\operatorname{val}\left(g_{1}\right)+\sum_{i=2}^{n-1}\left(g\left(u_{i}\right)-g\left(u_{1}\right)\right)+\sum_{i=2}^{n-1}\left(g\left(u_{n}\right)-g\left(u_{i}\right)\right)+\left(g\left(u_{n}\right)-g\left(u_{1}\right)\right) \\
& =\operatorname{val}(g) \\
& \leq \operatorname{val}_{\max }^{\Delta}\left(K_{n}\right)
\end{aligned}
$$

it follows that

$$
\operatorname{val}\left(f_{1}\right)=\operatorname{val}_{\max }^{\Delta-2}\left(K_{n-2}\right)
$$

Thus,

$$
f_{1}\left(V\left(K_{n-2}\right)\right)=\left[0,\left\lfloor\frac{n-2}{2}\right\rfloor-1\right] \cup\left[(\Delta-2)-\left\lfloor\frac{n-2}{2}\right\rfloor+1,(\Delta-2)\right]
$$

Hence

$$
f\left(V\left(K_{n-2}\right)\right)=\left[1,\left\lfloor\frac{n-2}{2}\right\rfloor\right] \cup\left[(\Delta-2)-\left\lfloor\frac{n-2}{2}\right\rfloor+2,(\Delta-1)\right]
$$

and we have $f\left(u_{1}\right)=0, f\left(u_{n}\right)=\Delta$. Therefore,

$$
f\left(V\left(K_{n}\right)\right)=\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\Delta-\left\lfloor\frac{n}{2}\right\rfloor+1, \Delta\right] .
$$

On the other hand, if n is odd, then by a similar argument, this shows that

$$
f\left(V\left(K_{n}\right)\right)=\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\Delta-\left\lfloor\frac{n}{2}\right\rfloor+1, \Delta\right] \cup\{k\}
$$

where $k \in\left[\left\lfloor\frac{n}{2}\right\rfloor, \Delta-\left\lfloor\frac{n}{2}\right\rfloor\right]$.
The following result is the consequence of Theorem 8 when $\Delta=\binom{n}{2}$.
Theorem 9 Let f be a γ-labeling of a complete graph K_{n} with

$$
f\left(V\left(K_{n}\right)\right)= \begin{cases}{\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor+1,\binom{n}{2}\right]} & \text { if } n \text { is even } \\ {\left[0,\left\lfloor\frac{n}{2}\right\rfloor-1\right] \cup\left[\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor+1,\binom{n}{2}\right] \cup\{k\}} & \\ \text { if } n \text { is odd }\end{cases}
$$

where $k \in\left[\left\lfloor\frac{n}{2}\right\rfloor,\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right]$. Then f and \bar{f} are only two γ-max labelings of K_{n}.

5. Open Question

The characterization of γ-max labelings of $K_{r, s}$ and K_{n} were determined. The main open question is to characterize γ-min labelings of those graphs.

References

Bullington, G. D., Eroh, L. L., \& Winters, S. J. (2010). γ-labelings of complete bipartite graphs. Discuss. Math. Graph Theory, 30, 45-54. https://doi.org/10.7151/dmgt. 1475
Chartrand, G., Erwin, D., VanderJagt, D. W., \& Zhang, P. (2005). γ-labelings of graphs. Bull. Inst. Combin. Appl, 44, 51-68.
Chartrand, G., Erwin, D., VanderJagt, D. W., \& Zhang, P. (2005). On γ-labelings of trees. Discuss. Math. Graph Theory, 25(3), 363-383. https://doi.org/10.7151/dmgt. 1289
Chartrand, G., \& Zhang, P. (2005). Introduction to Graph Theory. The Walter Rudin student series in advanced mathematics, McGraw-Hill Higher Education, Boston.
Crosse, L., Okamoto, F., Saenpholphat, V., \& Zhang, P. (2007). On γ-labelings of oriented graphs. Math. Bohem, 132, 185-203.
Fonseca, C. M., Saenpholphat, V., \& Zhang, P. (2013). Extremal values for a γ-labeling of a cycle with a triangle. Utilitas Math, 92, 167-185.
Fonseca, C. M., Khemmani, V., \& Zhang, P. (2015). On γ-labelings of graphs. Utilitas Math, 98, 33-42.
Fonseca, C. M., Saenpholphat, V., \& Zhang, P. (2011). The γ-spectrum of a graph. Ars Combin, 101, 109-127.
Gallian, J. A. (2009). A dynamic survey of graph labeling. Electron. J. Combin, 16(6), 1-219.
Golomb, S. W. (1972). How to number a graph, In: Graph Theory and Computing, 23-37. Academic Press, New York.
Hegde, S. M. (2000). On (k,d)-graceful graphs. J. Combin. Inform. System Sci, 25, 255-265.
Khemmani, V., \& Saduakdee, S. (2015). The γ-spectrum of cycle with one chord. International Journal of Pure and Applied Mathematics, 105(4), 835-852. https://doi.org/10.12732/ijpam.v105i4.22
Rosa, A. (1966). On certain valuations of the vertices of a graph, In: Theory of Graphs (Internat. Sympos., Rome, 349-355, Gordon and Breach, New York, Dunod, Paris.
Saduakdee, S., \& Khemmani, V. (2016). γ-labeling of a cycle with one chord. Discrete and Computational Geometry and Graphs, Lecture Notes in Computer Science, 9943, 155-166. https://doi.org/10.1007/978-3-319-48532-4_14

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

