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2 Université Ouaga II. BP: 417 Ouagadougou 12, Burkina Faso
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Abstract

Variogram is a geostatistical tool which describes how the spatial continuity changes with a given separating distance
between pairs of stations. In this paper, we study the dependence structure within a same class of bivariate spatialized
archimedean copulas. Specifically, we point out properties of the gaussian variogram and the exponential one. A new
measure of similarity of two copulas is computed particularly between the spatial independent copula and full dependence
one.
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1. Introduction

The main objective of geostatistical analysis is the characterization of spatial phenomenos that are incompletely known.
Different definitions of geostatistic have been proposed by spatial statistics researchers. Thereby, geostatistics can be
defined as a branch of statistics focusing on spatial or spatio-temporal datasets. While G. Matheron (Matheron, G.,
1969)found in geostatistics the application of probabilistic methods to regionalized variables, Issaks E. H. et all (Helena,
F., 2012) rather defined them as a way of describing phenomenons and provides adaptation of classical regression technics
to take advantages of this continuity. Geostatistics covers mainly three subdomains of statistical studies: analysis of
variogram, krieging and stochastic simulation. All of these subdomains use variogram models, so that variogram lies at
the earth of every geostatistical activity.

The variogram function describes the degree of spatial dependence of a given spatial random field or stochastic process
{Z(x), x ∈ D} . This tool plays with the madogram a key role in spatial modelling, estimations and inference properties
given data constraints. The simple form for madogram is for all h ∈ Rd

MF(h) =
1
2

E(|F[Z(x + h)] − F[Z(x)]|), x ∈ Rd (1)

where h is the average value of the separating distance between the two points (Shepard, R. N., 1987).

Moreover, the concept of F-madogram has been introduced by Cooley et al. (Shepard, R. N., 1987) to generalized is the
λ-madogram associated to the distribution underlying the stochastic process {Z (x)} .

γF (h) = 1
2 E

{∣∣∣[F (Y (x))]λ − [F (Y (x + h))]1−λ∣∣∣} ; λ ∈ ]0, 1[ . (2)

In the same way, combining results of spatial statistics and multivariate dependence tools, Barro D. (Diakarya, B., 2012)
used spatial extreme values copulas to characterize the λ−madogram of process distribution under a distortional assump-
tion. Suppose H is a bivariate distribution satisfying the key assumption. If its associated multivariate EV distribution
marginal are unit-Fréchet distributed, then, the λ-madogram is given by

γλ (h) =
1

Dh (λ, 1 − λ) + λ
− c (λ) where c (λ) =

2λ (1 − λ) + 1
2 (λ + 1) (2 − λ)

; (3)

where Dh is a conditional spatial measure convex defined on the unit simplex of R2. In spatial prevision in particular, the
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current problem is that one needs to replace empirical model by an theorical admissible variogram model. These models
are characterized by a nugget, sill and range. In practice, for a same data, different geostatisticians can obtains different
paramaters because of the their appreciations.

The main contribution of this study is to study the dependence structure between two models of variograms within a same
class. A new measure of similarity of two copulas are computed in particular between the spatial independent copula and
full dependence one.

2. Prelimaries

In this section we collect important definitions and properties on bivariate copulas, variogram tail dependence coefficient.
These tools turn out to be necessary for our approach. We refer the readers to standard references for copulas analysis as
Joe (1997) which provide detailed and readable introductions to copulas.

2.1 Elements of Copulas Analysis

Introduced in spatial analysis by authors as Blanchet(Shepard, R. N., 1987)and Kazianka (Kazianka, H. 2009)copulas
functions constitutes the fundamental tool in dependence modeling in statistics.

Definition 1 (Diakarya, B., 2012) Let X = (X1, ..., Xn) be a random vector with multivariate continuous distribution
function (c.d.f.) H and c.d.f marginal H1, ...,Hn. The copula of X (of the c.d.f. H respectively) is the multivariate c.d.f. C
of the random vector U = [H1(X1), ...,Hn(Xn)]. Due to the continuity of {Hi, 1 ≤ i ≤ n} , each component of U is standard
uniformly distributed, i.e., Ui v U(0, 1) for i = 1, ..., n.

Particularly, every n-copula must satisfy the n-increasing property, that means that, for any rectangle B = [a, b]n ⊆ Rn,
the B-volume CB of C is positive, i.e

CB =

∫
B

dC (u) =
2∑

i1=1

...

2∑
in=1

(−1)i1+...+in C
(
u1i1 , ..., u1in

) ≥ 0. (4)

In a bivariate study, the relation (2.1) is equivalent to the rectangular inequality, that is, for all (u1, v1); (u2, v2) ∈ [0, 1]2

with u1 ≤ v1 and u2 ≤ v2,
C (v1, v2) −C (u1, v2) −C (v1, u2) +C (u1, u2) ≥ 0.

Two particular copulas are used in multivariate dependence modelling: the independent or product copula Π, defined for
all by:

Π (u1, ..., un) = u1 × ... × un for (u1, ..., un) ∈ [0, 1]n

and the complete dependence one, given for a parameter θ and in bivariye case by Cθ

Cθ (u1, ..., un) =
{

M (u, v) − θ if (u, v) ∈ [θ, 1 − θ]2

W (u, v) otherwhere

where M and W are the so called bounds of Fréchet.

Particularly, an n-dimensional copula C is an Archimedean copula, if there exists a continuous and strictly decreasing
convex function ϕ, the generator of C, in the class of completely monotone functions{

ϕ : [0,+∞] −→ [0, 1]; ϕ (0) = 1; ϕ (∞) = 0; (−1)k ∂
kϕ−1 (t)
∂tk ≥ 0; k ∈ N

}
, (5)

with generalized inverse ϕ−1 (y) = inf {t ∈ [0, 1] , ϕ (t) ≤ y} such that,

C(u1, ..., un) = ϕ−1 [
ϕ(u1) + ... + ϕ(un)

]
; for all (u1, ..., un) ∈ [0, 1]n . (6)

2.2 Setting of Variogram

The variogram is a measure of dissimilarity. Let S =
{
si ∈ Rd, 1 ≤ i ≤ n, d = 1, 2, 3

}
be the set of n spatial sites. In classic

statistic the computation of the parameters is relatively possible because the repetition of independent data. However in
spatial statistics one can study the most of the time a single observation in each site. Therefore, in isotropical erea one
groups these sites according to their separed distance h and we compute the parameters of interest. In the practice, the
paramaters depend on chosen step (espace unity).
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Let Y (s) be the regionalized variable, then the empirical version of variogram is computed as

γ̃ (h) =
1

2♯N (h)

∑
N(h)

[Y (s + h) − Y (s)]2

where N (h) is the set of pair sites {s + h, s} separated by a magnitude lag h and ♯N (h) its cardinal.

Our key assumption may be assumed and strenghtened by the intrinsec hypothesisE [Y (s) − Y (s + h)] = 0

0.5E
{
[Y (s) − Y (s + h)]2

}
= γ (h)

(7)

and the continuous in quadratic which mean that

lim
h→0

E
(
[Y (s + h) − Y (s)]2

)
= 0. (8)

Next, we denoteH the set of spatial fields that respect these previous conditions.

3. Main Results

In this paper the main objective is to describe the strenght of the dependence between two variogram functions in the same
erea.

3.1 Concept of Class of Variograms

In this subsection, we study the dependence structure in two main classes which are exponential class and gaussian
one. The spatial structure has about the intrinsic hypothesis. Then, any admissible variogram functions γ is supposed
continuous at the origin, has a sill ϖ (asymptotically or not) and concave function.

Definition 2 Two variogram functions γ1 and γ2 are said to be of the same type if and only if, for all h ∈ [0,+∞] there
exists two real quantities β > 0, α ∈ R such that

γ1 (h) = βγ2 (αh) . (9)

Moreover, the set of variograms of the same type is called a class of variograms.

Endeed, it is easy to prove that the relation(9) is an equivalent relation. Each of these classes is represented by its
normalized version provided respectively by equation (10) for the exponential class

γE (h) = 1 − exp (−h/a) , h ≥ 0, a > 0 (10)

and by (11) for gaussian one.

γG (h) =

1 − exp
(
−h2/a

)
, 0 ≤ h ≤ a

1, h ≥ a
. (11)

The main objective consists in describing the strenght dependence between two variogram functions in the same region
via archimedean copulas, so that, we need to find the generator of each class.

Proposition 3 Let γ be an normalized exponential or gaussian variogram, then function F defined one R by

F (x) =

γ (x) , 0 ≤ x

0 otherwise
(12)

is a distribution function.

proof. Let γ be an exponential or gaussian variogram normalized. Then, on [0,+∞[, F is continuous and increasing
function because γ satisfies these properties. Morever,

lim
x→0

F (x) = γ (0) = F (0) = 0, also lim
x→+∞

F (x) = lim
x→+∞

γ (x) = 1

and lim
x→−∞

F (x) = 0. So, it follows that F is a distribution function.
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For a simplicity reason, let’s use the standardized version of each class of variogram in the main assumption. There is no
loss of generality in this case, this standardization does not modifie the strength spatial dependence structure. It allows to
reduce all scales to one without affect the spatial dependence structure. Another advantage of this standardization is the
follolling proposition.

Proposition 4 Let γ be the standardized variogram with the main asumption, their exist δ ∈ R+ ∪ {+∞} such that the
function F̌s defined from R to R by

Fs (x) =


0, x ≤ 0

γs (x) , 0 ≤ x < δ

1, x ≥ δ

(13)

is a distribution function.

Proof. In the main asumption, if the spatial structure has a range then δ is 1 else +∞. Suppose that the spatial structure
has a range, then F becomes

F (x) =


0, x ≤ 0

γ (x) , 0 ≤ x < 1

1, x ≥ 1

.

Since γ is a continuous and increasing function and

lim
x→0

F (x) = γ (0) = F (0) = 0 andlim
x→1

F (x) = γ (1) = F (1) = 1

then F is continuous and increasing function. Morever, it follows that

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

Therefore F is a distribution function as asserted. Similarly, the case δ = +∞ has been proved.

3.2 Spatial Archimedean Copulas of a Class of Variograms

Let Xs =
{(

Xs,1; ...; Xs,n
)
, s ∈ S

}
be a continuous stochastic random vector observed at a finite number of locations S m =

{s1, ..., sm} ; si ∈ R2. Barro et all (2016) have introdued the defintio of spatialized generator ϕs of Archimedean copulas as

Cϕs (u
š
1; ...; uš

n) = ϕ−1
s

[
ϕs(uš

1) + ... + ϕs(uš
n)
]
. (14)

for a given s ∈ S and for all
(
uš

1; ...; uš
n

)
∈ [0, 1]n .

Spatial copulas are used for generating joint distributions with a variety of spatial dependence structure. This section deals
with how to find a spatial copula knowing the variogram function of field. Let ϕ be a continuous and strictly decreasing
function from [0, 1] to [0,+∞] such that ϕ (1) = 0. The pseudo-inverse of ϕ is the function ϕ[−1] is given as

ϕ (h) =

ϕ
−1 (h) , 0 ≤ h ≤ ϕ (0)

0, ϕ (0) ≤ h
. (15)

Proposition 5 Let γ be an admissible standardized variogram function and Fγ its associated distribution function. The
bivariate distribution function Cγ defined from [0, 1]2 to [0, 1] as

Cγ (u, v) = max
[
φ[−1]
γ

(
φγ (u) + φγ (v)

)
, 0

]
(16)

is a spatial Archimedean copula, where φγ is the Laplace transform of Fγ defined as

φγ (t) =


∫ 1

0 exp (wt) dFγ (w) , i f δ < +∞∫ +∞
0 exp (wt) dFγ (w) , else

.

Proof. Previously we prove that Fγ is a distribution function. And Nelson proved that, Laplace transform of any distribu-
tion function is a Archimedean copula generator. Consequently φγ is a Archimedean generator.
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3.2.1 Application

Applying the previous proposition, we compute the generators of Archimedean copulas associated to gaussian variogram
[see Appendix 1] and associated to gaussian variogram [see Appendix 2]. The results are summarized in the following
table.

This table put out that the dependence structure in gaussian class and exponential class are respectively descibed by the
inferior bound of Fréchet-Hoeffding and Clayton copula with parameter one.

Table 1. Spatial Archimedean Copulas with Generators in exponential and gaussian class.

Classes of Fγ (h),a > 0 φγ (w) Cγ (u, v)
Variograms

Gaussian

1 − exp
(
−h2/a

)
, h ≥ 0

0 h < 0
1 −
√
πw max (u + v − 1, 0)

Exponential

1 − exp (−h/a) , h ≥ 0

0 h < 0
(aw + 1)−1

[
u−1 + v−1 − 1

]−1

3.2.2 Interpretation

Let CI and CD denote respectively the dependence and the independent copulas. On one hand, if the two variograms
in a class (gaussian or exponential class) are totally independent, then the resulting copula will be independent (i.e
CI (u, v) = uv). That means also that using one variogram rather than another could cause an important deviation of
information. On other hand, if the two variograms of gaussian (or exponential) class was totally dependent, the resulting
copula is rather dependent one (i.e CD (u, v) = min (u, v)). That situation would mean that using one variogram rather than
another could not affect deeply the informations. The dependence structure of our interest classes are neither that of CI

nor CD. Therefore, we need to know the proximity degree between our particular classes from each of CI nor CD.

Visually, by the bands of levels lines forms, the figures 2.4 and 2.5 in appendix 3, show that the associated copula
of gaussian variogram class is more similar with the independent copula than the dependente copula. But this visual
diagnotic does not allow to see the similarity of associated copula of exponential variogram with neither. We need to
add another method for measuring the similarity between the resulting copulas and the reference copulas. That one is
discussed in the following subsection.

3.3 Similarity between the Resulting Copulas and Reference Copulas

In this subsection we study the similarity between two copulas by their matrix. Many measures of similarity can be found
in literature. Following Shepard in (Issaks, E. H., 1989), we defined the similarity between two copulas. In the following,
let denote Ñ and M̃ respectively the set of the n and the m first naturals.

Proposition 6 Let A =
{(

ai j

)
; i ∈ Ñ, j ∈ M̃

}
and B =

{(
bi j

)
; i ∈ Ñ, j ∈ M̃

}
be two matrix of the set of matrix with n rows

et m colonsMn,m (R) defined on R. The function s defined from
[Mn,m (R)

]2 to [0, 1] as

s (A, B) = exp
(
− max

i∈Ñ, j∈M̃

∣∣∣ai j − bi j
∣∣∣) .

is similarity measure.

Proof. Since A =
{(

ai j

)
; i ∈ Ñ, j ∈ M̃

}
and B =

{(
bi j

)
; i ∈ Ñ, j ∈ M̃

}
are two elements of Mn,m (R) , valid similarity

measure obeys to four axioms [see 11].

First
s (A, B) = 1

which is equivalent to writte that

exp
(
− max

i∈N, i∈M

∣∣∣ai j − bi j
∣∣∣) = 1

or, in the other words
ai j = bi j,with i ∈ N and i ∈ M.

In particular that proves that s obeys to the equal of self-similarity.

121



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 1; 2017

Moreover, since
∣∣∣ai j − bi j

∣∣∣ = ∣∣∣bi j − ai j
∣∣∣, then s (A, B) = s (B, A) , that is, the measure s is symmetric.

And then A , B means that, there exists an pair (i, j) ∈ Ñ × M̃ such as ai j , bi j.

Then,

exp
(
− max

i∈Ñ, j∈M̃

∣∣∣ai j − bi j
∣∣∣) < 1.

In other word, for all A , B we are s (A, B) < s (A, A).

Then s respect the minimality condition. The last criterion is that of triangle inequality.

Let C =
(
ci j

)
i ∈ Ñ, j ∈ M̃ be a third ofMn,m. For all pair (i, j) ∈ i ∈ Ñ × M̃,∣∣∣ai j − bi j

∣∣∣ ≤ ∣∣∣ai j − ci j
∣∣∣ + ∣∣∣ci j − bi j

∣∣∣⇐⇒ s (B, A) ≥ s (A,C) .s (C, B)

Therefore s such is a measure of similarity. Next we use it to study the similarity between the matrix engender by two
copulas. For simplicity, we will say that two matrix A et B inMn,m are simular when s (A, B) = 1.

Definition 7 Let C1 and C2 be two copulas defined from [0, 1]2 to [0, 1]. These copulas will say simular if and only if
for all pair (n,m) ∈ N∗ × N∗ their respective engendered matrix M1 =

(
m1

i j

)
with (i, j) ∈ Ñ × M̃ and M2 =

(
m2

i j

)
with

(i, j) ∈ Ñ × M̃ such as m1
i j = C1

(
ui, v j

)
and m2

i j = C2

(
ui, v j

)
for all 0 ≤ ui, v j ≤ 1, are simular.

Let remark that the couple
(
ui, v j

)
with 0 ≤ ui, v j ≤ 1 are the positions of the grid points discretization of [0, 1]2 . Denote

CγE and CγG the copulas associated to exponential variogram and gaussian variogram respectively. Likely, CI and CD are
respectively the independent copula and dependent copula.

Proposition 8 Two copulas C1 and C2 are simular if and only if for all 0 ≤ u, v ≤ 1, C1 (u, v) and C2 (u, v) are simular.

Proof. Deduce from the simularity of two copula definition.

As far as concerned the simularity between CI , CD, CγE and CγG , we are the following proposition.

Proposition 9 For all 0 ≤ u, v ≤ 1, the associated copula satisfies to the following properties.

i) s
(
CγG (u, v) ,CD (u, v)

)
≤ s

(
CγE (u, v) ,CD (u, v)

)
.

ii) s
(
CγG (u, v) ,CI (u, v)

)
≤ s

(
CγE (u, v) ,CI (u, v)

)
.

Proof. To prove proposition 9 consists in proving that, for all 0 ≤ u, v ≤ 1,

CγG (u, v) ≤ CγE (u, v) ≤ CI (u, v) ≤ CD (u, v) .

In fact, CγG et CD are Fréchet-Hoeffding bound, they are considered as universal bounds for copulas. Then for any copula,
particulary CγE and CI , we are

CγG (u, v) ≤ CγE (u, v) ≤ CD (u, v)

and
CγG (u, v) ≤ CI (u, v) ≤ CD (u, v) , 0 ≤ u, v ≤ 1.

Therefore, it is enough to compare CγE (u, v) and CI (u, v) , for all 0 ≤ u, v ≤ 1.

When at less one of u and v is zero, we are

CγG (0, v) = 0 = CγE (0, v) and CγG (u, 0) = 0 = CγE (u, v) .

For 0 < u, v ≤ 1, we obtain
CγE (u, v) = uv/(v + u − uv).

Since we have
v + u − uv − 1 = (1 − v) (1 − u) ,

then, v + u − uv ≥ 1. Therefore
CγE (u, v) ≤ CI (u, v)
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That result shows that the dependence structure in the both classes is more similar with that of described by the indepen-
dent copula.

3.4 Simulation

The theorical results are illustrated by a similation. With statistic sofware R (Shepard, R. N. 1987), we plot the similarities

s
(
CγH (u, v) ,CK (u, v)

)
with 0 ≤ u, v ≤ 1 and H ∈ {G, E}

and K ∈ {I,D} . Indeed, we discretized regularly [0, 1] in n, 1 ≤ n ≤ 1000 nodes.

For each value of n, we ploted

s
(
CγH (u, v) ,CK (u, v) |n

)
, 0 ≤ u, v ≤ 1,H ∈ {G, E} and K ∈ {I,D} .

Table 2. Similarities (S. Mean) : s
(
CγG , CI

)
(G.I), s

(
CγG ,CD

)
(G.D), s

(
CγE , CI

)
(E.I), s

(
CγE ,CI

)
(E.I) and their

standard deviations (St. D.) respectively.

G.I. G.D. E.I. E.D.

S. Mean 0.7792889 0.6082728 0.9139695 0.8426776

St.D. 0.009914057 0.018192645 0.003864092 0.007051282
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3.5 Tail Dependence Coefficient of in a Class of Variograms

Like many dependence concepts, the tail dependence coefficient describes how large (or small) values of random variables
appear with large (or small) value of an other. Here, this coefficient measures the strength of link between normalized
variograms in the upper-right quadrant and in the lower-left quadrant of [0, 1]2 . Let Cγ be the Archimedean copula
associated to variogram function γ which is either γG or γE .

Corollary 10 Let Cγ be an Archimedean copula with generator φ[−1]
γ associated to γ. Then

λ
γ
U = 2 − lim

u→1−

1 − φγ
(
2φ[−1]

γ (u)
)

1 − u
= 2 − lim

h→0+

1 − φγ (2h)
1 − φγ (h)

(17)

and

λ
γ
L = lim

u→0+

φγ
(
2φ[−1]

γ (u)
)

u
= lim

h→+∞

φγ (2h)
φγ (h)

(18)

Proof. Nelson established the link between the upper tail dependence coefficient λU and lower tail dependence coefficient
with the copula Cγ, as

λU = 2 − lim
u→1−

1 −Cγ (u, u)
1 − u

and λL = lim
u→0+

Cγ (u, u)
u

.

The first equalities of equation (17) and (18) are shown by Nelson ( Nelson, R. B., 1999). Concerning that last one change
the variables as when u→ 1− then h = φ[−1]

γ (u)→ 0+(remaind that φγ (0) = 1)

The results of this section confirm partially those of the previous. In fact, the upper tails dependence coefficients are zero
in both of cases which means that there is an asymptotical independence.

4. Conclusion and Discussion

Our study shows that the dependence structure in the class of gaussian variogram and exponential variogram class is more
near with that of independent copula than dependent copula. Therefore, as in the theorical gaussian variogram class, two
theorical exponential variograms with a too little difference can engender too important disparity in the interpretation
of the spatial prediction. A new measure of similarity of two copulas are computed in particular between the spatial
independent copula and full dependence one.
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ETHZ, CH-8092 Zürich, Switzerl.

Genest, C. (1986). Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données. The
canadian Journal of Statistics, 14(2), 145-159.

Helena, F. (2012) Generalized madogram and pair wise dependence of maxima over two disjoint region of random field,
Arxive prepint, arXiv:1104.2637.

Issaks, E. H. (1989), An introduction to Applied Geostatistics, Oxford university Press.

Kazianka, H. (2009). Spatial modeling & interpolation using copulas. PhD thesis, University of Klagenfurt. Ribatet
(2011)- Statistical Modelling of Spatial Extremes A. C. Davison, S. A. Padoan and M. Ribatet October 3, 2011
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Appendice

Appendice 1: Generator of Spatial Archimedean Copula of Gaussian Variogram

The normalized Gaussian variogram function, is written as

γ (h) = 1 − exp
(
−h2/a

)
, h ∈ R+, a > 0.

Its associated distribution function is defined as

F (h) =

1 − exp
(
−h2/a

)
, h ≥ 0

0, otherwise
.

Therefore, the coresponding spatial Archimedean copula has a generator φ defined as

φ (w) =

∫ +∞

0
exp (−wt) dF (t) ,

=
exp

(
w2/4

)
a

∫ +∞

0
2t exp

[
− (t/a + w/2)2

]
dt.

After variable changing x = t/a + w/2, we get

φ (w) = exp
(
w2/4

) [
exp

(
−w2/4

)
− w

∫ +∞

w/2
exp

(
−x2

)
dx

]
. (19)

Let I be

I (w) =

∫ +∞

w/2
exp

(
−x2

)
dx =⇒ I2 (w) =

[∫ +∞

w/2
exp

(
−y2

)
dy

] [∫ +∞

w/2
exp

(
−x2

)
dx

]
,

I2 (w) =

∫ ∫ +∞

w/2
exp

(
−x2 − y2

)
dxdy.

After a polar changing, we obtain
I (w) =

√
π exp

(
−w2/4

)
. (20)

Putting result (20) in the equation (19), we find the generator φ (w) = 1 −
√
πw.

Appendice 2: Generator of Spatial Archimedean Copula of Exponential Variogram

The normalized Exponential variogram function, is written as

γ (h) = 1 − exp (−h/a) , h ∈ R+, a > 0

Then its associated distribution function is as

G (h) =


1 − exp (−h/a) , h ≥ 0

0, otherwise
.

And then, the coresponding spatial archimedean copula has a generator ψ defined as

125



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 1; 2017

ψ (w) =
1
a

∫ +∞

0
exp [− (w + 1/a) t] dt

= (aw + 1)−1

Appendice 3: The Figures

In the Figure 2.4 and Figure 2.5, the levels lines are described colored bands. The colors goes from blue (mean level zero)
two black (mean level one).

Figure 1. Images contour of: the Gaussian variogram class associated copula and Exponential variogram class associated
copula

Figure 2. Images contour of Independent copula (left) and Dependent copula (rigth).
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