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Abstract

The current paper investigate the persistence of positive solutions of KPP type evolution equations with random/nonlocal
dispersal in locally spatially inhomogeneous habitat. By the constructions of super/sub solutions and comparison princi-
ple, we prove that such an equation has a unique globally stable positive stationary solution.
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1. Introduction

The current paper is concerned with persistence of species in locally spatially variational environments or habitat,

ut(t, x) = Au(t, x) + u(t, x) f (x, u(t, x)), x ∈ RN (1.1)

where (Au)(t, x) = ν1∆u + ν2
[ ∫

RN κ(y − x)u(t, y)dy − u(t, x)
]
, ν1, ν2 ≥ 0 and ν1 + ν2 > 0.

If ν2 = 0, then (1.1) is the classical reaction diffusion equation, so called random dispersal equation, (without loss of
generality, let ν1 = 1)

ut(t, x) = ∆u(t, x) + u(t, x) f (x, u(t, x)), x ∈ RN (1.2)

which is broadly used to model the population dynamics of many species in unbounded environments, where u(t, x) is the
population density of the species at time t and location x, ∆u characterizes the internal interaction of the organisms, and
f (x, u) represents the growth rate of the population, which satisfies that f (x, u) < 0 for u ≫ 1 and ∂u f (x, u) < 0 for u ≥ 0
(see Aronson & Weinberger, 1957; Aronson & Weinberger, 1978; Cantrell & Cosner, 2003; Fife, 1979; Fife & Peletier,
1977; Fisher, 1937; Kolmogorov, Petrowsky, & Poscunov, 1937; Murray, 1989; Shigesada & Kawasaki, 1997; Skellam,
1951; Weinberger, 1982; Weinberger, 2002; Zhao, 2003; etc.).

If ν1 = 0, then (1.1) is so called nonlocal dispersal equation, (without loss of generality, let ν2 = 1)

ut(t, x) =
∫
RN
κ(y − x)u(t, y)dy − u(t, x) + u(t, x) f (x, u(t, x)), x ∈ RN , (1.3)

where κ(·) is a smooth convolution kernel supported on a ball centered at the origin (that is, there is a δ0 > 0 such that
κ(z) > 0 if ∥z∥ < δ0, κ(z) = 0 if ∥z∥ ≥ δ0, where ∥ · ∥ denotes the norm in RN and δ0 represents the nonlocal dispersal
distance),

∫
RN κ(z)dz = 1, and f (·, ·) is of the same property as f in (1.2) (see Bates & Zhao, 2007; Chasseigne, Chaves, &

Rossi, 2006; Cortazar, Coville, Elgueta, & Martinez, 2007; Cousens, Dytham, & Law, 2008; Fife, 2003; Grinfeld, Hines,
Hutson, Mischaikow, & Vickers, 2005; Hutson, Martinez, Mischaikow & Vickers, 2003; Lee, Hoopes, Diehl, Gilliland,
Huxel, Leaver, McCain, Umbanhowar, & Mogilner, 2001; Levin, Muller-Landau, Nathan, & Chave, 2003; etc.).

When using (1.2) to model the population dynamics of a species, it is assumed that the underlying environment is con-
tinuous and the dispersal of cells or organisms are based on the hypothesis that the movement of the dispersing species
can be described as a random walk in which there is no correlation between steps. However, dispersal of large organisms
often involves mechanisms that may introduce correlations in movements. To model the population dynamics of such
species in the case that the underlying environment is continuous, the nonlocal dispersal equation (1.3) is often used. This
paper propose to study a mixed dispersal strategy, that is, a hybrid of random and non-local dispersal. We assume that
a fraction of individuals in the population adopt random dispersal, while the rest fraction assumes non-local dispersal.
Some research has been done on the hybrid dispersal in the spatially periodic habitat (see Kao, Lou & Shen, 2010; Kao,
Lou & Shen, 2012; and Zhang, 2013). Our main goal is to study how the hybrid dispersal affects the persistence of a
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single species and how the hybrid dispersal strategies will evolve in spatially locally inhomogeneous environment (see H1
and H2).

Since the seminal works by Fisher (Fisher, 1937) and Kolmogorov, Petrowsky, Piscunov (Kolmogorov, Petrowsky, &
Poscunov, 1937) on the following special case of (1.2),

∂

∂t
u(t, x) =

∂2

∂x2 u(t, x) + u(t, x)(1 − u(t, x)), x ∈ R. (1.4)

A great deal of research has been carried out toward the spatial spreading dynamics of (1.2) and (1.3) with f (·, ·) being
independent of the space variable or periodic in the space variable, which reflects the spatial periodicity of the media.
We refer to (Aronson & Weinberger, 1957; Aronson & Weinberger, 1978; Berestycki, Hamel, & Nadirashvili, 2010;
Kametaka, 1976; Liang & Zhao, 2007; Liang, Yi, & Zhao, 2006; Sattinger, 1976; Uchiyama, 1978; Weinberger, 1982;
etc). for the study of (1.2) in the case that f (x, u) is independent of x and refer to (Berestycki, Hamel, & Nadirashvili,
2005; Berestycki, Hamel, & Roques, 2005; Freidlin & Gärtner, 1979; Hamel, 2008; Hudson & Zinner, 1995; Nadin,
2009; Nolen, Rudd, & Xin, 2005; Nolen & Xin, 2005; Weinberger, 2002; etc). for the study of (1.2) in the case that
f (x, u) is periodic in x; refer to (Coville & Dupaigne, 2005; Coville, Dávila, & Martı́nez, 2008; Li, Sun, & Wang, 2010;
etc). for the study of (1.3) in the case that f (x, u) is independent of x and refer to (Hetzer, Shen, & Zhang, 2013; Shen &
Zhang, 2012; etc.) for the study of (1.3) in the case that f (x, u) is periodic in x and refer to (Berestycki & Nadin, 2016;
Berestycki, Jin, & Silvestre, 2016; Kong & Shen, 2011; Kong & Shen, 2014; Nolen, Roquejoffre, & Ryzhik; Shen, 2011;
etc). for the study of (1.2) and/or (1.3) in the case that f (t, x, u) is temporally and/or spatially heterogeneous.

For example, consider (1.2) and assume that f (x + piei, u) = f (x, u) for i = 1, 2, · · · ,N, where pi (i = 1, 2, · · · ,N) are
positive constants and

ei = (δi1, δi2, · · · , δiN), δi j = 1 if i = j and 0 if i , j.
If the principal eigenvalue of the following eigenvalue problem associated to the linearized equation of (1.2) at u = 0,∆u(x) + f (x, 0)u(x) = λu(x), x ∈ RN

u(x + piei) = u(x), x ∈ RN ,
(1.5)

is positive, then (1.2) has a unique positive stationary solution u∗(·) with u∗(· + piei) = u∗(·).
In this paper, we consider (1.1) in the case that the growth rates depend on the space variable, but only when it is in some
bounded subset of the underlying habitat, which reflects the localized spatial inhomogeneity of the media. More precisely,
letH = RN , we assume

(H1) f : H × R→ R is a C2 function, f (x, u) < 0 for all (x, u) ∈ H × R+ with u ≥ β0 for some β0 > 0, and ∂u f (x, u) < 0
for all (x, u) ∈ H × R+.

(H2) f (x, u) = f 0(u) for some C2 function f 0 : R → R and all (x, u) ∈ H × R with ∥x∥ ≥ L0 for some L0 > 0, and
f 0(0) > 0.

Assume (H1) and (H2). Then (1.1) has the following limit equations as ∥x∥ → ∞,

ut(t, x) = Au(t, x) + u(t, x) f 0(u(t, x)), x ∈ RN . (1.6)

Equations (1.6) will play an important role in the study of (1.1). Equations (1.6) has a unique positive constant stationary
solution u0. We introduce some standing notations and then state the main results of the paper.

Let p = (p1, p2, · · · , pN) with pi > 0 for i = 1, 2, · · · ,N. We define the Banach spaces Xp by

Xp = {u ∈ C(RN ,R) | u(· + piei) = u(·), i = 1, ...,N} (1.7)

with norm ∥u∥Xp = maxx∈RN |u(x)|.
Let

X+p = {u ∈ Xp | u(x) ≥ 0 ∀x ∈ H} (1.8)
and

X++p = {u ∈ Xp | u(x) > 0 ∀x ∈ H}. (1.9)
We define X by

X = {u ∈ C(RN ,R) | u is uniformly continuous and bounded} (1.10)
with norm ∥u∥X = supx∈RN |u(x)|.
Let

X+ = {u ∈ Xi | u(x) ≥ 0 ∀x ∈ H} (1.11)
and
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X++ = {u ∈ X+i | inf
x∈H

u(x) > 0}. (1.12)

Without occurring confusion, we may write ∥ · ∥Xp and ∥ · ∥X as ∥ · ∥.
Assume (H1). By general semigroup theory (see Henry, 1981; Pazy, 1983), for any u0 ∈ X, (1.2) has a unique local
solution u(t, ·; u0) with u(0, ·; u0) = u0(·). Moreover, if u0 ∈ X+, then u(t, ·; u0) exist and u(t, ·; u0) ∈ X+ for all t ≥ 0 (see
Proposition 2.2).

Our objective is to explore the spatial spreading dynamics of (1.1) with localized spatial inhomogeneity. The main results
of this paper are stated in the following two theorems.

Theorem 1.1 (Positive stationary solutions). Assume (H1) and (H2). Equation (1.2) has a unique stationary solution
u = u∗(·) ∈ X++ . Moreover,

lim
r→∞

sup
x∈H ,∥x∥≥r

|u∗(x) − u0| = 0,

where u0 > 0 is such that f 0(u0) = 0.

Theorem 1.2 (Stability). Assume (H1) and (H2). For any u0 ∈ X++,

lim
t→∞
∥u(t, ·; u0) − u∗(·)∥X = 0.

The rest of the paper is organized as follows. In section 2, we present some preliminary materials to be used in later
sections. Section 3 is devoted to the study of positive stationary solutions of (1.1). Theorem 1.1 and Theorem 1.2 are
proved in this section.

2. Preliminary

In this section, we present some preliminary materials to be used in later sections, including some basic properties of
solutions of (1.1); principal eigenvalue theories for spatially periodic dispersal operators with random, and nonlocal; and
spatial spreading dynamics of KPP equations in spatially periodic media.

2.1 Basic Properties of KPP Equations

In this subsection, we present some basic properties of solutions of (1.1), including comparison principle, global existence,
convergence in open compact topology, and decreasing of the so called part metric along the solutions. Throughout this
subsection, we assume (H1).

Let X be as in (1.10). For given u0 ∈ X, let u(t, ·; u0) be the (local) solution of (1.2) with u(0, ·; u0) = u0(·).
Let X+ and X++ be as in (1.11) and (1.12). For given u, v ∈ X, we define

u ≤ v (u ≥ v) if v − u ∈ X+ (u − v ∈ X+) (2.1)

and
u ≪ v (u ≫ v) if v − u ∈ X++ (u − v ∈ X++). (2.2)

For given continuous and bounded function u : [0,T ) × RN → R, it is called a super-solution (sub-solution) of (1.1) on
[0,T ) if

ut(t, x) ≥ (≤)Au(t, x) + u(t, x) f (x, u(t, x)) ∀(t, x) ∈ (0,T ) × RN .

Proposition 2.1 (Comparison principle). Assume (H1).

(1) Suppose that u1(t, x) and u2(t, x) are sub- and super-solutions of (1.1) on [0,T ) with u1(0, ·) ≤ u2(0, ·). Then
u1(t, ·) ≤ u2(t, ·) for t ∈ (0, T ). Moreover, if u1(0, ·) , u2(0, ·), then u1(t, x) < u2(t, x) for x ∈ H , and t ∈ (0,T ).

(2) If u01, u02 ∈ X and u01 ≤ u02, u01 , u02 , then u(t, x; u01) < u(t, x; u02) for all x ∈ H and t > 0 at which both
u(t, ·; u01) and u(t, ·; u02) exist.

(3) If u01, u02 ∈ X and u01 ≪ u02, then u(t, ·; u01) ≪ u(t, ·; u02) for t > 0 at which both u(t, ·; u01) and u(t, ·; u02) exist.

Proof. (1) The case ν2 = 0 follows from comparison principle for parabolic equations. The case ν1 = 0 follows from
(Shen & Zhang, 2010) [Propositions 2.1 and 2.2].

(2) follows from (1).

(3) We provide a proof for the case ν1 = 0. Other cases can be proved similarly. Take any T > 0 such that both
u(t, ·; u01) and u(t, ·; u02) exist on [0,T ]. It suffices to prove that u(t, ·; u02) ≫ u(t, ·; u01) for t ∈ [0,T ]. To this end, let
w(t, x) = u(t, x; u02) − u(t, x; u01). Then w(t, x) satisfies the following equation,
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wt(t, x) =
∫
RN
κ(y − x)w(t, y)dy − w(t, x) + a(t, x)w(t, x),

where

a(t, x) = f (x, u(t, x; u02))

+ u(t, x; u01)
∫ 1

0
∂u f (x, su(t, x; u02) + (1 − s)u(t, x; u01))ds.

Let M > 0 be such that M ≥ supx∈RN ,t∈[0,T ](1 − a(t, x)) and w̃(t, x) = eMtw(t, x). Then w̃(t, x) satisfies

w̃t(t, x) =
∫
RN
κ(y − x)w̃(t, y)dy + [M − 1 + a(t, x)]w̃(t, x).

Let K : X → X be defined by
(Ku)(x) =

∫
RN
κ(y − x)u(y)dy for u ∈ X. (2.3)

Then K generates an analytic semigroup on X and

w̃(t, ·) = eK t(u02 − u01) +
∫ t

0
eK(t−τ)(M − 1 + a(τ, ·))w̃(τ, ·)dτ.

Observe that eK tu0 ≥ 0 for any u0 ∈ X+ and t ≥ 0 and eK tu0 ≫ 0 for any u0 ∈ X++ and t ≥ 0. Observe also that
u02 − u01 ∈ X++. By (2), w̃(τ, ·) ≥ 0 and hence (M − 1 + a(τ, ·))w̃(τ, ·) ≥ 0 for τ ∈ [0,T ]. It then follows that w̃(t, ·) ≫ 0
and then w(t, ·) ≫ 0 (i.e. u(t, ·; u02) ≫ u(t, ·; u01)) for t ∈ [0,T ]. �

Proposition 2.2. Assume (H1). For any given u(t, ·; u0) exists for all t ≥ 0.

Proof. Let u0 ∈ X+ be given. There is M ≫ 1 such that 0 ≤ u0(x) ≤ M and f (x,M) < 0 for all x ∈ H . Then by
Proposition 2.1,

0 ≤ u(t, ·; u0) ≤ M
for any t > 0 at which u(t, ·; u0) exists. It is then not difficult to prove that for any T > 0 such that u(t, ·; u0) exists on
(0,T ), limt→T u(t, ·; u0) exists in X. This implies that u(t, ·; u0) exists and u(t, ·; u0) ≥ 0 for all t ≥ 0. �

For given u, v ∈ X++, define
ρ(u, v) = inf{lnα | 1

α
u ≤ v ≤ αu, α ≥ 1}.

Observe that ρ(u, v) is well defined and there is α ≥ 1 such that ρ(u, v) = lnα. Moreover, ρ(u, v) = ρ(v, u) and ρ(u, v) = 0
iff u ≡ v. In literature, ρ(u, v) is called the part metric between u and v.

Proposition 2.3. For given u0, v0 ∈ X++ with u0 , v0, ρ(u(t, ·; u0), u(t, ·; v0)) is non-increasing in t ∈ (0,∞).

Proof. It can be proved by similar argument in (Kong & Shen, 2011) [Proposition 3.3]. For completeness, we provide a
proof here.

First, note that there is α∗ > 1 such that ρ(u0, v0) = lnα∗ and 1
α∗ u0 ≤ v0 ≤ α∗u0. By Proposition 2.1,

u(t, ·; v0) ≤ u(t, ·;α∗u0) for t > 0.

Let v(t, x) = α∗u(t, x; u0). Then

vt(t, x) = Av(t, x) + v(t, x) f (x, u(t, x; u0))
= Av(t, x) + v(t, x) f (x, v(t, x)) + v(t, x) f (x, u(t, x; u0)) − v(t, x) f (x, v(t, x))
> Av(t, x) + v(t, x) f (x, v(t, x)).

This together with Proposition 2.1 implies that

u(t, ·;α∗u0) ≤ α∗u(t, ·; u0) for t > 0

and then
u(t, ·; v0) ≤ α∗u(t, ·; u0) for t > 0.

Similarly, it can be proved that
1
α∗

u(t, ·; u0) ≤ u(t, ·; v0) for t > 0.

It then follows that
ρ(u(t, ·; u0), u(t, ·; v0)) ≤ ρ(u0, v0) ∀t > 0

and hence
ρ(u(t2, ·; u0), u(t2, ·; v0)) ≤ ρ(u(t1, ·; u0), u(t1, ·; v0)) ∀0 ≤ t1 < t2.

�
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2.2 Principal Eigenvalues of Spatially Periodic Dispersal Operators

In this subsection, we present some principal eigenvalue theories for spatially periodic dispersal operators with hybrid
dispersals.

Let p = (p1, p2, . . . , pN) with pi > 0 for i = 1, 2, · · · ,N and Xp be as in (1.7). We will denote I as an identity map on the
Banach space under consideration. For given ξ ∈ S N−1, µ ∈ R, a ∈ Xp, consider the following eigenvalue problems,

Ou(x) = λu(x), x ∈ RN

u(x + piei) = u(x), x ∈ RN ,
(2.4)

where

Ou(x) := ν1∆u(x) + ν2

∫
RN

e−µ(y−x)·ξκ(y − x)u(y)dy − 2µν2ξ · ∇u(x) + (a(x) + ν1µ2 − ν2)u(x) (2.5)

and O : D(O) ⊂ Xp → Xp.

Observe that if ν1 = 1, and ν2 = 0,

(Ou)(x) = ∆u(x) − 2µξ · ∇u(x) + (a(x) + µ2)u(x) ∀ u ∈ D(O) ⊂ Xp, (2.6)

If ν1 = 0, and ν2 = 1,

(Ou)(x) =
∫
RN

e−µ(y−x)·ξκ(y − x)u(y)dy − u(x) + a(x)u(x) ∀ u ∈ D(O) ⊂ Xp (2.7)

Let σ(O) be the spectrum of O.

Definition 2.1. Let µ ∈ R, and ξ ∈ S N−1 be given. A real number λ(µ, ξ, a) ∈ R is called the principal eigenvalue of
O if it is an isolated algebraic simple eigenvalue of O with a positive eigenfunction and for any λ ∈ σ(O) \ {λ(µ, ξ, a)},
Reλ < λ(µ, ξ, a).

For given µ ∈ R, and ξ ∈ S N−1, let
λ0(µ, ξ, a) = sup{Reµ | µ ∈ σ(O)}. (2.8)

Observe that for any µ ∈ R and ξ ∈ S N−1, O generates an analytic semigroup {T (t)}t≥0 in Xp and moreover, T (t) is strongly
positive (that is, T (t)u0 ≥ 0 for any t ≥ 0 and u0 ∈ X+p and T (t)u0 ≫ 0 for any t > 0 and u0 ∈ X+p \ {0}). Then by
(Meyer-Nieberg, 1991) [Proposition 4.1.1], r(T (t)) ∈ σ(T (t)) for any t > 0, where r(T (t)) is the spectral radius of T (t).
Hence by the spectral mapping theorem (see Chicone & Latushkin, 1999; [Theorem 2.7]), λ0(µ, ξ, a) ∈ σ(O). Observe
also that λ0(0, ξ, a) are independent of ξ ∈ S N−1. We may then put

λ0(a) = λ0(0, ξ, a).

It is well known that the principal eigenvalue λ(µ, ξ, a) in (2.6) exist for all µ ∈ R and ξ ∈ S N−1 and

λ(µ, ξ, a) = λ0(µ, ξ, a).

The principal eigenvalue of O in (2.7) may not exist (see Shen & Zhang, 2010 for examples). If the principal eigenvalue
λ(µ, ξ, a) exists in (2.7), then

λ(µ, ξ, a) = λ0(µ, ξ, a).

Regarding the existence of principal eigenvalue of O in (2.7), the following proposition is proved in (Shen & Zhang, 2010;
Shen & Zhang, 2012).

Proposition 2.4 (Existence of principal eigenvalue). (1) If a ∈ CN(RN ,R) ∩ Xp and the partial derivatives of a(x) up
to order N − 1 are zero at some x0 satisfying that a(x0) = maxx∈RN a(x), then the principal eigenvalue λ(µ, ξ, a) of
O exists for all µ ∈ R and ξ ∈ S N−1.

(2) If a(x) satisfies that maxx∈RN a(x) −minx∈RN a(x) < infξ∈S N−1

∫
z·ξ≤0 k(z)dz, then the principal eigenvalue λ(µ, ξ, a) of

O exists for all µ ∈ R and ξ ∈ S N−1.

Proof. (1) It follows from (Shen & Zhang, 2010) [Theorem B].

(2) It follows from (Shen & Zhang, 2012) [Theorem B
′
]. �
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Let â be the average of a(·), that is,

â =
1
|D|

∫
D

a(x)dx for (2.9)

where
D = [0, p1] × [0, p2] × · · · × [0, pN] ∩H (2.10)

and
|D| = p1 × p2 × · · · × pN for (2.11)

By Proposition 2.4 (2), λ(µ, ξ, â) exists for all µ ∈ R and ξ ∈ S N−1. The following proposition shows a relation between
λ0(µ, ξ) and λ0(µ, ξ, â).

Proposition 2.5 (Influence of spatial variation). For given µ ∈ R, and ξ ∈ S N−1, there holds

λ0(µ, ξ) ≥ λ0(µ, ξ, â).

Proof. It follow from (Hetzer, Shen, & Zhang, 2013) [Theorem 2.1]. �

We remark that λ(µ, ξ, â)(= λ0(µ, ξ, â)) have the following explicit expressions,

λ(µ, ξ, â) = ν1µ2 + ν2
( ∫

RN
e−µz·ξκ(z)dz − 1

)
+ â (2.12)

2.3 KPP Equations in Spatially Periodic Media

In this subsection, we recall some spatial spreading dynamics of KPP equations in spatially periodic media.

Consider
ut(t, x) = Au(t, x) + u(t, x)g(x, u(t, x)), x ∈ RN , (2.13)

where g(·, ·) are periodic in the first variable and monostable in the second variable. More precisely, we assume

(P1) g : H × R → R is a C2 function, g(x + plel, u) = g(x, u), where pl > 0 and g(x, u) < 0 for all (x, u) ∈ H × R+ with
u ≥ α0 for some α0 > 0 and ∂ug(x, u) < 0 for all (x, u) ∈ H × R+.

(P2) λ0(g(·, 0)) > 0.

Assume (P1). Similarly, by general semigroup theory, for any u0 ∈ X, (2.13) has a unique (local) solution u(t, ·; u0, g(·, ·))(∈
X) with initial data u0(·). Moreover, if u0 ∈ Xp, then u(t, ·; u0, g(·, ·)) ∈ Xp for any t > 0 at which u(t, ·; u0, g(·, ·)) exists. By
Proposition 2.1, if u0 ∈ X+, then u(t, ·; u0, g(·, ·)) exists and u(t, ·; u0, g(·, ·)) ∈ X+ for all t > 0.

Proposition 2.6 (Spatially periodic positive stationary solution). Assume (P1) and (P2). Then (2.13) has a unique spa-
tially periodic stationary solution u∗(·; g(·, ·)) ∈ X++p which is globally asymptotically stable with respect to perturbations
in X+p \ {0}.

Proof. It follows from (Zhao, 1996) [Theorem 2.3] and (Shen, & Zhang, 2012) [Theorem C]. �

Let ĝ(u) be the spatial average of g(x, u), that is,

ĝ(u) =
1
|D|

∫
D

g(x, u)dx for (2.14)

where D, |D| is as in (2.10).

Assume

(P3) ĝ(0) > 0.

Observe that λ(ĝ(0)) = ĝ(0). Then by Proposition 2.5, (P3) implies (P2).
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3. Positive Stationary Solutions

In this section, we explore the existence of positive stationary solutions of (1.1), and prove Theorem 1.1 and 1.2.

Throughout this section, we assume (H1) and (H2). We first prove some lemmas.

Lemma 3.1. For any ϵ > 0, there are p = (p1, p2, · · · , pN) ∈ NN and h ∈ Xp ∩CN(H ,R) such that

f (x, 0) ≥ h(x) for x ∈ H ,

ĥ ≥ f 0(0) − ϵ (hence λ0(h(·)) ≥ f 0(0) − ϵ),
and the partial derivatives of h(x) up to order N − 1 are zero at some x0 ∈ H with h(x0) = maxx∈H h(x), where ĥ is the
average of h(·) (see (2.9) for the definition).

Proof. By (H2), there is L0 > 0 such that f (x, 0) = f 0(0) for x ∈ H with ∥x∥ ≥ L0. Let M0 = infx∈H f (x, 0). Let h0 : R→
[0, 1] be a smooth function such that h0(s) = 1 for |s| ≤ 1 and h0(s) = 0 for |s| ≥ 2. For any p = (p1, p2, · · · , pN) ∈ NN

with p j > 4L0, let h ∈ Xp ∩CN(H ,R) be such that

h(x) = f 0(0) − h0
( ∥x∥2

L2
0

)
( f 0(0) − M0) for x ∈

(
[− p1

2
,

p1

2
] × [− p2

2
,

p2

2
] × · · · × [− pN

2
,

pN

2
]
)
∩H .

Then
f (x, 0) ≥ h(x) ∀x ∈ H .

It is clear that the partial derivatives of h(x) up to order N −1 are zero at some x0 ∈ H with h(x0) = maxx∈H h(x)(= f 0(0)).
For given ϵ > 0, choosing p j ≫ 1, we have

ĥ > f 0(0) − ϵ.
By Proposition 2.5, λ0(h(·)) ≥ λ0(ĥ) = ĥ and hence

λ0(h(·)) ≥ f 0(0) − ϵ.

The lemma is thus proved. �

Lemma 3.2. Suppose that ũ∗ : RN → [σ0,M0] is Lebesgue measurable, where σ0 and M0 are two positive constants. If

∆ũ∗(x) +
∫
RN
κ(y − x)ũ∗(y)dy − ũ∗(x) + ũ∗(x) f̃ (x, ũ∗(x)) = 0 ∀x ∈ RN ,

where f̃ (x, u) = f (x, u) or f 0(u) for all x ∈ RN and u ∈ R, then ũ∗(·) ∈ X++.

Proof. We prove the case that f̃ (x, u) = f (x, u). The case that f̃ (x, u) = f 0(u) can be proved similarly.

Let h∗(x) = ∆ũ∗(x) +
∫
RN κ(y − x)ũ∗(y)dy for x ∈ RN . Then h∗(·) is C1 and has bounded first order partial derivatives. Let

F(x, α) = h∗(x) − α + α f (x, α) ∀x ∈ RN , α ∈ R.

Then F : RN × R→ R is C1 and F(x, ũ∗(x)) = 0 for each x ∈ RN . If α∗ > 0 is such that F(x, α∗) = 0, then

−1 + f (x, α∗) = −h∗(x)
α∗
< 0

and hence
∂αF(x, α∗) = −1 + f (x, α∗) + α∗∂u f (x, α∗) < 0.

By Implicit Function Theorem, ũ∗(x) is C1 in x. Moreover,

∂ũ∗(x)
∂x j

=

∂h∗(x)
∂x j

−1 + f (x, ũ∗(x)) + ∂u f (x, ũ∗(x))ũ∗(x)
∀x ∈ RN , 1 ≤ j ≤ N.

Therefore, ũ∗ has bounded first order partial derivatives. It then follows that ũ∗(x) is uniformly continuous in x ∈ RN and
then ũ∗ ∈ X++. �

Lemma 3.3. Suppose that u∗(·) ∈ X++ and u = u∗(·) is a stationary solution of (1). Then

u∗(x)→ u0 as ∥x∥ → ∞.
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Proof. Assume that u∗(x) ̸→ u0 as ∥x∥ → ∞. Then there are ϵ0 > 0 and xn ∈ RN such that ∥xn∥ → ∞ and

|u∗(xn) − u0| ≥ ϵ0 for n = 1, 2, · · · .
By the uniform continuity of u∗(x) in x ∈ RN , without loss of generality, we may assume that there is a continuous function
ũ∗ : RN → [σ0,M0] for some σ0,M0 > 0 such that

u(x + xn)→ ũ∗(x)

as n→ ∞ uniformly in x on bounded sets. By the Lebesgue Dominated Convergence Theorem, we have

∆ũ∗(x) +
∫
RN
κ(y − x)ũ∗(y)dy − ũ∗(x) + ũ∗(x) f 0(ũ∗(x)) = 0 ∀x ∈ RN .

By Lemma 3.2, ũ∗ ∈ X++. By Proposition 2.6 again, we have ũ∗(x) ≡ u0 and then u∗(xn) → u0 as n → ∞. This is a
contradiction. Therefore u∗(x)→ u0 as ∥x∥ → ∞. �

Lemma 3.4. There is u− ∈ X++ such that for any δ > 0 sufficiently small, u(t, x; δu−) is increasing in t > 0 and u−,∗,δ ∈ X++,
where u−,∗,δ(x) = limt→∞ u(t, x; δu−), and hence u = u−,∗,δ(·) is a stationary solution of (1.1) in X++.

Proof. Let M∗ > 0 be such that f (x,M∗) < 0. Let ϵ > 0 be such that

f 0(0) − ϵ > 0.

By Lemma 3.1, there are p ∈ NN and h(·) ∈ Xp ∩CN(H ,R) such that

f (x, 0) ≥ h(x), and ĥ ≥ f 0(0) − ϵ(> 0).

Moreover, the partial derivatives of h(x) up to order N − 1 are zero at some x0 ∈ H with h(x0) = maxx∈H h(x). Let u−

be the positive principal eigenfunction of O with a(·) = h(·) and ∥u−∥ = 1. It is not difficult to verify that u = δu− is a
sub-solution of (1.1) for any δ > 0 sufficiently small. It then follows that for any δ > 0 sufficiently small,

δu−(·) ≤ u(t1, ·; δu−) ≤ u(t, ·; δu−) ∀0 < t1 < t.

This implies that there is a Lebesgue measurable function u−,∗,δ : H → [σ0,M0] for some σ0,M0 > 0 such that

lim
t→∞

u(t, x; δu−) = u−,∗,δ(x) ∀x ∈ H .

By Lemma 3.2, u−,∗,δ ∈ X++. Therefore u−,∗,δ ∈ X++ and u = u−,∗,δ(·) is a stationary solution of (1.1) in X++. �

Lemma 3.5. Let M ≫ 1 be such that f (x,M) < 0 for x ∈ H . Then limt→∞ u(t, x; u0) exists for every x ∈ H , where
u0(x) ≡ M. Moreover, u+,∗,M(·) ∈ X++, where u+,∗,M(x) := limt→∞ u(t, x; u0), and hence u = u+,∗,M(·) is a stationary
solution of (1.1) in X++.

Proof. For any M > 1 with f (x,M) < 0 for all x ∈ H , u = M is a super-solution of (1). Hence

u(t, ·; M) ≤ u(t1, ·; M) ≤ M ∀0 ≤ t1 < t.

It then follows that limt→∞ u(t, x; M) exists for all x ∈ RN . Let u+,∗,M(x) = limt→∞ u(t, x; M). We have u+,∗,M(x) ≥ u−,∗,δ(x)
for 0 < δ ≪ 1. By the similar arguments as in Lemma 3.4, u+,∗,M ∈ X++ and u = u+,∗,M(·) is a stationary solution of (1.1)
in X++. �

Proof of Theorem 1.1. (1) First, by Lemmas 3.4 and 3.5, (1) has stationary solutions in X++. We claim that stationary
solution of (1) in X++ is unique. In fact, suppose that u1,∗ and u2,∗ are two stationary solutions of (1) in X++. Assume that
u1,∗ , u2,∗. Then there is α∗ > 1 such that ρ(u1,∗, u2,∗) = lnα∗ > 0. Note that

1
α∗

u1,∗ ≤ u2,∗ ≤ α∗u1,∗.

By Lemma 3.3, lim∥x∥→∞ u1,∗(x) = u0 and lim∥x∥→∞ u2,∗(x) = u0. This implies that there is ϵ > 0 such that
1

α∗ − ϵ u1,∗(x) ≤ u2,∗(x) ≤ (α∗ − ϵ)u1,∗(x) for ∥x∥ ≫ 1.

By Proposition 2.1 and the arguments in Proposition 2.3,
1
α∗

u1,∗(x) < u2,∗(x) < α∗u1,∗(x) ∀x ∈ RN .

It then follows that for 0 < ϵ ≪ 1,
1

α∗ − ϵ u1,∗(x) ≤ u2,∗(x) ≤ (α∗ − ϵ)u1,∗(x) ∀x ∈ RN

and then ρ(u1,∗, u2,∗) ≤ ln(α∗ − ϵ), this is a contradiction. Therefore u1,∗ = u2,∗ and (1.1) has a unique stationary solution
u∗ in X++. �
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Proof of Theorem 1.2. For any u0 ∈ X++, there is δ > 0 sufficiently small and M > 0 sufficiently large such that δu− ≤
u0 ≤ M and u = δu− is a sub-solution of (1) (u− is as in Lemma 3.4) and u = M is a super-solution of (1.1). Then

δu− ≤ u(t, ·; δu−) ≤ u(t, ·; u0) ≤ u(t, ·; M) ≤ M ∀t ≥ 0.

By Theorem 1.1, Lemmas 3.4 and 3.5, and Dini’s Theorem,

u(t, x; δu−) < u∗(x) < u(t, x; M) ∀t > 0, x ∈ H
and

lim
t→∞

u(t, x; δu−) = lim
t→∞

u(t, x; M) = u∗(x)

uniformly in x on bounded sets. It then follows that

lim
t→∞

u(t, x; u0) = u∗(x)

uniformly in x on bounded sets.

We claim that ∥u(t, ·; u0)− u∗(·)∥ → 0 as t → ∞. Assume the claim is not true. Then there are ϵ0 > 0, tn → ∞, and xn with
∥xn∥ → ∞ such that

|u(tn, xn; u0) − u∗(xn)| ≥ ϵ0 ∀n ∈ N.
Then by Lemma 3.3,

|u(tn, xn; u0) − u0| ≥ ϵ0
2
∀n ≫ 1.

Let δ̃ > 0 and M̃ > 0 be such that
δ̃ ≤ u(t, ·; u0) ≤ M̃ ∀t ≥ 0.

For any ϵ > 0, let T > 0 be such that

|u(T, ·; δ̃, f 0(·)) − u0| < ϵ, |u(T, ·; M̃, f 0(·)) − u0| < ϵ. (3.1)

Observe that
δ̃ ≤ u(tn − T, xn + x; u0) ≤ M̃

and
u(tn, xn + ·; u0) = u(T, xn + ·; u(tn − T, ·; u0)) = u(T, ·; u(tn − T, · + xn; u0), f (· + xn, ·))

for n ≫ 1. Then
u(T, ·; δ̃, f (· + xn)) ≤ u(tn, xn + ·; u0) ≤ u(T, ·; M̃, f (· + xn, ·)). (3.2)

Observe also that f (x + xn, u)→ f 0(u) as n→ ∞ uniformly in (x, u) on bounded sets. Then

u(T, x; δ̃, f (· + xn, ·))→ u(T, x; δ̃, f 0(·))
and

u(T, x; M̃, f (· + xn, ·))→ u(T, x; M̃, f 0(·))
as n→ ∞ uniformly in x on bounded sets. This together with (3.1) implies that

|u(T, 0; δ̃, f (· + xn, ·)) − u0| < 2ϵ, |u(T, 0; M̃, f (· + xn, ·)) − u0| < 2ϵ for n ≫ 1

and then by (3.2),
|u(tn, xn; u0) − u0| < 2ϵ for n ≫ 1.

Hence limn→∞ u(tn, xn; u0) = u0, which is a contradiction. Therefore ∥u(t, ·; u0) − u∗(·)∥ → 0 as t → ∞.
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