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Abstract

This paper investigates the global dynamics and bifurcation structure of a viral infection logistic model with delayed
nonlinear CTL response and periodic immune response. It is proved that the basic reproduction numbers, R0 and R1,
determine the outcome of viral infection. Besides changes in the amplititude of lytic component, we show, via numerical
simulations, that , the birth rate of susceptible host cells and the maximum proliferation of target cells are crucial to the
outcome of a viral infection. Time delay can alter the period of oscillation for the larger level of periodic forcing. Period
doubling bifurcations of the system are observed via simulations. Our results can provide a possible explanation of the
oscillation behaviors of virus population,which were observed in chronic HBV or HCV carriers.
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1. Introduction

The research on mathematical models has been very useful in order to understand the dynamics of immune responses.
The basic viral infection model (De Boer & Perelson, 1995; De Boer & Perelson, 1998), contains three variables that
depend on time, namely, x(t), the population of uninfected cells, y(t), the infected cells and z(t), the number of cytotoxic T
lymphocytes (CTLs). In (Liu,1997; Nowak & Bangham, 1996), the authors considered the dynamics of a virus population
with lytic immune response, the infected cells become lysed by CTLs, z(t) at a rate pyz, where the parameter p expresses
the strength of the lytic component and it is a positive constant. Later on, (K. Wang, W. Wang, & Liu, 2006) considered
that the strength of the lytic component was a sinusoidal function

p(t) = p0 + p1 cos(2πt − ϕ),

where p0 is the basic strength of the lytic component, the amplitude p1(0 ≤ p1 < p0) measures the degree of oscillation,
and ϕ is the acrophase. The interaction between a population y(t) and the number z(t) was a linear CTL response z′ =
cy − bz. The CTL response expands in response to viral antigen derived from infected cells at a rate cy and decay in the
absence of antigenic stimulation at a rate bz. Recently (Ji, Min, Zheng, & Su, 2010), considered a nonlinear CTL response
z′ = cyz−bz, with sinusoidal function p(t) = p0+ p1 cos( 2πt

T −ϕ), where T (days) represents the period of oscillation of the
human immune system. The main purpose of both papers was to study the effect of oscillation of the immune system on
the viral dynamic behaviors. In order to be more realistic we have considered a logistic proliferation (Hu, Zhang, Wang,
Ma, & Liao, 2014; Yang, 2014; Ji, Min, & Ye, 2010) and time delays (Bai & Zhou, 2012). In (Bai & Zhou, 2012) the
author considered the following mathematical model:

x′(t) = s − dx(t) − βx(t)y(t)
y′(t) = βx(t)y(t) − ay(t) − p(t)y(t)z(t) (1)
z′(t) = cy(t − τ)z(t − τ) − bz(t),

where x(t), y(t), z(t) denote the cell concentration of uninfected target cells, infected cells, and virus-specific CTLs at time
t, with removal rates of d, a and b, respectively. Healthy cells are produced at a constant rate s. Infected cells are produced
at rate βxy. The number of CTLs produced at time t is given by cy(t − τ)z(t − τ), which depends on the number of CTLs
and infected target cells at time t − τ, for a time lag τ > 0.

The authors studied the global dynamics, they showed that the basic reproduction numbers R0 and R1 determine the
outcome of viral infection. Numerical simulations demonstrate that the changes in the amplitude of lytic component can
generate a variety of dynamic patterns.
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When stimulated by antigen or mitogen, T cells multiply through mitosis with a rate r, some scholars (Wang, Zhou, Wu,
& Heffernan, 2009; Smith & De Leenheer, 2003; Zhou, Song, & Shi, 2008) incorporate simple logistic proliferation term
rx

(
1 − x

xmax

)
into healthy CD4+ T cells.

Motivated by the work above, we consider the following DDE model:

x′(t) = s − dx(t) + rx(t)
(
1 − x(t)

k

)
− βx(t)y(t)

y′(t) = βx(t)y(t) − ay(t) − p(t)y(t)z(t) (2)
z′(t) = cy(t − τ)z(t − τ) − bz(t),
p(t) = p0 + p1 cos(2πt − ϕ), 0 ≤ p1 < p0,

where the variables and parameters have the same biological meaning as in (1). r is the maximum proliferation rate of
target cells and k is the maximum level of concentration of target cells in the body. The initial conditions for the system
(2) are

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), z(θ) = ϕ3(θ),
ϕi(θ) ≥ 0, θ ∈ [−τ, 0), ϕi(0) > 0 (i = 1, 2, 3). (3)

Here (ϕ1(θ), ϕ2(θ), ϕ3(θ)) ∈ C([−τ, 0],R3
+) is the Banach space of continuous functions mapping the interval [−τ, 0] into

R3
+ with the topology of uniform convergence, where R3

+ = {(x1, x2, x3) | xi ≥ 0, i = 1, 2, 3}

The purpose of this paper is to investigate the stability of system (2) and explore the effect the logistic growth of the
healthy CD4+ T cells in the dynamic of system (2).

We use a similar methodology as the one employed in Bai and Zhou (2012). Our model is more general, in particular, for
r = 0, Bai and Zhou system is obtained. Different sufficient conditions are obtained for E1, corresponding to the survival
of free virus and the extinction of CTL response, it is called as immune-exhausted equilibrium; stability and numerical
simulations are provided to illustrate our results for cases R1 < R0 < 1, R1 < 1 < R0, where R0 and R1 are called the
basic reproduction number and the immune response reproductive number, respectively. Bai and Zhou state and prove
the theorems, but they do not perform numerical simulations to illustrate their results for all the cases, they only consider
the case R1 > 1 in their numerical simulations. In our work, we additionally consider r as bifurcation parameter in the
bifurcation diagrams. We note that for our system, multiple cyclic days appear sooner (for example, with p1 = 0.55; in Bai
and Zhou with p1 = 0.75) than the mentioned reference. This phenomena also occurs with “r” as bifurcation parameter.

The organization of this paper is as follows: in the next section, we give some useful preliminaries result. In section 3,
the stability properties of the viral free equilibrium are studied. The stability of the immune-exhausted equilibrium is
investigated in the section 4. In Section 5, the uniform persistence of disease is presented. Numerical simulations are
carried out to illustrate the main analytical results in section 6. In section 7,the conclusions are summarized.

2. Preliminary Results

Finding the points of equilibrium of the proposed system is equivalent to find the equilibria of the system without delay

s − dx + rx
(
1 − x

k

)
− βxy = 0

βxy − ay − pyz = 0 (4)
cyz − bz = 0.

If y = z = 0 and x , 0, we have that

s − dx + rx
(
1 − x

k

)
= 0 (5)

We obtain x from (5), naming it x0:

x0 =
k
2r

(r − d) +

√
(r − d)2 +

4rs
k

 ,
therefore a first point of equilibrium is given by k

2r

(r − d) +

√
(r − d)2 +

4rs
k

 , 0, 0 .
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Now, if z = 0 and x, y , 0, then

s − dx + rx
(
1 − x

k

)
− βxy = 0 (6)

βxy − ay = 0. (7)

From (7) we obtain x, then x = a
β
. Replacing it in (6) we get

s − da
β
+

ra
β
− ra2

β2k
− ay = 0. (8)

Obtaining y from (8) we get y = s
a +

r
β
− d

β
− ra

β2k . Then a second point of equilibrium is expressed by(
a
β
,

s
a
+

r
β
− d
β
− ra
β2k

, 0
)

Hence, there is only one disease-free E0 =

(
k
2r

[
(r − d) +

√
(r − d)2 + 4rs

k

]
, 0, 0

)
and the system (2) also has equilibrium

E1 =
(

a
β
, s

a +
r
β
− d

β
− ra

β2k , 0
)
, which corresponds to the survival of free virus and the extinction of CTL. It is called an

immune-exhausted equilibrium.

Next, we introduce the basic reproduction number for the viral infection according to the definition given in (Bacaër &
Guernaoui 2006) and the theory developed in (Wang & Zhao, 2008) to the periodic case. Linearising the system (2)
around E0, we get the following equation for the infected cells y:

y′(t) = βx0y(t) − ay(t).

Let F(t) = βx0 and V(t) = a. It follows from lemma 2.2 of Wang and Zhao (2008)that the basic reproduction number of
system (2) is

R0 =

∫ 1
0 F(t)dt∫ 1
0 V(t)dt

=
βx0

a
where x0 =

k
2r

(r − d) +

√
(r − d)2 +

4rs
k

 .
We denote

R1 =
kβ
2ar


(
(r − d) − βb

c

)
+

√(
(r − d) − βb

c

)2

+
4rs
k

 .
It is easy to verify that R1 < R0; it also can be verified that E1 exists if and only if R0 > 1 and that

x̂ =
a
β
=

x0

R0
ŷ =

s
a
+

r
β
− d
β
− ra
β2k
= (R0 − 1)

(
s
βx0
+

ar
β2k

)
,

where x0 =
k
2r

[
(r − d) +

√
(r − d)2 + 4rs

k

]
.

The following result comes from (Xiao & Chen, 2001), lemma 2.1, will be used in our analysis.

Lemma 1. Consider the delay differential equation

x′(t) = ax(t − τ) − bx(t),

where a, b, τ > 0; x(t) > 0 for all t ∈ [−τ, 0]. The following holds:

i) If a < b then limt−→∞ x(t) = 0

ii) If a > b then limt−→∞ x(t) = +∞

Now we prove the following:
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Lemma 2. Under the initial conditions (3) all the solutions of system (2) are positive and ultimately uniformly bounded
in C([−τ, 0],R3

+).

Proof. Let us suppose that x(t) is not always positive, and t1 > 0 is the first time of t (t > 0) such that x(t1) = 0. By the
first equation of system (2), we have that x′(t1) = s > 0. This means that x(t) < 0 for (t1 − ϵ, t1), where ϵ is a positive
constant arbitrarily small. But this is a contradiction because x(t) is always positive for t < t1.

If y(t) = 0 is a constant solution of the system and y(0) > 0, the uniqueness and continuity of solutions guarantee us that,
y(t) > 0 for all t > 0.

Now, we prove that z(t) is positive. We realise that the third equation of system (2) can be rewritten in the following way

z′(t)
z
≥ −b

∫ t

0

z′

z
dt ≥

∫ t

0
−bdθ

Ln(z(t)) − Ln(z(0)) ≥ −
∫ t

0
bdθ

Ln(z(t)) ≥ Ln(z(0)) −
∫ t

0
bdθ

z(t) ≥ z(0)e−bt.

Now by (3) we have that z(t) > 0 for all t > 0.

Now we show that the solutions of system (2) are uniformly bounded for all t ≥ 0.

Let
L(t) = x(t) + y(t) +

(p0 − p1)
c

z(t + τ),

then

L′(t) = x′ + y′ +
(p0 − p1)

c
z′(t + τ)

= s − dx + rx
(
1 − x

k

)
− ay − p(t)yz +

p0 − p1

c
(cyz − bz(t + τ)).

Note that −p1 ≤ p1 cos(2πt − ϕ) ≤ p1 then p(t) = p0 + p1 cos(2πt − ϕ) ≥ p0 − p1, therefore −p(t) ≤ −(p0 − p1). Using the
previous inequality, we obtain that,

L′(t) ≤ s − dx + rx
(
1 − x

k

)
− ay − (p0 − p1)yz +

p0 − p1

c
(cyz − bz(t + τ))

≤ s − dx − r
k

(
x − k

2

)2

+
rk
4
− ay − (p0 − p1)yz +

p0 − p1

c
(cyz − bz(t + τ))

≤ 4s + rk
4

− dx − ay − (p0 − p1)b
c

z(t + τ)

=
4s + rk

4
− mL(t),

where m = min{d, a, b}. Hence L(t) ≤ 4s+rk
4m + ϵ, where ϵ is an arbitrarily small constant, then lim supt−→∞ L(t) ≤ 4s+rk

4m .
Therefore x(t), y(t), and z(t) are uniformly bounded inC([−τ, 0],R3

+). �

Lemma 3. The following holds:

If R0 < 1⇒ βx0 − a < 0
If R0 = 1⇒ βx0 − a = 0
If R0 > 1⇒ βx0 − a > 0
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Proof.

βx0 − a =
βk
2r

(r − d) +

√
(r − d)2 +

4rs
k

 − a

= a

 βk
2ar

(r − d) +

√
(r − d)2 +

4rs
k

 − 1


= a (R0 − 1) .

Therefore we have that if R0 < 1, then βx0 − a < 0; if R0 = 1, then βx0 − a = 0; if R0 > 1, then βx0 − a > 0. �

3. Stability Analysis Viral Free Equilibrium E0

in this section, we shall consider the stability of the disease-free equilibrium E0 of the system (2).

Theorem 4. If R0 < 1, then the disease-free equilibrium is globally asymptotically stable. It is unstable if R0 > 1.

Proof. Firstly, when R0 < 1, Theorem 2.2 of Wang and Zhao (2008) implies that the disease-free equilibrium E0 is
locally asymptotically stable and is unstable if R0 > 1. We now show that it attracts all nonnegative solutions of (2). If
(x(t), y(t), z(t)) is a nonnegative solution of system (2) with initial conditions (3). From the first equation of the system,
we have

x′ < s + dx + rx
(
1 − x

k

)
.

Then follows from the standard comparison theorem that for any ϵ > 0, there is a t̂ > 0 such that

x(t) < x0 + ϵ ∀t > t̂

Thus, the second equation of (2) imply that

y′ ≤ (β (x0 + ϵ) − a) y

≤ (βx0 − a + βϵ) y

≤ (βx0 − a + βϵ) y ∀t > t̂.

Integrating the inequality from t̂ to t ,

y ≤ e(βx0−a+βϵ)(t−t̂) ∀t > t̂.

Provided that R0 < 1, by lemma (3) βx0−a < 0 and for ϵ small enough (βx0−a+βϵ) < 0. This shows that limt−→∞ y(t) = 0.
For any ϵ1 sufficiently small and satisfying ϵ1 <

b
c , there is a T > 0 that such for t > T + τ, z′(t) ≤ cϵ1z(t − τ) − bz(t).

According to lemma (1) we obtain limt−→∞ z(t) = 0. If x(0) = x0 then limt−→∞ x(t) ≤ x0. This implies global asymptotic
stability. This completes the proof of the theorem. �

4. Stability of the Immune-exhausted Equilibrium E1

In this section, we study the stability of the immune-exhausted equilibrium E1.

Define
R′1 =

4cβs + βcrk + 4caβx0

4cad̃ + 4bβd̃
.

Where d̃ = min{a, d}.
Theorem 5. If R1 < 1 < R0, then E1 is locally asymptotically stable. Moreover, if R′1 < 1 < R0, then E1 is globally
asymptotically stable.

Proof. Linearising the system (2) around E1 we obtain

x′1 =

[
−(d + βŷ) + r − 2rx̂

k

]
x1 − βx̂y1

y′1 = βŷx1 − p(t)ŷz1 (9)
z′1 = cŷz1(t − τ) − bz1.
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Once this task is achieved, we just need to investigate the zero solution (or equilibrium) of system (9). Provided that
R1 < 1 < R0 holds, then cŷ < b. Therefore lemma (1) implies that limt→∞ z1(t) = 0. Hence we get the following system:

x′1 =

[
−(d + βŷ) + r

(
1 − 2x̂

k

)]
x1 − βx̂y1

y′1 = βŷx1 − p(t)ŷz1.

The previous system can be regarded in the following way:(
x′1
y′1

)
=

(
−(d + βŷ) + r

(
1 − 2x̂

k

)
−βx̂

βŷ 0

) (
x1
y1

)
+

(
0

−p(t)ŷz1

)
.

It is of the form X′ = Ax + F(t). For (x(0), y(0)) ∈ R2
+ the solution is(

x′1
y′1

)
= eAt

(
x1(0)
y1(0)

)
+

∫ t

0
eA(t−s)

(
0

−p(s)ŷz1(s)

)
ds,

where

A =
(
−(d + βŷ) + r

(
1 − 2x̂

k

)
−βx̂

βŷ 0

)
.

Knowing that x̂,ŷ satisfies the first equation of system (2), we have that −(d+ βŷ)+ r
(
1 − x̂

k

)
− rx̂

k = −
s
x̂ −

rx̂
k = −

(
βs
a +

ar
kβ

)
,

then we can rewrite the matrix A as:

A =
(
−

(
βs
a +

ar
kβ

)
−βx̂

βŷ 0

)
.

Clearly the eigenvalues of A have negative real part, then there exists a constant C and µ both positive such that ∥ eAt ∥≤
Ce−µt for all t ≥ 0. Note that zero is a solution of the third equation of (9) and it is asymptotically stable when cŷ < b.
Therefore for ϵ > 0 there exists δ1 = δ(ϵ) such that if ∥ ϕ ∥< δ1 with ϕ ∈ C+, ϕ(0) > 0, then z1(t) < ϵ.

Let

∥ z1(t, ϕ) ∥< min
 µϵ

2
√

2C(p0 + p1)ŷ
,

ϵ

2
√

2C

 t ∈ (0,∞).

Then choose δ2 =
ϵ

2
√

2C
such that ∥ (x1(0), y1(0))T ∥< δ2 and

∥ (x1(t), y1(t))T ∥ ≤ Ce−µt ∥ (x1(0), y1(0))T ∥ + ∥
∫ t

0
eA(t−s)(0,−p(s)ŷz1(s))T ∥ ds

≤ Ce−µt ∥ (x0, y0)T ∥ +C(p0 + p1)ŷ
∫ t

0
e−µ(t−s) ∥ z1(s) ∥ ds

≤ C
ϵ

2
√

2C
+

C(p0 + p1)ŷ
µ

·min
 µϵ

2
√

2(p0 + p1)ŷ
,

ϵ

2
√

2


=

ϵ

2
√

2
+

ϵ

2
√

2
=

ϵ
√

2
.

If we choose δ = min {δ1, δ2} and ∥ ψ ∥=∥ (x1(0), y1(0), ϕ) ∥< δ, then ∥ x1(t, ψ), y1(t, ψ), z1(t, ψ) ∥< ϵ, this implies the
stability of the zero solution of (9).

The next step is to show that each nonnegative solution of (2) converges to E1 when R′1 < 1 < R0 holds. Taking the two
first equations of system (2) we have:

x′ + y′ = s − dx + rx
(
1 − x

k

)
− ay − p(t)yz

= s − dx − r
k

(
x − k

2

)2

+
rk
4
− ay − p(t)yz + ax0 − ax0

≤ s − dx − ay +
rk
4
+ ax0

=
4s + 4ax0 + rk

4
s − d̃(x + y),
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where d̃ = min {a, d}, which implies that lim supt→∞(x + y) = 4s+4ax0+rk
4d̃

. Hence for ϵ1 > 0 there exists a t1 > 0 such that
for t > t1

y′ ≤
(
β

(
4s + 4ax0 + rk

4d̃
+ ϵ1 − y

)
− a

)
y.

Consider the following differential equation

ỹ′ =
4βs + 4βax0 + βrk + 4βd̃ϵ1 − 4βd̃ỹ(t) − 4ad̃

4d̃
ỹ

=

(
4βs + 4βax0 + βrk + 4βd̃ϵ1 − 4βd̃ỹ(t) − 4ad̃

4d̃

)
ỹ. (10)

When R0 > 1 and ỹ(0) > 0, (10) has a unique positive equilibrium ỹ∗ = 4βs+4a(βx0−d̃)+βrk+4βd̃ϵ1

4βd̃
which is globally asymptoti-

cally stable. By the comparison principle, choose an ϵ2, then there exists a t2 > t1 such that

y ≤ ỹ∗ + ϵ2 ∀t > t2.

Let y∗ = 4βs+4a(βx0−d̃)+βrk
4βd̃

, because ϵ1 is small enough. Then

y ≤ y∗ + ϵ2 ∀t > t2

and using the previous inequality we get

z′(t) ≤ c(y∗ + ϵ2)z(t − τ) − bz ∀t > t2 + τ.

Choose an ϵ2 small enough such that R′1 +
cβϵ2
βb+ac < 1 and R′1 =

4cβs+βcrk+4caβx0

4cad̃+4bβd̃
. By using again lemma (1) we get as before

limt→∞ z(t) = 0. Therefore system (2) is asymptotic to the following homogeneous system:

x′(t) = s − dx(t) + rx(t)
(
1 − x(t)

k

)
− βx(t)y(t)

y′(t) = βx(t)y(t) − ay(t). (11)

System (11) has a unique equilibrium (x̂, ŷ) where x̂ = a
β
, ŷ = s

a +
r
β
− d

β
− ra

β2k . Inspired in Hu et al.(2014) we consider the
following Lyapunov functional:

V(t) = x − x̂ − x̂ ln
x
x̂
+ y − ŷ − ŷ ln

y
ŷ

we get

V ′ =
(
1 − x̂

x

) (
s − dx + rx

(
1 − x

k

)
− βxy

)
+

(
1 − ŷ

y

)
(βxy − ay)

= (x − x̂)
(
− s(x − x̂)

xx̂
− r(x − x̂)

k
− β(y − ŷ)

)
+ (y − ŷ)β(x − x̂)

= − s(x − x̂)2

xx̂
− r(x − x̂)2

k
.

V ′ ≤ 0 and V ′ = 0 if and only if x = x̂. The previous argument shows that the equilibrium (x̂, ŷ) is globally asymptotically
stable by Lyapunov-LaSalle invariance principle. Finally, by applying the theory of internally chain transitive sets (Zhao,
2003) to the two first equations of system (2) we conclude that limt→∞ x(t) = x̂,limt→∞ y(t) = ŷ. This completes the
proof. �

5. Uniform Persistence of Disease if R1 > 1

Theorem 6. If R1 > 1, system (2) has a positive T−periodic solution, and there is an η > 0 such that for any solution
(x(t, ϕ), y(t, ϕ), z(t, ϕ)) of (2) in C([−τ, 0],R3

+) and ϕ2(0) > 0 y ϕ3(0) > 0 satisfies

lim inf
t−→∞

x(t, ϕ) ≥ η, lim inf
t−→∞

y(t, ϕ) ≥ η, lim inf
t−→∞

z(t, ϕ) ≥ η.
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Proof. Let
X = C([−τ, 0],R3

+)

X0 = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ X : ϕ2(0) > 0, ϕ3(0) > 0}

∂X0 = X \ X0.

Noting the form of system (2), it is easy to check that X y X0 are positively invariant. Then ∂X0 is relatively closed in X,
and

∂X0 = {ϕ ∈ X : ϕ2(0) = 0 or ϕ3(0) = 0}.

Let u(t, ϕ) be the unique solution of system (2) with u0(ϕ) = ϕ. Define Φ(t)ψ = ut(ψ), t ≥ 0 and ψ ∈ X. Let P : X −→ X
be the Poincaré map associated with the system (2), i.e,

P(ϕ) = uT (ϕ) = u(T, ϕ) T = 1 ∀ϕ ∈ X.

Note that the lemma (2) implies that the discrete time system P : X −→ X is point dissipative and Pn0 is compact whenever
n0T > τ. It then follows from theorem 2.9 of (Magal & Zhao, 2005) that P admits a global attractor A in X. By using the
technique employed in (Lou & Zhao, 2010), we first verify that P is uniformly persistent with respect to (X0, ∂X0).

Let M1 =

(
k
2r

[
(r − d) +

√
(r − d)2 + 4rs

k

]
, 0, 0

)
and M2 =

(
a
β
, s

a +
r
β
− d

β
− ra

β2k , 0
)
. Since R0 > R1 > 1, we choose a δ1

small enough such that R0 −
(β + p0 + p1)δ1

a
> 1.

By the continuity of solutions with respect to initial conditions there exists δ∗1(δ1) > 0 such that for all ϕ ∈ X0 with

∥ ϕ − M1 ∥≤ δ∗1,

then we have
∥ Φ(t)ϕ − M1 ∥≤ δ1 ∀t ∈ [0,T ].

We prove the following result:

Claim 7. lim supn→∞ ∥ Φ(nT )ϕ − M1 ∥≥ δ∗1 for all ϕ ∈ X0.

Suppose, by contradiction, that lim supn→∞ ∥ Φ(nT )ψ − M1 ∥< δ∗1 for some ψ ∈ X0. Then there exists an integer N1 ≥ 1
such that ∥ Φ(nT )ψ − M1 ∥< δ∗1 for all n ≥ N1. For any t − τ ≥ N1T we have t = nT + t′, with n ≥ N1, t′ ∈ [0,T ] and

∥ Φ(t)ψ − M1 ∥=∥ Φ(t′)Φ(nT )ψ − M1 ∥≤ δ1.

Then it follows that
x0 − δ1 ≤ x(t) ≤ x0 + δ1, 0 ≤ y(t), z(t) ≤ δ1 ∀t − τ ≥ N1T.

Hence, for t ≥ N1T + τ, it is obtained that

y′(t) ≥ (β(x0 − δ1) − a − (p0 + p1)δ1)y(t)
≥ (βx0 − a − βδ1 − (p0 + p1)δ1)y(t).

Solving the previous inequality we get

y(t) ≥ y(N1T + τ)e(βx0−a−βδ1−(p0+p1)δ1)(t−N1T−τ).

Since R0 −
(β + p0 + p1)δ1

a
> 1 , βx0 − a − βδ1 − (p0 + p0)δ1 > 0, then limt→∞ y(t) = ∞. But this is a contradiction.

In the case where R1 > 1, we can choose a small positive number δ2 such that R1 − δ2kβ2

ar > 1. Since
lim supϕ→M2

(Φ(t)ϕ − M2) = 0 uniformly for t ∈ [0,T ], there exists δ∗2(δ2) > 0 with δ∗2 < ŷ such that

∥ Φ(t)ϕ − M2 ∥≤ δ2 ∀t ∈ [0,T ] ∥ ϕ − M2 ∥< δ∗2.

Claim 8. lim supn→∞ ∥ Φ(nT )ϕ − M2 ∥≥ δ∗2 for all ϕ ∈ X0.
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Suppose the contrary, i.e. lim supn→∞ ∥ Φ(nT )ψ − M2 ∥< δ∗2 for some ψ ∈ X0. Then there exists an integer N2 ≥ 1 such
that ∥ Φ(nT )ψ − M2 ∥< δ∗2 for all n ≥ N2. For some t − τ ≥ N2T we have t = nT + t′ with n ≥ N2 and t′ ∈ [0,T ] such that

∥ Φ(t)ψ − M2 ∥=∥ Φ(t′)Φ(nT )ψ − M2 ∥≤ δ2.

This implies
|x(t) − x̂| < δ2, |y(t) − ŷ| < δ2, 0 < z(t) < δ2 for all t − τ ≥ N2T.

From the third equation of system (2)
z′(t) ≥ c(ŷ − δ2)z(t − τ) − bz

and the inequality R1 −
δ2kβ2

ar
> 1, it is implied that c(ŷ − δ2) > b. By lemma (1) limt−→∞ z(t) = ∞. But this is a

contradiction.

Define the following sets:

M∂ := {ϕ ∈ ∂X0 : Pn(ϕ) ∈ ∂X0,∀n ≥ 0}
D1 := {ϕ ∈ X : ϕ2(0) = 0, ϕ3(0) ≥ 0}
D2 := {ϕ ∈ X : ϕ2(0) > 0, ϕ3(0) = 0}.

We claim that M∂ = D1∪D2. We know that D1∪D2 ⊂ M∂. We will prove that M∂ ⊂ D1∪D2. For some ψ ∈ ∂X0\(D1∪D2),
from the second equation of system (2) we have

y(t, ψ) = y(0, ψ)e
∫ t

0 (βx(s,ψ)−a−p(s)z(s,ψ))ds t ≥ 0.

The solution of the third equation of system (2) in the interval [0, τ] is

z(t, ψ) = e−bt
(
z(0, ψ) + c

∫ t

0
ebsy(s − τ, ψ)z(s − τ, ψ)ds

)
for any ψ ∈ ∂X0 \ (D1 ∪ D2). From the previous expression we verify that there exists t0 ∈ [0, τ] such that z(t, ψ) > 0 for
all t ≥ t0. Hence there exists some n with nT ≥ t0 such that Pn(ψ) < ∂X0 and therefore M∂ ⊂ D1 ∪D2. Then it follows that
M1 and M2 are disjoint, compact and isolated invariant sets for P in ∂M, and Â∂ := ∪ϕ∈M∂

ω(ϕ) = {M1,M2}. Moreover, no
subset of {M1,M2} form a cycle in M∂ (and hence in ∂X0). By the previous claims we see that M1 y M2 are isolated and
invariant sets for P in X, and ws(Mi) ∩ X0 = ∅ for i = 1, 2, where ws(Mi) is the stable set of de Mi for P.

By the acyclicity theorem on uniform persistence for maps (see theorem 1.3.1 and the remark 1.3.1 of (Zhao, 2003)),
it follows that P : X → X is uniformly persistent with respect to X0. Then the same theorem implies that the periodic
semiflow Φ(t) : X −→ X is also uniformly persistent with respect to X0. Therefore from theorem 3.1 of (Zhao, 2008)
system (2) admits a T -periodic solution (x∗, y∗, z∗) with initial condition ϕ∗ ∈ X0. By a similar argument in (Lou & Zhao,
2010) and (Zhao, 2008) it is shown that there exists η > 0 such that

lim
t−→∞

inf min(x(t, ϕ), y(t, ϕ), z(t, ϕ)) ≥ η.

In particular limt−→∞ inf min(Φ(t)ϕ∗) ≥ η and x∗, y∗, z∗ ≥ 0 for all t ≥ 0. This implies that (x∗, y∗, z∗) is a T -periodic
solution. �

6. Numerical Simulations

In this section we investigate the behavior of an epidemiological model described by a nonautonomous SIR system. In
addition, some comparisons among our model and the other closed model will be provided.

To explore the dynamic of system (2) and to illustrate the stability of equilibria solutions we have used, dde23 (Shampine
& Thompson, 2001), based on Runge-Kutta methods.

In system (2), the parameter set will be taken from (Wang et al., 2006; Ji et al., 2010; Hu et al., 2014). Let p(t) =
1 + 0.5 cos

(
2πt − π

12

)
,s = 190, d = 0.1, r = 0.1, k = 1200, a = 5, b = 0.1, c = 0.3, β = 0.002, τ = 5. We consider different

constant history functions x(0) = 100, 500, 800, y0(θ) = y(θ) = 20, 25, 30, z0(θ) = z(θ) = 1, 5, 10.
Note that R1 = 0.6024 < 1 and R0 = 0.6040 < 1, then the virus eventually disappears. The numerical simulation confirms
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Figure 1. When R1 = 0.6024 < 1 and R0 = 0.6040 < 1 the disease-free equilibrium is stable. Phase space of system (2).
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Figure 2. When R1 = 0.2 < 1 and R0 = 12.9099 > 1 immune-exhausted equilibrium is stable. Phase space of system (2).

that the disease-free equilibrium is stable when R0 < 1. System (2) has a unique disease-free equilibrium P0 = (1510, 0, 0).
See figure(1).

Next, consider the following parameter set: p(t) = 1+0.5 cos
(
2πt − π

12

)
, s = 10, d = 0.03, r = 0.03, k = 1800, a = 0.3, b =

0.5, c = 0.003, β = 0.005. We note that R1 = 0.2 < 1 and R0 = 12.9099 > 1.Then the immune-exhausted equilibrium is
P1 = (60, 33.13, 0), and theorem (5) is satisfied. See figure (2)

In figures (3) and (6) we use the following parameters: s = 190, β = 0.05, d = 0.1, a = 0.1, r = 0.1, b = 0.2, c = 0.01, τ =
6, k = 1200,p(t) = 1+0.5 cos

(
2πt − π

12

)
. The basic reproduction numbers for the viral infection and for the CLT response

are R0 = 754.9834 > 1 and R1 = 93.5417 > 1, respectively.

The dynamic behavior of system (2) becomes more complex as the amplitude parameter p1 increases. The numerical
simulation shows that the period of the viral dynamics seems not to agree with the oscillating immune response (figure
(3)). When we choose the parameters for amplitudes p1 = 0.2, 0.33 and 0.55, respectively, the period of the virus dynamics
is 1, 2 and 4, respectively according to figure (3).

In order to study the effect of the immune system oscillation over the behavior of the virus dynamics, the amplitude, which
is represented by p1, is used as bifurcation parameter. We obtain a similar diagram to the one obtained in (Bai and Zou,
2012). Let p1 be in the interval (0, 1). We obtain a bifurcation diagram in the plane p1 − y. In this diagram the number of
points in a vertical line corresponding to the amplitude represent multiples of the period of y(t). For example, a point in
the bifurcation diagram represents the period of y(t) in T days and n points represent the period in nT days for y(t).

Asp1 increases from 0 to 1, the virus dynamics has periods of 1, 2, 4, 8, 16. In figure (3) we can observe that when p1
is small the system dynamics is not repeating itself, it’s a cyclic day. When p1 is greater than 0.33, the dynamics repeats
itself every two days, it’s of two cyclic days, and when it’s 0.55, the dynamics repeats itself every four days, therefore
being four cyclic days. Finally, when it exceeds 0.55 the dynamics is of multiple cyclic days.

For the study of the dynamics of system (2), as the other parameters vary, we use as bifurcation parameter s, r, and
p1,respectively. In figure (4), we vary s; when s = 90 the virus dynamics is of one cyclic day for all the values of p1, as s
increases, as for example s = 137, the virus dynamics maintains its one day period, and when it exceeds certain threshold,
its period is of two cyclic days occurring the the double bifurcation period. When s = 175 and p1 varies, the dynamics
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Figure 3. When R1 = 93.5417 > 1 and R0 = 754.9834 > 1, the numerical simulations are run with different amplitudes
p1 = 0.2, 0.3 ans 0.55, respectively. Bifurcation diagram for system (2) as p1 changes.
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Figure 6. y(t) solution as p1 and τ changes.
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has periods 1, 2, 4, 8 etc. In figure (5) we use the parameter set s = 90, β = 0.05, d = 0.1, a = 0.1, b = 0.2, c = 0.01, τ =
6, k = 1200, p(t) = 1+ 0.5 cos

(
2πt − π

12

)
and we vary r. When r is small, r = 0.1, the virus dynamics is the same as when

p1 varies; when r = 0.35 the virus dynamics has a cyclic day and when it exceeds certain threshold the dynamics is of
two cyclic days, then it becomes of four cyclic days, and later it becomes of multiple days. Later it changes from multiple
days to one cyclic day. When r = 0.5, it changes from one cyclic day to two cyclic days and then chaos. When r is greater
than 0.74 it changes from one cyclic day to chaos.

Comparing figures (4) and (5), in the bifurcation diagrams we can observe that in figure (5) it changes quicker to chaos
than in figure (4) as p1 increases.

Nevertheless, as it is mentioned in (Bai & Zhou, 2012; keeling & Rohani, 2007), the bifurcation diagram cannot com-
pletely capture the dynamics behavior. To explore how the amplitude (p1) and the delay (τ) affects dynamics of system
(2), we perform numerical calculations for different amplitude rates and time delays. When τ is large and the amplitude
parameter is small, the fraction of infected cells shows harmonic oscillations (Figure 6, top a-c). As p1 increases to 0.33,
we observese for small delays gives rise to subharmonic resonance (Figure 6, middle d and e). A increase in delay can
alter the oscillations: from two day cycles to one day cycles (Figure 6, middle f). A further increase in p1, for example
p1 = 0.55, gives rise to four-day cycles that a noticeable one-day as well as two-day cycles component (Figure 6, bottom
g and h). The delay (that is big) can alter the oscillation: four day cycles to two day cycles (Figure 6, bottom f). Moreover,
the third column in figure 6 shows that the subharmonic resonance occurs only when the amplitude p1 and the delay τ are
big enough.

Let r = 0, system (2) become the model investigated in (Bai and Zhou, 2012).

x′(t) = s − dx(t) − βx(t)y(t)
y′(t) = βx(t)y(t) − ay(t) − p(t)y(t)z(t) (12)
z′(t) = cy(t − τ)z(t − τ) − bz(t),
p(t) = p0 + p1 cos(2πt − ϕ), 0 ≤ p1 < p0.

Comparing the viral infection model without logistic proliferation, our series of sufficient conditions for the stability of
equilibrium and uniform persistence are different. Moreover, we have shown by numerical simulations that the dynamical
behaviours become more and more complex with the increase of maximum proliferation rate (5).

7. Summary

In this paper, we give a delayed viral infection with the contribution of CTLs and periodic immune response, to which we
incorporated logistic growth. Similar to the analysis in Bai and Zhou (2012), we obtain the basic reproduction number
(R0) and the immune response reproductive number (R1). We verified that when R1 ≤ 1 the disease-free equilibrium
is globally asymptotically stable. For R1 < 1 < R0 the immune-exhausted equilibrium occurs and it is asymptotically
stable. In the case when R1 > 1 the dynamics of system (2) becomes become more complex with the increase of the
amplitude parameter p1 from 0 to 1. The delay can alter the oscillation period when p1 is big enough. When the delay is
big enough subharmonic resonance occurs with p1 greater than 0.33. Moreover, in the simulations it is illustrated that as
the noninfected cells growth rate increases the oscillation patterns of system (2) are modified (see figure(4)). It can also
be observed that when we use r as bifurcation parameter we obtain in a quicker way multiple cyclic days or chaos (see
figure (5)).

Our numerical results show that the growth rate of noninfected cells, the amplitude, the delay of the immune response, as
well as the maximum proliferation rate of white cells, can evidently change the dynamic behavior of the viral infection.
Our analytical results and numerical simulations can be used to explain the oscillating behavior of the virus population
that it is observed in chronic HBV or HCV patients.
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