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Correspondence: Université Marien Ngouabi, Faculté des Sciences et Techniques, BP. 69, Brazzaville, Congo. E-mail:
bondami@gmail.com

Received: August 29, 2016 Accepted: September 28, 2016 Online Published: November 25, 2016

doi:10.5539/jmr.v8n6p34 URL: http://dx.doi.org/10.5539/jmr.v8n6p34

Abstract

In this paper we consider the numerical approximation of a class of second order elliptic boundary value problems with
discontinuous and highly periodically oscillating coefficients. We apply both classical and modified finite volume methods
for the approximate solution of this problem. Error estimates depending on ε the parameter involved in the periodic
homogenization are established. Numerical simulations for one-dimensional problem confirm the theorical results and
also show that the modified scheme has a smaller constant of convergence than the classical scheme based on harmonic
averaging for this class of equations.

Keywords: homogenization, elliptic equations, oscillating coefficients, finite volume method, finite difference

1. Introduction

There are many practical computational problems with highly oscillatory solutions e.g. computation of flow in heteroge-
neous porous media for petroleum and groundwater reservoir simulation (see, e.g., (Hornung, 1997) and the bibliographies
therein). If a porous medium with a periodic structure is considered, with the size of the period is small enough compared
to the size of the reservoir, and denoting their ratio by ε (0 < ε << 1) an asymptotic analysis, as ε −→ 0, is required.
In this paper we will consider problems that are described by a linear elliptic equation in divergence form with highly
periodically oscillating coefficients. Especially we will consider the following model problem:

(Pε)
{
−div (Kε (x)▽uε) = f in Ω,

uε = 0 on Γ.

Ω ⊂ Rn (n = 1, 2, 3) is a bounded polygonal convex domain with a periodic structure and smooth boundary Γ, Kε(x) =
K(x /ε), K is a symmetric and uniformly positive definite matrix in Ω which has jumps discontinuities across a given
interface. The case of piecewise constant coefficient Kε is very important for the applications.
In porous medium flow, the problem (Pε) results from Darcy’s law and continuity for a single phase, incompressible flow
through a horizontal heterogeneous porous medium with periodic structure.

Using the homogenization tools (see, e.g., (Bakhvalov & Panasenko, 1989), ( Bensoussan, Lions & Papanicolaous, 1987),
(Jikov, Kozlov & Oleinik, 1994) and (Sanchez-Palancia, 1980) ) original Problem (Pε) can be replaced by homogenized
Problem, modeling some average quantity without the oscillations.

Whenever effective equations are applicable they are very useful for computational purposes. There are however many
situations for which ε is not sufficiently small so that the effective equations are not practical. In this cases the original
equation has to be approximated directly.
The numerical approximation partial differential equations with highly oscillating coefficients has been a problem of in-
terest for many years and many methods have been developed (see, e.g., ( Amaziane & Ondami, 1999), (Chen & Hou,
2002), (Versieux & Sarkis, 2008) and (Ondami, 2001, 2015) and the bibliographies therein).

The case where Kε has continuous coeffients is the most studied. The case of discontinuous coefficients has been ad-
dressed in some work as in (Bourgat, 1978) and (Bourgat & Dervieux, 1978) where Authors use a double-scale asymptotic
expansion. In (Amaziane & Ondami, 1999) and (Ondami, 2001), the numerical approximation of the problem, in the case
of discontinuous coefficients was done by finite elements methods. However no error estimate has been established and
is still, to our knowledge, an opened issue.
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Elliptic problems with discontinuous coefficients (often called interface problems) arise naturally in mathematical model-
ing processes in heat and mass transfer, diffusion in composite media flows in porous media etc.

In this paper the approximation will be done by finite volume methods (see, e.g., (Eymard, Gallouët & Herbin, 2000)
and (Chernogorova, Ewing, Iliev & Lazarov, 2001)) and the study is limited to one-dimensional problem (1-D problem).
This 1-D problem illustrates very clearly the dependence of numerical results to ε, the parameter of homogenization.
Error estimates are established. The obtained results can be generalized in the two-dimensional and three-dimensional
problems.
The paper is organized as follows. In section 2, a description of methods used is presented as well as the obtained error
estimates. Section 3 is devoted to numerical simulations. Lastly, some concluding remarks are presented in section 4.

2. Methods

Our study will focus on the one-dimensional problem and we assume (without loss of generality) that Ω =]0, 1[. In this
case the problem (Pε) is written simply {

− d
dx

(
kε (x) d uε

d x

)
= f in (0, 1),

uε(0) = uε(1) = 0.
(1)

where kε(x) = k (x /ε) = k(y), with y = x /ε, k is a discontinuous and periodic function of period 1, on ]0, 1[ .
In all this paper we make the following assumptions

(A1) α < k(y) 6 β, a.e., in ]0, 1[ , with some α, β ∈ R∗+,
(A2) f ∈ L2 (]0, 1[) .

The assumptions (A1) and (A2) ensure the existence and uniqueness of the solution of the problem (1). From homoge-
nization theory (see, e.g., (Sanchez-Palancia, 1980), (Bensoussan, Lions & Papanicolaous, 1987) and (Jikov, Kozlov &
Oleinik, 1994)) follows

uε ⇀ u in H1
0 (Ω) (consists of functions in Sobolev space H1 (Ω) that vanish on 0 and 1) weakly,

where u (homogenized solution) satisfies the following homogenized problem,{
− d

dx

(
k∗ d u

d x

)
= f in (0, 1),

u(0) = u(1) = 0,
(2)

and the constant k∗ is the mean harmonic value of k(y) on (0, 1).

This one-dimensional problem helps to clarify the eventual dependency of numerical results to the parameter ε. The
error estimates obtained can be generalized in the two-dimensional and three-dimensional cases which uses, for instance,
simplices or parallelepipedes mesh.
Two finite volume schemes will be compared: The classical scheme (see, e.g., (Eymard, Gallouët & Herbin, 2000)) and a
modified scheme (see, (Ewing, Iliev & Lazarov, 2001)).

In order to compute a numerical approximation to the solution uε, let us define a mesh, denoted by T , of the interval (0, 1)
consisting of N cells (or control volumes), denoted by Vi, i = 1, ...,N, and N points of (0, 1), denoted by xi, i = 1, ...,N,
satisfying the following assumptions:

Definition 1. An admissible mesh of (0, 1), denoted by T , is given by a family ( Vi ) i=1,...,N , N a positive integer, such that
Vi =

(
xi− 1

2
, xi+ 1

2

)
, and a family ( xi ) i=0,...,N , such that

x0 = x 1
2
= 0 < x1 < x 3

2
< ... < xi− 1

2
< xi < xi+ 1

2
< ... < xN < xN+ 1

2
= xN+1 = 1.

One sets

hi = m(Vi) = xi+ 1
2
− xi− 1

2
, i = 1, ...,N, and therefore

N∑
i=1

hi = 1,

h−i = xi − xi− 1
2
, h+i = xi+ 1

2
− xi, i = 1, ...,N,

hi+ 1
2
= xi+1 − xi, i = 0, ...,N,

size(T ) = h = max {hi, i = 1, ...,N} .
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2.1 Classical Finite Volume Scheme

Let T = (Vi)i=1,...,N be an admissible mesh, in the sense of Definition 1 , such that the discontinuities of kε coincide with
the interfaces of the mesh.
Classical finite volume scheme consiste to integrate the first equation of the problem (1) over Vi (see,e.g., (Eymard,
Gallouët & Herbin, 2000)). So we have:

−
(
kε(x)

duε(x)
d x

)
(xi+ 1

2
) +

(
kε(x)

duε(x)
d x

)
(xi− 1

2
) =

∫
Vi

f (x)dx, i = 1, ...,N. (3)

Let
( uεi ) i=1,...,N be the discrete unknows

and let
kεi =

1
hi

∫
Vi

kε(x)dx.

In order that the scheme be conservative, the discretization of the flux −kε(x) d uε(x)
d x at xi+ 1

2
should have the same value

on Vi and Vi+1. To this purpose, one introduces the auxiliary unknown uε
i+ 1

2
(approximation of uε at xi+ 1

2
). Since on Vi

and Vi+1, kε is continuous, the approximation of −kε(x) d uε(x)
d x may be performe on each side of xi+ 1

2
by using the finite

difference principe:

Hε
i+ 1

2
= −kεi

uε
i+ 1

2
−uεi

h+i
on Vi, i = 1, ...,N,

Hε
i+ 1

2
= −kεi+1

uεi+1−uε
i+ 1

2
h−i+1

on Vi+1, i = 0, ...,N − 1,

with uε1/2 = 0 and uεN+1/2 = 0, for the boundary conditions. Requiring the two above approximation of
(
kε d uε

d x

) (
xi+ 1

2

)
to be

equal (conservativity of the flux) yields the value of uε
1+ 1

2
(for i = 1, ...,N − 1) :

uε
1+ 1

2
=

uεi+1
kεi+1
h−i+1
+ uεi

kεi
h+i

kεi+1
h−i+1
+

kεi
h+i

which, in turn, allows to give expression of the approximation Hε
i+ 1

2
of

(
kε d uε

d x

) (
xi+ 1

2

)
:

Hε
i+ 1

2
= −τε

i+ 1
2

(
uεi+1 − uεi

)
, i = 1, ...,N − 1, (4)

Hε1
2
= −

kε1
h−1

uε1, (5)

Hε
N+ 1

2
=

kεN
h+N

uεN , (6)

with

τε
i+ 1

2
=

kεi kεi+1

h+i kεi+1 + h−i+1kεi
, i = 1, ...,N − 1. (7)

Remark 1. If hi = h, for all i ∈ 1, ...,N, and xi is assumed to be center of Vi, then h−i = h+i =
h
2 , so that

Hε
i+ 1

2
= −

2kεi kεi+1

kεi + kεi+1

(
uεi+1 − uεi

)
h

,

and therefore the mean harmonic value of kε is involved.

The numerical scheme for the approximation of Problem (1) is therefore,

Hε
i+ 1

2
− Hε

i− 1
2
= hi fi, ∀i ∈ 1, ...,N. (8)
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with

fi =
1
hi

∫ xi+ 1
2

xi− 1
2

f (x)dx, for i = 1, ...,N, and where
(
Hi+ 1

2

)
i∈{0,...,N}

is defined by (4)-(6)

Taking (7) and 4)-(6) into account, the scheme (8) yields a system of N equations with N unknowns uε1, ..., u
ε
N .

Remark 2. The fact that kε is discontinuous, periodic (period ε) and with discontinuities that coincide with the interfaces
of the mesh T leads to say that:

ε = 1
np

, where np is a positive integer (periods number), and if hi = h = size(T ), for all i ∈ {1, ...,N} then h = ε
m , where

1 < m < N.

Note. Throughout the paper, we will denote by c generic constants, even if they take different values at different places.

We now state the main result of this section.

Theorem 1. Let T = ( Vi )i=1,...,N be an admissible mesh of (0, 1), in the sens of Definition 1, and uniform (i.e.
hi = h, ∀i ∈ {1, ...N}) such that
1) xi is the center of ( Vi )i=1,...,N , and the discontinuities of kε coincide with the interfaces of the mesh,

2) kε ∈ C1
(
Vi

)
, and f ∈ C1

(
Vi

)
, for all i = 1, ...,N.

Let eεi = uε(xi) − uεi , ei = u(xi) − uεi where uε is the solution of Problem (1), u is the homogenized solution and
uεh = ( uεi )i=1,...,N is the solution of (4)-(8). Then there exists a constant c independent of ε and h such that

∥∥∥uε − uεh
∥∥∥2

H1(Ω) ≡
N∑

i=1

τε
i+ 1

2

(
eεi+1 − eεi

)2 6 ch2

ε
, (9)

where τε
i+ 1

2
is defined in (7), and ∥∥∥uε − uεh

∥∥∥
L∞(Ω) ≡ max

1≤i≤N
| eεi |6 c h, (10)

∥∥∥u − uεh
∥∥∥

L∞(Ω) ≡ max
1≤i≤N

| ei |6 c h + cε. (11)

Proof.

The proof of the Theorem 1 is obtained by using the same gait as in (Eymard, Gallouët, & Herbin, 2000). Let

H
ε

i+ 1
2
= −

(
kε

duε

d x

) (
xi+ 1

2

)
and H∗,ε

i+ 1
2
= −τε

i+ 1
2

(uε(xi+1) − uε(xi)) , for i = 0, ...,N, with τε1
2
=

kε1
h−1

and τε
N+ 1

2
=

kεN
h+N
.

(12)

Let us first show there exists c independent of ε and h such that

H∗,ε
i+ 1

2
= H

ε

i+ 1
2
+ T ε

i+ 1
2
,

∣∣∣∣∣T εi+ 1
2

∣∣∣∣∣ ≤ ch
ε
, i = 0, ...,N. (13)

In order to show this, let us introduce

H∗,−,ε
i+ 1

2
= −kεi

uε(xi+ 1
2
) − uε(xi)

h+i
and H∗,+,ε

i+ 1
2
= −kεi+1

uε(xi+1) − uε(xi+ 1
2
)

h−i+1
(14)

Since kε ∈ C1
(
Vi

)
, one has uε ∈ C2

(
Vi

)
. By developing the first equation of (1) in Vi (i = 1, ...,N), one obtains

−kε
d2uε

d2x
− 1
ε

dk
(

x
ε

)
d x

duε

d x
= f in Vi, i = 1, ...,N. (15)

According to (Amaziane & Ondami, 1999) and (Ondami, 2001), one has

∥uε∥H1(Ω) ≤ c, i = 1, ...,N.
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Hence ∥∥∥∥∥duε

d x

∥∥∥∥∥
L∞(Vi)

≤ c, i = 1, ...,N, (16)

and ∥∥∥∥∥∥d2uε

d2x

∥∥∥∥∥∥
L∞(Vi)

≤ c
ε
, i = 1, ...,N. (17)

By using (A1) and (14)-(17), one deduces that there exists c independent of ε and h such that

H∗,−,ε
i+ 1

2
= H

ε

i+ 1
2
+ R−,ε

i+ 1
2
, where

∣∣∣∣∣R−,εi+ 1
2

∣∣∣∣∣ 6 c h
ε
, i = 1, ...,N, (18)

H∗,+,ε
i+ 1

2
= H

ε

i+ 1
2
+ R+,ε

i+ 1
2
, where

∣∣∣∣∣R+,εi+ 1
2

∣∣∣∣∣ 6 c h
ε
, i = 0, ...,N − 1. (19)

This yields (13) for i = 0 and i = N.

The following equality:
H
ε

i+ 1
2
= H∗,−,ε

i+ 1
2
− R−,ε

i+ 1
2
= H∗,+,ε

i+ 1
2
− R+,ε

i+ 1
2
, i = 1, ...,N − 1 (20)

yields that

uε
(
xi+ 1

2

)
=

kεi+1
h−i+1

uε (xi+1) + kεi
h+i

uε (xi)
kεi
h+i
+

kεi+1
h−i+1

+ S ε
i+ 1

2
, i = 1, ...,N − 1, (21)

where

S ε
i+ 1

2
=

R+,ε
i+ 1

2
− R−,ε

i+ 1
2

kεi
h+i
+

kεi+1
h−i+1

So that ∣∣∣∣∣S εi+ 1
2

∣∣∣∣∣ 6 1
α

h+i h−i+1

h+i + h−i+1

∣∣∣∣∣R+,εi+ 1
2
− R−,ε

i+ 1
2

∣∣∣∣∣
Let us replace the expression (21) of uε

(
xi+ 1

2

)
in H∗,−,ε

i+ 1
2

defined by (14); this yields

H∗,−,ε
i+ 1

2
= −τi+ 1

2
(uε(xi+1) − uε(xi)) −

kεi
h+i

S ε
i+ 1

2
, i = 1, ...,N − 1. (22)

Using (20), this implies that
H∗,ε

i+ 1
2
= H

ε

i+ 1
2
+ T ε

i+ 1
2

where ∣∣∣∣∣T εi+ 1
2

∣∣∣∣∣ 6 ∣∣∣∣∣R−,εi+ 1
2

∣∣∣∣∣ + ∣∣∣∣∣R+,εi+ 1
2
− R−,ε

i+ 1
2

∣∣∣∣∣ β2α. (23)

Using (18) and (19), this last inequality yields that there exists c, independent of ε and h such that∣∣∣∣∣H∗,εi+ 1
2
− H

ε

i+ 1
2

∣∣∣∣∣ = ∣∣∣∣∣T εi+ 1
2

∣∣∣∣∣ 6 c h
ε
, i = 1, ...,N − 1.

Therefore (13) is proved.

Now, from (3) and (12), one has

H
ε

i+ 1
2
− H

ε

i− 1
2
= hi fi, ∀i ∈ {1, ...,N} . (24)

Using (13) yields that

H
∗,ε
i+ 1

2
− H

∗,ε
i− 1

2
= hi fi + T ε

i+ 1
2
− T ε

i− 1
2
, ∀i ∈ {1, ...,N} . (25)
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Let eεi = uε(xi) − uεi for i = 1, ...,N, and eε0 = eεN+1 = 0. Substracting (8) from (25) yields

−τε
i+ 1

2

(
eεi+1 − eεi

)
+ τε

i− 1
2

(
eεi − eεi−1

)
= T ε

i+ 1
2
− T ε

i− 1
2
, ∀i ∈ {1, ...,N} .

Let us multiply this equation by eεi , sum for i = 1, ...,N, reorder the summation. Therefore

N∑
i=0

τε
i+ 1

2

(
eεi − eεi−1

)2
=

N∑
i=1

T ε
i+ 1

2

(
eεi+1 − eεi

)
Thanks to (13), one has

N∑
i=0

τε
i+ 1

2

(
eεi − eεi−1

)2 6
N∑

i=1

c h
ε

∣∣∣eεi+1 − eεi
∣∣∣ .

Denote by

A =

 N∑
i=0

τε
i+ 1

2

(
eεi+1 − eεi

)2


1
2

and B =

 N∑
i=0

1
τε

i+ 1
2


1
2

The Cauhy-Schwarz inequality yields

A2 6 c h
ε

AB.

Now, since the mesh is uniform (i.e. hi = h,∀i ∈ {1, ...,N}), one has

1
τε

i+ 1
2

6 β

α2

(
h−i+1 + h+i

)
=
β

α2 h.

Using Remark 2, one obtains
1
τε

i+ 1
2

6 β

α2

ε

m
, hence B 6 cε

1
2 .

Therefore
A 6 c h

ε
1
2

which yields Estimation (9).

Remark that ∣∣∣eεi ∣∣∣ 6 N∑
j=1

∣∣∣eεj − eεj−1

∣∣∣
Applying once again the Cauchy-Schwarz inequatity, one obtains∣∣∣eεi ∣∣∣ 6 AB, which yields Estimation (10).

Theory from (Bensoussan, Lions & Papanicolaous, 1987) and (Jikov, Kozlov & Oleinik, 1994) on the estimate of the
difference uε − u, with u the homogenized solution implies

∥u − uε∥L∞(Ω) 6 cε. (26)

Using (26) and (10) we obtain (11). This completes the proof of Theorem 1. �
2.2 Modified Finite Volume Scheme

The modified finite volume approach (see, Ewing, Iliev & Lazarov, 2001) is to rewrite the problem (1) into its mixed form:
qε = −kε(x) duε

dx ,
dqε

dx = f (x), 0 < x < 1

uε(0) = uε(1) = 0.
(27)

qε(x) is the flux dependent variable. Conditions for continuity of the fonction and the flux through interface points ξ are
added: [

qε
]
=

[
uε

]
= 0, for x = ξ. (28)
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Here [uε] deontes the difference of the right and left limits of uε at the point of discontinuity. We introduce a standard
uniform cell-centered grid x0 = 0, x1 =

h
2 , xi = xi−1 + h, i = 2, ...,N, xN+1 = 1, where h = 1

N . Note, that the endpoints
x0 = 0 and xN+1 = 1 are part of the grid, but they are at h

2 distance from their neighboring grid points.The internal grid
points can be considered as centered around the volumes Vi =

(
xi− 1

2
, xi+ 1

2

)
where xi+ 1

2
= xi +

1
2 h, xi− 1

2
= xi − 1

2 h. The
values of a funtion f defined at the grid points xi are denoted by fi. Non-uniform grids can be treated in a similar way.
The finite volume method exploits the idea of writing the balance equation over the finite volume Vi, i.e. integrating the
first equation of Problem (1) over each volume Vi.

qε
i+ 1

2
− qε

i− 1
2
= h fi, fi =

1
h

∫ xi+ 1
2

xi− 1
2

f (x)dx, i = 1, 2, ...,N. (29)

Next, we rewrite the flux equation in the form

−duε

dx
=

qε

kε(x)

and integrate this expression over the interval (xi, xi+1) :

(
uεi+1 − uεi

)
= −

∫ xi+1

xi

duε

dx
dx =

∫ xi+1

xi

qε

kε(x)
dx (30)

One assumes that the flux is two times continuously differentiable on the interface, so it can be expanded around the point
xi+ 1

2
in th Taylor series

qε(x) = qi+ 1
2
+

(
x − xi+ 1

2

) dqi+ 1
2

dx
+

(
x − xi+ 1

2

)2

2
d2qε(η)

dx2 , η ∈ (xi, xi+1) . (31)

After replacing the first derivative of the flux at xi+ 1
2

by a two-point backward difference one gets the following approxi-
mation of (30).

−
(
uεi+1 − uεi

)
= qi+ 1

2

∫ xi+1

xi

dx
kε(x)

+
qi+ 1

2
− qi− 1

2

h

∫ xi+1

xi

(
x − xi+ 1

2

)
kε(x)

dx + O(h3). (32)

Finally, by the same gait as in (Ewing, Iliev & Lazarov, 2001) we get the following finite difference approximation of the
differential problem (27):

Lεhuεhi = fi for i = 1, ...,N. (33)

where

Lεhuεhi ≡



− 4
3

1
h

kεh3
2

uεh2 − uεh1

h
− kεh1

2

2uεh1
h

 (for i = 1),

−
(
1 + aε

i+ 1
2
− aε

i− 1
2

)−1
1
h

kεhi+ 1
2

uεhi+1 − uεhi

h
− kεh

i− 1
2

uεhi −uεhi−1
h

 , i , 1,N,

− 4
3

1
h

−kεh
N+ 1

2

2uεhN

h
− kεh

N− 1
2

uεhN −uεhN−1
h

 (for i = N).

(34)

where

kεh
i+ 1

2
=

(
1
h

∫ xi+1

xi

dx
kε(x)

)−1

. (35)

aε
i+ 1

2
= kεh

i+ 1
2

1
h2

∫ xi+1

xi

(
x − xi+ 1

2

)
kε(x)

dx, (36)

and uεhi denotes the approximation values of the exact solution. kεh
i+ 1

2
is the well known harmonic averaging of the coef-

ficient Kε(x) over the cell (xi, xi+1) , which has played a fundamental role in deriving accurate schemes for discontinuous
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coefficients (see e.g, (Samarskii, 1977) and (Samarskii & Andréev, 1978 )).

We now state the main result of this section.

Theorem 2. Assume that the coefficient kε(x) is a piecewise C1−function and has a finite number of jump discontinuities,
the grid is such that the discontinuities are at the points xi+ 1

2
, and the source term f (x) is a C1−function on (0, 1). Then

the following estimate is valid:

∥∥∥uε − uεh
∥∥∥2

H1(Ω) ≡
N∑

i=1

kεh
i+ 1

2

(
eεi+1 − eεi

)2
/h 6 ch2

ε
, (37)

where kεh
i+ 1

2
is given by (35), and c is a constant independent of ε and h.

Proof. The proof of Theorem 2 is the same as that of Theorem 1. �
3. Numerical Results

In this section, one presents numerical results, comparing the approximations described in this paper and an example of
exact solution. More especially, we shall present numerical results obtained with following data of Problem (1):

k (y) =
{

k1 if 0 < y < 1
2 ,

k2 if 1
2 < y < 1,

k1, k2 ∈ R∗+,

kε (x) =


k1, if pε < x <

(
p + 1

2

)
ε,

k2, if
(
p + 1

2

)
ε < x < (p + 1) ε,

ε = 1
np
, where np is a positive integer; 0 < p < np − 1 and the source function is f = 1.

Therefore the exact solution uε is

uε (x) =


−x2

2k1
+ x

2k1
+

(k1−k2)εx
4k1(k1+k2) −

(k1−k2)pε2

4k1(k1+k2) +
(k1−k2)pε

4k1k2
− (k1−k2)p2ε2

4k1K2
, if pε < x <

(
p + 1

2

)
ε,

−x2

2k2
+ x

2k2
+

(k1−k2)εx
4k2(k1+k2) −

(k1−k2)(p+1)ε2

4k2(k1+k2) −
(k1−k2)(p+1)ε

4k1k2
+

(k1−k2)(p+1)2ε2

4k1k2
, if

(
p + 1

2

)
ε < x < (p + 1) ε,

and the homogenized solution is

u(x) =
(k1 + k2) x (1 − x)

4k1k2
.

All the simulations presented have been done with uniform grids.

The first test problem involved simulation with k1 = 103 and k2 = 1.

Table 1. Error table with the classical finite volume method (CFVM) when ε→ 0.

Volumes number=256 ε = 0.5 ε = 0.25 ε = 0.125 ε = 0.0625∥∥∥uε − uεh
∥∥∥

L∞(Ω) 1.907350e-06 1.907350e-06 1.907350e-06 1.907351e-06∥∥∥uε − uεh
∥∥∥

L2(Ω) 1.348700e-06 1.348700e-06 1.348701e-06 1.348701e-06∥∥∥uε − uεh
∥∥∥

H1(Ω) 1.543002e-03 2.069417e-03 2.843546e-03 3.961350e-03

Test Problem 1: This error table confirms the estimates of Theorem 1.

In the following graphics, Homog denotes the homogenized solution and Exact denotes the exact solution.

41



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 6; 2016

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

0.02

0.04

0.06

0.01

0.03

0.05

0.07

CFVM

Exact

Classical cell−centered finite volume method : k=1000 if x<1/2 and k=1 if x>1/2

, number of volumes = 128

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

0.02

0.04

0.06

0.01

0.03

0.05

0.07

CFVM

Homog

Number of volumes = 128

Figure 1. Test problem 1: ε = 1/8

Table 2. Error table with the modified finite volume method (MFVM) when ε→ 0.

Volumes number=256 ε = 0.5 ε = 0.25 ε = 0.125 ε = 0.0625∥∥∥uε − uεh
∥∥∥

L∞(Ω) 1.897054e-06 1.897530e-06 1.897768e-06 1.897887e-06∥∥∥uε − uεh
∥∥∥

L2(Ω) 9.119900e-07 1.001070e-06 1.049512e-06 1.074557e-06∥∥∥uε − uεh
∥∥∥

H1(Ω) 1.193472e-03 1.823735e-03 2.670071e-03 3.838726e-03

Test Problem 1: This error table confirms the estimate of Theorem 2.
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Figure 2. Test problem 1: ε = 1/6
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The second test problem involved simulation with k1 = 1 and k2 = 104.

Table 3. Convergence test of the classical finite volume

ε=0.1 h = 1 /20 h = 1 /40 h = 1 /100 h = 1 /200∥∥∥uε − uεh
∥∥∥

L∞(Ω) 3.125000e-04 7.812500e-05 1.250000e-05 3.125010e-06∥∥∥uε − uεh
∥∥∥

L2(Ω) 2.209709e-04 5.524272e-05 8.838836e-06 2.209713e-06∥∥∥uε − uεh
∥∥∥

H1(Ω) 4.049933e-02 2.024966e-02 8.099865e-03 4.049933e-03

Table 4. Convergence test of the modified finite volume method

ε=0.1 h = 1 /20 h = 1 /40 h = 1 /100 h = 1 /200∥∥∥uε − uεh
∥∥∥

L∞(Ω) 2.968438e-04 7.616367e-05 1.237365e-05 3.109035e-06∥∥∥uε − uεh
∥∥∥

L2(Ω) 1.736241e-04 4.342797e-05 6.949458e-06 1.737400e-06∥∥∥uε − uεh
∥∥∥

H1(Ω) 3.847363e-02 1.924855e-02 7.702354e-03 3.851676e-03

The tables 3 and 4 demonstrate, as in (Ewing, Iliev & Lazarov, 2001) that the modified scheme has a smaller constant of
convergence than the classical scheme based on harmonic averaging for this class of equations.

4. Concluding remarks

The purpose of this paper was to resolve, by finite volume methods, a class of second-order elliptic problems, with
discontinuous and highly oscillating coefficients, in order to evaluate the effect of ε the parameter involved in the periodic
homogenization on the approximate solution. Study was limited to the academic Dirichlet problem and enabled to clarify
the dependence of numerical experiments to ε. Error estimates were obtained. Numerical simulations confirm theorical
results and also show that the modified finite volume scheme is much more accurate than the classical scheme in solving
these problems.
The extension of these results to two-dimensional and three-dimensional problems is currently underway.
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