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Abstract

This paper is concerned with computing upper and lower bounds for the error committed when some boundary value
problems are approximated by means of numerical techniques based on the Coefficients Perturbation Methods. These
computed bounds are expressed in terms of the perturbations introduced in the differential equation and in the prescribed
boundary conditions associated with it. Numerical examples demonstrating the sharpness of our results are given.
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1. Introduction

Let y(x) be a twice differentiable function in I := [x0, x1] that satisfies the following boundary value problem (b.v.p.):

(Dy)(x) := y
′′
(x) + a(x)y

′
(x) + b(x)y(x) = f (x); x ∈ I, (1)

Li[y] := ci1y(xi) + ci2y
′
(xi) = yi, i = 0, 1 (2)

where {a(x), b(x), f (x)} are given functions and {ci1, ci2; i = 0, 1} are some given constants.

Suppose that ỹ(x) is an approximation of y(x) that satisfies the following perturbed version of (1)-(2):

(D̃y)(x) := ỹ
′′
(x) + ã(x)ỹ

′
(x) + b̃(x)ỹ(x) = f̃ (x); x ∈ I, (3)

Li[ỹ] := ci1ỹ(xi) + ci2ỹ
′
(xi) = yi, i = 0, 1 (4)

where {ã(x), b̃(x), f̃ (x)} are approximations of {a(x), b(x), f (x)} chosen in such a way that the exact solution ỹ of (3) can
be obtained analytically in a closed form.

The natural question that usually arises, when an approximation technique is employed, is how much the generated
approximate solution deviates from the unknown exact solution. Results related to the issue of measuring the quality of
approximation are reported in a wide range of papers: A possible approach is to find error estimates and error bounds for
the solution of linear initial and boundary value problems e(x) := y(x) − ỹ(x) using the Coefficient Perturbation Method
(Ixaru 1984, 2000, El-Daou 2002, 2006, El-Daou and Al-Mutawa 2009, El-Daou and Ortiz 1995) or with the Tau method
(Ortiz 1969, Khajah & Ortiz 1991, Ojoland & Adeniyi, 2012). In (Akitoshi et al, 2010), a numerical method that provides
a guarenteed error bounds was presented. This method is based on estimates of the inverse operator and the Newton-
Kantorovich theorem. A computer assist method for generating a posteriori error bounds for b.v.p. is reported in (Birrell,
2015). Therein, the method utilizes a numerically generated approximation to the b.v.p. and the Green’s functions. In
(Corliss & Rihm 1996 , Lohner 1992, Neher, 1999 and Stetter 1990) enclosure methods and validation techniques were
proposed. But the drawbacks of those techniques lie in the fact that they apply only to initial value problems or to boundary
conditions of a specific form. Further, some results are not computable because they involve some unknown parameters
such as the conditioning number and the Lipschitz constant.

The main concern of this article is to develop practical formulae to compute upper and lower bounds for the error function
e(x) := y− ỹ and its derivative e

′
(x) when boundary conditions of the form (2) are considered with arbitrary {ci j; i, j = 1, 2}.

We find that the most immediate approach to measure the quality of ỹ(x) is to analyze the error equation obtained by
subtracting (3) from (1):

(De)(x) := e
′′
(x) + a(x)e

′
(x) + b(x)e(x) = F(x), (5)

Li[e] := ci1e(xi) + ci2e
′
(xi) = 0, i = 0, 1 (6)

45



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 6; 2016

where e(x) := y(x) − ỹ(x) and
F(x) := (Dỹ) − f = ( f − f̃ ) − (a − ã)ỹ

′ − (b − b̃)ỹ.

In general, solving Equation (5) analytically for e(x) is not easier than solving the original b.v.p. (1). However, in (El-
Daou, 2002), e(x) was obtained as an infinite series expansion that involves functions {a(x), b(x), F(x)} and their higher
derivatives. This result is recalled now:

Theorem 1. Let ϵ( j)
0 := e( j)(x0), j = 0, 1. If a(x) and b(x) are infinitely differentiable functions in I, then, for all x ∈ I,

e(x) =

∫ x

x0

A(x, t)F(t)dt + A(x, x0)ϵ
′

0 + B(x, x0)ϵ0,

e
′
(x) =

∫ x

x0

A
′
(x, t)F(t)dt + A

′
(x, x0)ϵ

′

0 + B
′
(x, x0)ϵ0,

where

A(x, t) =
∑
k≥0

ak(t)
k!

(x − t)k, A
′
(x, t) :=

∂A
∂x
,

B(x, t) =
∑
k≥0

bk(t)
k!

(x − t)k, B
′
(x, t) :=

∂B
∂x
,

with a0(x) ≡ 0, b0(x) ≡ 1 and for all k ≥ 0

ak+1(x) = a
′

k(x) + bk(x) − a(x)ak(x),
bk+1(x) = b

′

k(x) − b(x)ak(x).

We see then that to construct error estimations for the function and the derivative we can simply replace the infinite series
A(x, t) and B(x, t) in e(x) and e

′
(x) expressions above, by their respective nth partial sums:

An(x, t) :=
n∑

k=0

ak(t)
k!

(x − t)k and Bn(x, t) :=
n∑

k=0

bk(t)
k!

(x − t)k,

for an arbitrary large n ≥ 1. Once an estimation ẽ(x) ≈ e(x) is obtained, one expects to gain an improved approximation
˜̃y = ỹ+ ẽ ≈ y. If this procedure is continued in an iterative fashion as in (Auzinger et al. 2004), a further improvement can
be achieved.

In this paper, rather than finding error estimates, we attempt to obtain error enclosures el(x) and eu(x) such that el(x) ≤
e(x) ≤ eu(x). This guarantees that the exact solution y will satisfy the double inequality ỹ − el ≤ y ≤ ỹ − eu. Such
error bounds were obtained in (El-Daou 2002, 2006) for the special case where the linear functionals (2) define initial
conditions; that is y(x0) = y0 and y

′
(x0) = y1. This result is recalled in Section 2. In section 3 we extend our analysis to

treat a more general case. Numerical examples illustrating our results are given in Section 4.

2. Error Bounds for Initial Value Problems

The application of Cauchy’s inequalities (Davis 1975) to A(x, t) (resp. B(x, t)), as a real-analytic function of x, implies
that for any given real ρ > 0, there exist two positive real numbers γ1 and γ2 such that for all k > n∥∥∥∥∥ak

k!

∥∥∥∥∥ ≤ γ1ρ
k (resp.

∥∥∥∥∥bk

k!

∥∥∥∥∥ ≤ γ2ρ
k), (7)

where ∥u∥ := sup{|u(t)| : t ∈ I}. We have then the following proposition of which the proof is given in (El-Daou 2002):

Proposition 2. Let Rn[A] and Rn[B] stand for the nth remainders of A(x) and B(x) respectively,

Rn[A] :=
∑
k>n

ak(t)
k!

(x − t)k and Rn[B] :=
∑
k>n

bk(t)
k!

(x − t)k.

Let ρ < min(1, 1
x1−x0

) and let n ≥ 1. Then for all x ∈ I := [x0, x1] we have

Rn[A] ≤ γ1ϕn,ρ(x, t) and Rn[B] ≤ γ1ϕn,ρ(x, t)

where {γ1, γ2} are given in (7) and

ϕn,ρ(x, t) :=
(x − t)n+1ρn+1

1 − ρ(x − t)
. (8)
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Theorem 1 and Proposition 2 yield Theorem 3 whose the proof is given in (El-Daou 2002). Note that whenever notation
H(i) appears throughout the paper, it refers to the ith derivative of H(x, t) with respect to x, for any single or two variables
function H; in particular H(0) = H.

Theorem 3. Let ρ < min(1, 1
x1−x0

) and let n ≥ 1. Then for all x ∈ I we have∣∣∣e(i)(x) − E(i)
n (x)
∣∣∣ ≤ W (i)

n (x); (i = 0, 1), (9)

where E(i)
n (x), the error estimation, and W (i)

n (x), the estimate deviation, are expressed as:

E(i)
n (x) :=

∫ x

x0

A(i)
n (x, t)F(t)dt + A(i)

n (x, x0)ϵ
′

0 + B(i)
n (x, x0)ϵ0, (10)

W (i)
n (x) := γ1

∫ x

x0

ϕ(i)
n,ρ(x, t)|F(t)|dt + [γ1|ϵ′0| + γ2|ϵ0|]ϕ(i)

n,ρ(x, x0), (11)

where A(i)
n (x, t) and B(i)

n (x, t) are the nth partial sums of A(i)(x, t) and B(i)(x, t) respectively.

Expressions (9)-(10)-(11) form a one-step explicit algorithm for enclosing the error, in the sense that the knowledge of
the exact initial values of ϵ0 and ϵ

′

0 is sufficient to evaluate E(i)
n (x) and W (i)

n (x) for any x ∈ I = [x0, x1]. In (El-Daou 2006),
algorithm (9)-(10)-(11) was modified to accept bounds of ϵ0 and ϵ

′

0 without jeopardizing the efficiency of the algorithm.
The modified version is stated in Theorem 4 in which we stress the dependence of E(i)

n (x) (resp. W (i)
n (x)) on the initial

errors ϵ0 and ϵ
′

0 by writing E(i)
n [x; |ϵ0|, |ϵ

′

0|] for E(i)
n (x), (resp. W (i)

n [x; |ϵ0|, |ϵ
′

0|]).

Theorem 4. Suppose that the assumptions of Theorem 3 hold. Suppose further that there exist four real numbers {ℓ±, ℓ
′
±}

such that
ℓ(i)− ≤ ϵ(i)0 ≤ ℓ

(i)
+ , i = 0, 1.

Then for n ≥ 1 and for all x ∈ I, the exact error in function and in its derivative satisfy the inequalities

E(i)
n [x; |ℓβ̄(i) |, |ℓ′ᾱ(i) |] −W (i)

n [x; |ℓs|, |ℓ
′

s′ |] ≤ e(i)(x) ≤ E(i)
n [x; |ℓβ(i) |, |ℓ′

α(i) |] +W (i)
n [x; |ℓs|, |ℓ

′

s′ |], (12)

where, for i = 0, 1

α(i) ≡ α(i)
n (x) := sign[A(i)

n (x, x0)], ᾱ(i) = −α(i),
β(i) ≡ β(i)

n (x) := sign[B(i)
n (x, x0)], β̄(i) = −β(i),

s(i) := sign[ϵ(i)0 ].

3. Error Bounds for Boundary Value Problems

This section is devoted to treat the case of b.v.p’s. The main task is to find computable bounds for ϵ0 and ϵ
′

0, as required
by Theorem 4, when the boundary conditions are defined as in (2). In order that the b.v.p. makes sense, we first assume
that

|c01| + |c02| > 0 and |c11| + |c12| > 0. (13)

In accordance with (13), we can assume that c01 and c11 are nonzero and write

ϵ0 = (−c02

c01
)ϵ
′

0 ≡ λ0ϵ
′

0 and ϵ1 = (−c12

c11
)ϵ
′

1 ≡ λ1ϵ
′

1. (14)

Therefore, e(x) can be written as
e(x) = δ(x) + η(x)ϵ

′

0 (15)

where

δ(x) :=
∫ x

x0

A(x, t)F(t)dt and η(x) := A(x, x0) + λ0B(x, x0). (16)

In order to formulate the main results of this paper let:

g(t) := a
′
(t) − b(t)

K(x, t) := (x − t)g(t) − a(t)
ri := 1 + λia(xi), (i = 0, 1)
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G(x) := λ0 + r0(x − x0) + a(x1)η(x1)x +
∫ x

x0

K(x, t)η(t)dt

ρ(x) := a(x1)δ(x1)x +
∫ x

x0

(x − t)F(t)dt +
∫ x

x0

K(x, t)δ(t)dt.

Note that

G
′
(x1) = r0 +

∫ x1

x0

g(t)η(t)dt

ρ
′
(x1) =

∫ x1

x0

F(t)dt +
∫ x1

x0

g(t)δ(t)dt. (17)

We are able now to give formal expressions for ϵ
′

0 and ϵ0:

Proposition 5. Suppose that ∆ := [G(x1) − p̃η(x1)]r1 − λ1G
′
(x1) , 0 where p̃ := x1a(x1). Then

ϵ
′

0 =
∆0

∆
and ϵ

′

1 =
∆1

∆
, (18)

where

∆0 = λ1ρ
′
(x1) − [ρ(x1) − p̃δ(x1)]r1,

∆1 = [G(x1) − p̃η(x1)]ρ
′
(x1) − [ρ(x1) − p̃δ(x1)]G

′
(x1).

Proof. Let us integrate (5) from x0 to x:

e
′
(x) − e

′
(x0) +

∫ x

x0

a(t)e
′
(t)dt +

∫ x

x0

b(t)e(t)dt =
∫ x

x0

F(t)dt

e
′
(x) − e

′
(x0) + a(x)e(x) − a(x0)e(x0) −

∫ x

x0

a
′
(t)e(t)dt+

+

∫ x

x0

b(t)e(t)dt =
∫ x

x0

F(t)dt

e
′
(x) − ϵ ′0 + a(x)e(x) − a(x0)e(x0) −

∫ x

x0

g(t)e(t)(t)dt =
∫ x

x0

F(t)dt

e
′
(x) − ϵ ′0 + a(x)e(x) − a(x0)λ0ϵ

′

0 −
∫ x

x0

g(t)e(t)(t)dt =
∫ x

x0

F(t)dt

e
′
(x) − [1 + a(x0)λ0]ϵ

′

0 + a(x)e(x) −
∫ x

x0

g(t)e(t)(t)dt =
∫ x

x0

F(t)dt

e
′
(x) − r0ϵ

′

0 + a(x)e(x) −
∫ x

x0

g(t)e(t)(t)dt =
∫ x

x0

F(t)dt

and therefore

e
′
(x) = r0ϵ

′

0 − a(x)e(x) +
∫ x

x0

F(t)dt +
∫ x

x0

g(t)e(t)dt. (19)

When x = x1, (19) becomes

ϵ
′

1 = r0ϵ
′

0 − a(x1)ϵ1 +
∫ x1

x0

F(t)dt +
∫ x1

x0

g(t)e(t)dt

= r0ϵ
′

0 − a(x1)λ1ϵ
′

1 +

∫ x1

x0

F(t)dt +
∫ x1

x0

g(t)e(t)dt

= r0ϵ
′

0 − a(x1)λ1ϵ
′

1 +

∫ x1

x0

F(t)dt +
∫ x1

x0

g(t)δ(t)dt +
∫ x1

x0

g(t)η(t)ϵ
′

0dt

which implies that

r1ϵ
′

1 −
{

r0 +

∫ x1

x0

g(t)η(t)dt
}
ϵ
′

0 =

∫ x1

x0

F(t)dt +
∫ x1

x0

g(t)δ(t)dt. (20)
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A second integration of (19) yields:

e(x) − ϵ0 =(x − x0)r0ϵ0
′ +

∫ x

x0

∫ t

x0

F(s)dsdt +
∫ x

x0

∫ t

x0

g(s)e(s)dsdt −
∫ x

x0

a(t)e(t)dt

=(x − x0)r0ϵ0
′ +

∫ x

x0

(x − t)F(t)dt +
∫ x

x0

(x − t)g(t)e(t)dt −
∫ x

x0

a(t)e(t)dt

=(x − x0)r0ϵ0
′ +

∫ x

x0

(x − t)F(t)dt +
∫ x

x0

K(x, t)e(t)dt.

That is

e(x) = ϵ0 + (x − x0)r0ϵ0
′ +

∫ x

x0

(x − t)F(t)dt +
∫ x

x0

K(x, t)e(t)dt. (21)

Setting x = x1 in (21), we get

ϵ1 − ϵ0 = (x1 − x0)r0ϵ
′

0 +

∫ x1

x0

(x1 − t)F(t)dt +
∫ x1

x0

K(x1, t)δ(t)dt +
{∫ x1

x0

K(x1, t)η(t)dt
}
ϵ
′

0.

That is,

λ1ϵ
′
1 −
{
λ0 + (x1 − x0)r0 +

∫ x1

x0

K(x1, t)η(t)dt
}
ϵ
′
0 =

∫ x1

x0

(x1 − t)F(t)dt +
∫ x1

x0

K(x1, t)δ(t)dt. (22)

In terms of G(x) and ρ(x), equations (20)-(22) form the algebraic system[
−G

′
(x1) r1

−G(x1) + p̃η(x1) λ1

] [
ϵ
′

0
ϵ
′

1

]
=

[
ρ
′
(x1)
ρ(x1) − p̃δ1

]
,

of which the solution is {ϵ ′0, ϵ
′

1} as required. This completes the proof of the proposition. �

Now we obtain bounds for ϵ0 and ϵ
′

1. To this end we need the following technical lemma:

Lemma 6. Suppose that
∑∞

i=0 pi and
∑∞

i=0 qi are two convergent numerical series and for all n ≥ 1 let Pn ∈ R+ and
Qn ∈ R+ such that |∑∞i>n pi| ≤ Pn and |∑∞i>0 qi| ≤ Qn. Then for appropriately chosen n we have the following enclosure:

min
{

(
∑n

i=0 pi) ± Pn

(
∑n

i=0 qi) ± Qn

}
≤
∑∞

i=0 pi∑∞
i=0 qi

≤ max
{

(
∑n

i=0 pi) ± Pn

(
∑n

i=0 qi) ± Qn

}
.

Clearly, ∆ and ∆0, introduced in Proposition 5, have infinite series expansions because their expressions involve A(x, t)
and B(x, t). Then we can write their nth residuals Rn[∆] and Rn[∆0] as:

Rn[∆] = Rn

[
G(x1) − p̃η(x1)]r1 − λ1G

′
(x1)
]

= r1Rn[G(x1)] − p̃r1Rn[η(x1)] − λ1Rn[G
′
(x1)]

= r1

[
x1a(x1)Rn[η(x1)] +

∫ x1

x0

K(x1, t)Rn[η(t)]dt
]
−

p̃r1Rn[η(x1)] − λ1

∫ x1

x0

g(t)Rn[η(t)]dt

=

∫ x1

x0

[
r1K(x1, t) − λ1g(t)

]
Rn[η(t)]dt =

∫ x1

x0

Ψ(t)Rn[η(t)]dt. (23)

Rn[∆0] = λ1Rn[ρ
′
(x1)] − r1Rn[ρ(x1)] + r1 p̃Rn[δ(x1)]

= λ1

∫ x1

x0

g(t)Rn[δ(t)]dt − r1x1a(x1)Rn[δ(x1)]−

r1

∫ x1

x0

K(x1, t)Rn[δ(t)]dt + r1 p̃R[δ(x1)] = −
∫ x1

x0

Ψ(t)Rn[δ(t)]dt. (24)

From (16), η(x) = A(x, x0) + λ0B(x, x0) and δ(x) =
∫ x

x0
A(x, t)F(t)dt. So

Rn[η(x)] = Rn[A(x, x0)] + λ0Rn[B(x, x0)] and Rn[δ(x)] =
∫ x

x0

Rn[A(x, t)]F(t)dt.
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Therefore, (23) becomes

Rn[∆] =
∫ x1

x0

Ψ(t) (Rn[A(t, x0)] + λ0Rn[B(t, x0)]) dt,

which, owing to Proposition 5, implies that

|Rn[∆]| ≤
∫ x1

x0

|Ψ(t)|
(
γ1 + |λ0|γ2)ϕn,ρ(t, x0)

)
dt ≡ Mn[∆]. (25)

Similarly, it follows from (24) that

Rn[∆0] = −
∫ x1

x0

∫ t

x0

Ψ(t)Rn[A(t, s)]F(s)dsdt

and therefore

|Rn[∆0]| ≤ γ1

∫ x1

x0

∫ t

x0

|Ψ(t)F(s)|ϕn,ρ(t, s)dsdt ≡ Mn[∆0]. (26)

We have proved then the main result of this paper which is summarized in following theorem:

Theorem 7. The assumptions and notation of Proposition 5 hold. Then for appropriately chosen n we have the following
enclosure:

min
{

S n[∆0] ± Mn[∆0]
S n[∆] ± Mn[∆]

}
≤ ϵ ′0 ≤ max

{
S n[∆0] ± Mn[∆0]
S n[∆] ± Mn[∆]

}
(27)

and

min
{
λ0

S n[∆0] ± Mn[∆0]
S n[∆] ± Mn[∆]

}
≤ ϵ0 ≤ max

{
λ0

S n[∆0] ± Mn[∆0]
S n[∆] ± Mn[∆]

}
(28)

where S n[∆] and S n[∆0] are the nth partial sums of ∆ and ∆0 respectively and Mn[∆] and Mn[∆0] are defined by (25) and
(26).

The results given in Theorem 7 provide computable upper and lower bounds for the initial errors ϵ0 and ϵ
′

0. Combining
Theorem 7 with algorithm (12) we can find sufficiently sharp bounds for the error e(x) at any x in the interval of interest.

Finally, we show how to treat the case where c02 = c12 = 0. Then ϵ0 = e(x0) = e(x1) = ϵ1 = 0 and therefore (21) becomes

e(x) = (x − x0)ϵ0′ +
∫ x

x0

(x − t)F(t)dt +
∫ x

x0

K(x, t)e(t)dt.

Evaluate this at x = x1 and note that e(x1) = 0,

(x1 − x0)ϵ0′ +
∫ x1

x0

(x1 − t)F(t)dt +
∫ x1

x0

K(x1, t)e(t)dt = 0.

Since e(x) = δ(x) + η(x)ϵ
′

0 with δ(x) =
∫ x

x0
A(x, t)F(t)dt and η(x) = A(x, x0),

(x1 − x0)ϵ0′ +
∫ x1

x0

(x1 − t)F(t)dt +
∫ x1

x0

K(x1, t)
[
δ(t) + η(t)ϵ

′

0

]
dt = 0

which implies that [
(x1 − x0) +

∫ x1

x0

K(x1, t)η(t)dt
]
ϵ0
′ +

∫ x1

x0

[(x1 − t)F(t) + K(x1, t)δ(t)] dt = 0.

Consequently,

ϵ
′

0 =

∫ x1

x0
[(t − x1)F(t) − K(x1, t)δ(t)] dt

(x1 − x0) +
∫ x1

x0
K(x1, t)η(t)dt

≡ ∆0

∆
. (29)

To find the residuals we proceed as in the proof of Theorem 7:

Rn[∆0] = −
∫ x1

x0

K(x1, t)Rn[δ(t)]dt = −
∫ x1

x0

K(x1, t)
∫ t

x0

Rn[A(t, s)]F(s)dsdt.
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Then

|Rn[∆0∥ ≤ γ1

∫ x1

x0

∫ t

x0

|K(x1, t)F(s)|ϕn(t, s)dsdt ≡ Mn(∆0). (30)

Similarly

Rn[∆] =
∫ x1

x0

K(x1, t)Rn[η(t)]dt =
∫ x1

x0

K(x1, t)A(x1, t)dt,

and therefore

|Rn[∆]| ≤ γ1

∫ x1

x0

|K(x1, t)|ϕn(t, x0)dt ≡ Mn(∆). (31)

As a result we have this corollary:

Corollary 8. If c02 = c12 = 0 then the estimates (27)-(28) apply with ∆ and ∆0 given by (29) and Mn[∆] and Mn[∆0]
defined by (30)-(31).

4. Numerical Examples

We present now some numerical results which illustrate the sharpness of the error bounds established in this paper.

Example 1. Consider the boundary value problem:

y
′′
(x) +

3x
(1 + x2)

y
′
(x) +

2
(1 + x2)2 y(x) = 0 ; x ∈ [0,

3
4

]

1
2

y(0) − y
′
(0) = 1/2

y(
3
4

) + y
′
(
3
4

) = 0.0256

the exact solution of which is y = (1 + x2)−1.

In this example we have a(x) = 3x(1 + x2)−1, b(x) = 2(1 + x2)−2 and f (x) = 0. Let us replace the coefficients a(x) and
b(x) by their values at the midpoint, a( 3

8 ) and b( 3
8 ) respectively. Then we solve the perturbed problem

ỹ
′′
(x) + a(

3
8

)ỹ
′
(x) + b(

3
8

)ỹ = 0 ; x ∈ [0,
3
4

]

ỹ(0) − 2ỹ
′
(0) = 1

ỹ(
3
4

) + ỹ
′
(
3
4

) = 0.0256

whose the exact solution can be found analytically. Table 1 displays the computed function and derivative values and their
upper and lower bounds at some points xi in [0, 3

4 ]. These bounds were computed using formulas (25-26-27-28). In this
example n = 40, ρ = 0.80, γ1 = 0.79 and γ2 = 1. The same results are plotted in Fig. 1.
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Figure 1. (Example 1). Plot of the exact solution, its upper and lower bounds for Example 1: (Left) the function, (Right)
the first derivative
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Table 1. This example was solved by the constant coefficient perturbation method. This table lists the exact errors in the
function and its derivative yi, y

′

i at some points xi as well as their respective upper and lower bounds.

xi yi y′ i
yi y1

i
y

i
yi − y

i
y
′

i
y′ i − y

′

i
0 1.0000001 4.723E-8

1.0000000 0
0.99999991 1.814E-7 -4.350E-8 9.072E-8

0.05 0.99750633 -0.099501813
0.99750623 -0.099501869
0.99750615 1.855E-7 -0.099501921 1.082E-7

0.1 0.99009911 -0.19605915
0.99009901 -0.19605921
0.99009892 1.886E-7 -0.19605927 1.241E-7

0.15 0.97799521 -0.28694226
0.97799511 -0.28694233
0.97799502 1.908E-7 -0.28694240 1.379E-7

0.2 0.96153856 -0.36982241
0.96153846 -0.36982249
0.96153837 1.920E-7 -0.36982256 1.493E-7

0.25 0.94117657 -0.44290650
0.94117647 -0.44290657
0.94117638 1.923E-7 -0.44290665 1.582E-7

0.3 0.91743129 -0.50500791
0.91743119 -0.50500800
0.91743110 1.918E-7 -0.50500808 1.646E-7

0.35 0.89086870 -0.55555272
0.89086860 -0.55555280
0.89086851 1.905E-7 -0.55555288 1.684E-7

0.4 0.86206906 -0.59453024
0.86206897 -0.59453032
0.86206888 1.885E-7 -0.59453041 1.700E-7

0.45 0.83160093 -0.62240387
0.83160083 -0.62240395
0.83160074 1.860E-7 -0.62240403 1.694E-7

0.5 0.80000010 -0.63999992
0.80000000 -0.64000000
0.79999991 1.830E-7 -0.64000008 1.671E-7

0.55 0.76775441 -0.64839128
0.76775432 -0.64839136
0.76775423 1.795E-7 -0.64839145 1.648E-7

0.6 0.73529421 -0.64878882
0.73529412 -0.64878893
0.73529403 1.766E-7 -0.64878904 2.178E-7

0.65 0.70298780 -0.64244833
0.70298770 -0.64244921
0.70298760 1.974E-7 -0.64245017 1.842E-6

0.7 0.67114133 -0.63058363
0.67114094 -0.63060223
0.67114053 7.924E-7 -0.63062246 3.884E-5

0.75 0.64000618 -0.61404169
0.64000000 -0.61440000
0.63999332 1.286E-5 -0.61478715 7.454E-4
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Example 2. Consider the boundary value problem:

y
′′
(x) +

ln(x + 1)
√

16 − x2
y
′
(x) +

cos x
√

16 − x2
y(x) = f (x); x ∈ [0, 0.8] (32)

y(0) = y(0.8) = 0 (33)
(34)

f (x) is chosen so that the exact solution is y(x) = x(x− 0.8)e−x2+4x. In this example we used the collocation method at the
zeros of T6(x), the Chebyshev polynomial of degree 6 shifted to [0, 0.8]. Table 2 displays the exact error in the function
and in the derivatives as well as the error upper and lower bounds that are computed using formulas (25-26-27-28). In this
example n = 16, ρ = 0.999, γ1 = 3.9E − 5 and γ2 = 1.2E − 5. The same results are plotted in Fig. 2.
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Figure 2. (Example 2). This problem was solved by collocation at Chebyshev T6(x). Plot of the exact solution, its upper
and lower bounds for Example 2: (Left) the function, (Right) the first derivative

Example 3. Consider the boundary value problem:

y
′′
(x) − (3 + 4x + 4x2)y = 0; x ∈ [0, 1] (35)

y(0) = 1, y(1) = e2 (36)

the exact solution of which is y = ex+x2
.

In this example, a(x) = 0, b(x) = −(3 + 4x + 4x2) and f (x) = 0. Let us approximate y(x) by means of the recursive Tau
Method (see Ortiz, 1969). In this method, we solve the following perturbed problem:

Y
′′
(x) − (3 + 4x + 4x2)Y =

3∑
i=0

τiL∗6+i(x); x ∈ [0, 1] (37)

Y(0) = 1, Y(1) = e2 (38)

where L∗k(x) is the kth Legendre polynomial shifted to [0, 1], and {τ0, τ1, τ2, τ3} are Tau parameters. Having made the
necessary calculations we found the approximate polynomial

Y(x) = 1.0000000000000 + 1.0000006832351x + 1.4450450966195x2 + 1.8901755592870x3

−2.2971153408288x4 + 7.8247500851272x5 − 6.9878438810860x6 + 3.5140464238074x7

and the Tau parameters

τ0 = −0.13324498990945, τ1 = −0.026881173106684,
τ2 = −0.0038350929137077, τ3 = −0.00028910295547572

The error bounds are computed using algorithm (25-26-27-28) with the following data: n = 25, γ1 = 2.3477676E − 7,
γ2 = 8.370487E−7and ρ = 0.99. Table 3 displays the computed bounds along with the exact counterparts for comparison.
Note that err′(0) = −6.83235E − 7. The same results are plotted in Fig. 3.
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Table 2. (Example 2). This problem was solved by collocation at the zeros of Chebyshev T6(x). This table lists the exact
errors in the function and its derivative yi, y

′

i at some points xi as well as their respective upper and lower bounds.

xi yi y′ i
yi y1

i
y

i
yi − y

i
y
′

i
y′ i − y

′

i
0 0 -0.79999999999016

0 -0.80000000000000
0 0 -0.80000000000990 1.974E-11

0.04 -0.0356176965483 -0.98319839398
-0.0356176965487 -0.98319839399
-0.0356176965491 7.896E-13 -0.98319839400 1.973E-11

0.08 -0.0788165159118 -1.17839448679
-0.0788165159126 -1.17839448680
-0.07881651591334 1.579E-12 -1.17839448681 1.971 E-11

0.12 -0.12998632621488 -1.38081160961
-0.12998632621606 -1.38081160962
-0.12998632621724 2.366 E-12 -1.38081160963 1.967E-11

0.16 -0.18929122697778 -1.58389434174
-0.18929122697935 -1.58389434175
-0.18929122698093 3.152E-12 -1.58389434176 1.962E-11

0.20 -0.2565931464577 -1.7790458154436
-0.2565931464596 -1.7790458154534
-0.2565931464616 3.936E-12 -1.7790458154632 1.955E-11

0.24 -0.3313649805223 -1.95536897078
-0.3313649805246 -1.95536897079
-0.3313649805270 4.716E-12 -1.95536897080 1.947E-11

0.28 -0.412593619239 -2.0994214225602
-0.412593619242 -2.0994214225699
-0.412593619245 5.493E-12 -2.0994214225796 1.938E-11

0.32 -0.49867362353457 -2.194995066262
-0.49867362353769 -2.194995066272
-0.49867362354084 6.266E-12 -2.194995066281 1.928E-11

0.36 -0.587292786148 -2.222932856825
-0.587292786151 -2.222932856835
-0.587292786155 7.036E-12 -2.222932856844 1.921E-11

0.40 -0.6753113307156 -2.160996258293
-0.6753113307194 -2.160996258302
-0.6753113307234 7.805E-12 -2.160996258312 1.9356E-11

0.44 -0.75863705860610 -1.983797593253
-0.75863705861038 -1.983797593263
-0.75863705861469 8.596E-12 -1.983797593274 2.054E-11

0.48 -0.83209932999461 -1.662811827770
-0.83209932999933 -1.662811827782
-0.83209933000411 9.497E-12 -1.662811827796 2.604E-11

0.52 -0.88932534483397 -1.16648212262
-0.88932534483933 -1.16648212264
-0.88932534484483 1.085E-11 -1.16648212266 4.745E-11

0.56 -0.92262274878995 -0.46043268601
-0.92262274879667 -0.46043268607
-0.92262274880380 1.385E-11 -0.46043268613 1.221E-10

0.60 -0.92287310385496 0.49219898889
-0.92287310386548 0.49219898873
-0.92287310387713 2.217E-11 0.49219898853 3.604E-10

0.64 -0.87944120598574 1.73030057332
-0.87944120600750 1.73030057282
-0.87944120603227 4.654E-11 1.73030057225 1.066E-9

0.68 -0.78010557407337 3.2941869905
-0.78010557412757 3.2941869891
-0.78010557418929 1.159E-10 3.2941869875 3.031E-9

0.72 -0.61101564685 5.2248626925
-0.61101564701 5.2248626883
-0.61101564719 3.317E-10 5.2248626835 8.963E-9

0.76 -0.35668127899858 7.5631449532
-0.35668127946535 7.5631449406
-0.35668127997107 9.725E-10 7.5631449271 2.612E-8

0.80 1.3688564996066E-9 10.348653889
0 10.348653852
-1.4497281379915E-9 2.819E-9 10.348653814 7.478E-8
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Table 3. (Example 3). This problem was solved by Tau Method with Legendre L6(x). This table lists the exact errors in
the function and its derivative yi, y

′

i at some points xi as well as their respective upper and lower bounds.

xi yi y′ i
yi y1

i
y

i
yi − y

i
y
′

i
y′ i − y

′

i
0 1.0000000000000 1.000000010

1.0000000000000 1.000000000
1.0000000000000 0 0.999999992 1.836E-8

0.05 1.05390256260 1.1592928287
1.05390256208 1.1592928183
1.05390256168 9.190E-10 1.1592928103 1.843E-8

0.10 1.11627807150 1.3395336951
1.11627807046 1.3395336845
1.11627806966 1.845E-9 1.3395336765 1.866E-8

0.15 1.18827182219 1.5447533776
1.18827182061 1.5447533668
1.18827181940 2.788 E-9 1.5447533585 1.907E-8

0.20 1.27124915245 1.7797488216
1.27124915032 1.7797488104
1.27124914869 3.756E-9 1.7797488019 1.970E-8

0.25 1.36683794387 2.0502569234
1.36683794117 2.0502569118
1.36683793911 4.762E-9 2.0502569028 2.057E-8

0.30 1.47698079718 2.3631692825
1.47698079388 2.3631692702
1.47698079136 5.818E-9 2.3631692608 2.174E-8

0.35 1.6039991868 2.7267986240
1.6039991828 2.7267986108
1.6039991798 6.942E-9 2.7267986008 2.324E-8

0.40 1.7506725049 3.1512105148
1.7506725003 3.1512105005
1.7506724968 8.150E-9 3.1512104896 2.515E-8

0.45 1.9203356775 3.6486377927
1.9203356721 3.6486377771
1.9203356680 9.465E-9 3.6486377651 2.754E-8

0.50 2.1170000228 4.2340000505
2.1170000166 4.2340000332
2.1170000119 1.091E-8 4.2340000200 3.050E-8

0.55 2.3455032936 4.9255569211
2.3455032865 4.9255569017
2.3455032811 1.253E-8 4.9255568869 3.413E-8

0.60 2.6116964815 5.7457322634
2.6116964734 5.7457322415
2.6116964672 1.434E-8 5.7457322248 3.858E-8

0.65 2.9226770762 6.7221572787
2.9226770669 6.7221572538
2.9226770598 1.640E-8 6.7221572347 4.400E-8

0.70 3.2870812180 7.8889949264
3.2870812074 7.8889948977
3.2870811992 1.876E-8 7.8889948758 5.061E-8

0.75 3.7154507501 9.2886268781
3.7154507379 9.2886268448
3.7154507286 2.149E-8 9.2886268194 5.869E-8

0.80 4.2206958310 10.973809163
4.2206958170 10.973809124
4.2206958063 2.466E-8 10.973809094 6.871E-8

0.85 4.818679864 13.010435634
4.818679847 13.010435588
4.818679835 2.841E-8 13.010435552 8.197E-8

0.90 5.528961497 15.481092195
5.528961478 15.481092137
5.528961464 3.299E-8 15.481092090 1.045E-7

0.95 6.375738986 18.489643084
6.375738962 18.489642991
6.375738946 3.954E-8 18.489642906 1.781E-7

1. 7.389056134 22.167168806
7.389056099 22.167168297
7.389056075 5.920E-8 22.167167787 1.019E-6
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Figure 3. (Example 3). This problem was solved by Tau with Legendre L∗6(x). Plot of the exact solution, its upper and
lower bounds for Example 3: (Left) the function, (Right) the first derivative

5. Conclusion

There are several results concerning the error estimates when a boundary value problem is solved by numerical methods.
But very few of those results have a practical value because they contain unknown parameters related to the differential
operator such as the conditioning number and the Lipschitz constant. In this paper, using a technique based on the
Coefficients Perturbation Methods, we managed to avoid this drawback and to develop practical formulas that allow to
compute upper and lower bounds for the error in the function and in its derivative. These computed bounds are expressed
in terms of the perturbations introduced in the differential equation and in the prescribed boundary conditions associated
with it. We demonstrated the sharpness of our results through some numerical examples.
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