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Abstract

Under mild assumptions Benkovič showed that an f -derivation of a triangular algebra is a derivation when the sum of
the coefficients of the multilinear polynomial f is nonzero. We investigate the structure of f -derivations of triangular
algebras when f is of degree 3 and the coefficient sum is zero. The zero-sum coeffient derivations include Lie derivations
(degree 2) and Lie triple derivations (degree 3), which have been previously shown to be not necessarily derivations but
in standard form, i.e., the sum of a derivation and a central map. In this paper, we present sufficient conditions on the
coefficients of f to ensure that any f -derivations are derivations or are in standard form.
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1. Introduction

Let R be a commutative ring with identity,A and B two algebras over R with units 1A and 1B, respectively, and letM be
an (A,B)-bimodule. We assume throughout the article thatM is faithful as a leftA-module and as a right B-module. Let
T be the matrix algebra

T =
{[

a m
0 b

] ∣∣∣∣∣∣ a ∈ A, b ∈ B,m ∈ M
}
.

An algebra isomorphic to T is called a triangular algebra. We assume T is 2-torsion free for the purpose of this article.
Upper triangular matrix rings and nest algebras are typical examples of triangular algebras. See the references for recent
results on maps of triangular algebras.

The structure of various types of derivations of T has been studied in a series of papers: (Benkovič, 2015), (Benkovič,
2016), (Benkovič & Eremita, 2012), (Cheung, 2003), (Ji, Liu, & Zhao, 2012), (Wang, Wang, & Du, 2013), (Xiao &
Wei, 2012), (Yu & Zhang, 2010), and (Zhang & Yu, 2006). A derivation of T is an R-linear map d such that d(xy) =
d(x)y+ xd(y) for any x, y ∈ T . There are variations of this definition. For example, a Jordan derivation J is defined by the
property

J(xy + yx) = J(x)y + xJ(y) + J(y)x + yJ(x),

a Lie derivation L by
L([x, y]) = [L(x), y] + [x, L(y)],

and a Lie triple derivation L by

L([[x, y], z]) = [[L(x), y], z] + [[x, L(y)], z] + [[x, y], L(z)].

The most general notion of this type is that of f -derivations. Let f be a multilinear polynomial of degree n ≥ 2 over R
with noncommutative indeterminate variables.

f (x1, x2, . . . , xn) =
∑
π∈S n

απxπ(1)xπ(2) · · · xπ(n), απ ∈ R

where the sum is over S n, the symmetric group. An R-linear map L : T → T satisfying

d( f (x1, . . . , xn)) =
n∑

i=1

f (x1, . . . , xi−1, d(xi), xi+1, . . . , xn)
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is called an f -derivation or a derivation with respect to f . We get the usual notion of derivation when f = x1x2, and
the notion of Lie derivation when f = x1x2 − x2x1, and so on. Obviously, a derivation is an f -derivation for any f . The
converse is true for certain classes of f .

Let α be the sum of all coefficients of f . Benkovič(Benkovič, 2015) proved that in case α , 0, every f -derivation is a
derivation if α is T -regular and T is (n − 1)-torsion free. He left the case α = 0 as an open problem. In the latter case, an
f -derivation L need not be a derivation, but it could be in standard form, that is, L = d + h, where d is a derivation and h
is a linear map into the center Z(T ) satisfying h( f (T , . . . ,T )) = 0. Special cases of this problem have been previously
studied in (Benkovič & Eremita, 2012; Cheung, 2003; Ji et al., 2012; Xiao & Wei, 2012; Zhang & Yu, 2006). Under
mild assumptions, Cheung (Cheung, 2003) proved that a Lie derivation is of standard form and Xiao and Wei (Xiao &
Wei, 2012) proved that Lie triple derivations are of standard form. In (Xiao & Wei, 2012), the following conditions are
assumed. Refer to (Xiao & Wei, 2012) and (Cheung, 2003) for the discussion on these conditions.

(♣) πA(Z(T )) = Z(A) and πB(Z(T )) = Z(B).

(♠) [a, a′] ∈ Z(A) for all a′ ∈ A implies a ∈ Z(A) and [b, b′] ∈ Z(B) for all b′ ∈ B implies b ∈ Z(B).

In this article, under similar assumptions as in the aforementioned papers, we will discuss the structure of f -derivations
when f is of degree 3 and α = 0, that is, when

f (x, y, z) = rxyz + sxzy + tyxz + uyzx + vzxy + wzyx

with r, s, t, u, v,w ∈ R, r+ s+ t+ u+ v+w = 0. We will examine sufficient coefficient conditions on which an f -derivation
is a derivation or is in standard form. In the process, we leave certain special cases unsolved.

2. Preliminaries

We will identifyA with the subalgebra of T with elements of the form
[

a 0
0 0

]
. Similarly, we will identify m ∈ M with[

0 m
0 0

]
and b ∈ B with

[
0 0
0 b

]
. Under this identification, T = A+M+B and every element of T is written uniquely

as a + m + b for some a ∈ A, m ∈ M, and b ∈ B. We denote the projections from the triangular algebra T toA,M, and
B by πA, πM, and πB, respectively. We have the following evident rules, which will be used extensively throughout the
article.

Lemma 1. For any a ∈ A, m,m′ ∈ M, b ∈ B, and t, t′ ∈ T ,

1. ab = ba = [a, b] = [b, a] = 0,

2. ma = 0 and [a,m] = am,

3. bm = 0 and [m, b] = mb,

4. mm′ = 0 and [m,m′] = 0,

5. 1T = 1A + 1B,

6. [1A, a + m + b] = m and [a + m + b, 1B] = m,

7. [a + m + b,m′] = am′ − m′b ∈ M,

8. [a, t] ∈ A +M, or equivalently πB[a, t] = 0,

9. [t, b] ∈ M + B, or equivalently πA[t, b] = 0,

10. πA(tt′) = πA(t)πA(t′), πB(tt′) = πB(t)πB(t′).

We will use the convention that, unless stated otherwise, elements in small letters belong to the sets in the corresponding
capital letters. For example, a, a′, a1, a2, etc. should be understood as elements ofA.

Proposition 2 (Proposition 3 (Cheung, 2003)). The centerZ(T ) of the triangular algebraT is {a+b | am = mb for all m ∈ M}.
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Proof. Suppose a+m′ + b ∈ Z(T ), then we have 0 = [1A, a+m′ + b] = m′. We also have 0 = [a+m′ + b,m] = am−mb
for any m ∈ M.

Conversely, suppose am = mb for all m ∈ M. Then a ∈ Z(A) because for any a′ ∈ A and m ∈ M,

(aa′)m = a(a′m) = (a′m)b = a′(mb) = a′(am) = (a′a)m

and by the faithfulness ofM, aa′ = a′a. Similarly, b ∈ Z(B). Now for any a′ + m′ + b′ ∈ T ,

[a + b, a′ + m′ + b′] = [a, a′] + [a,m′] + [a, b′] + [b, a′] + [b,m′] + [b, b′]
= [a,m′] + [b,m′] = am′ − m′b = 0.

�

For a + b ∈ Z(T ), the elements a and b are a pair. If a + b1 ∈ Z(T ) and a + b2 ∈ Z(T ), then am = mb1 = mb2 for any
m ∈ M, and by faithfulness ofM, we have b1 = b2. Using this property, we can construct an isomorphism

ϕ : πA(Z(T ))→ πB(Z(T ))

by sending an element to the other element in the pair. It is straightforward to verify that ϕ respects algebra operations.
See Proposition 3 in (Cheung, 2003) for the proof. The following formulas follow from the definition.

Lemma 3. For any a ∈ πA(Z(T )), b ∈ πB(Z(T )), and m ∈ M,

1. am = mϕ(a),

2. ϕ−1(b)m = mb.

Lemma 4. Let t ∈ Z(T ). If tm = mt = 0 for all m ∈ M, then t = 0.

Proof. Since t ∈ Z(T ), t = a + b for some a ∈ A and b ∈ B. If tm = mt = 0, then am = 0 and mb = 0. Since m is
arbitrary andM is faithful, a = 0 and b = 0. �

Definition 5. An element r ∈ R is called T -regular or simply regular if rt = 0, t ∈ T implies t = 0. Equivalently, r is
regular if rt1 = rt2, t1, t2 ∈ T implies t1 = t2.

3. Discussion of the Problem

Now we discuss the main problem. Suppose L is an f -derivation where

f (x, y, z) = rxyz + sxzy + tyxz + uyzx + vzxy + wzyx

with r, s, t, u, v,w ∈ R, and r + s + t + u + v + w = 0. We assume the sum or difference of any combination of these
coefficients is either 0 or regular. The regularity condition is necessary to cancel coefficients. For example, if r is regular,
then L is a derivation if and only if L is a derivation with respect to f (x, y) = rxy.

Lemma 6. Let x, y, z ∈ T .

1. If x ∈ Z(T ), then f (x, y, z) = (r + t + u)x[y, z].

2. If y ∈ Z(T ), then f (x, y, z) = (u + v + w)y[z, x].

3. If z ∈ Z(T ), then f (x, y, z) = (r + s + v)z[x, y].

In particular, if x = 1T , y = 1T , or z = 1T , then f (x, y, z) is the constant multiple of a commutator.

Proof. We prove the first one. Others are similar. If x is in the center, it can be factored out. Therefore,

f (x, y, z) =x(ryz + szy + tyz + uyz + vzy + wzy)
=x((r + t + u)yz + (s + v + w)zy)
=x((r + t + u)yz − (r + t + u)zy)
=(r + t + u)x[y, z].

�
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Lemma 7. For any x, y, z ∈ T ,

1. (r + s − u − w)[x, L(1T )] = 0,

2. (t + u − s − v)[y, L(1T )] = 0,

3. (v + w − r − t)[z, L(1T )] = 0.

Proof. For any x ∈ T , f (x, 1T , 1T ) = (r + s + t + u + v + w)x = 0, thus,

0 = L( f (x, 1T , 1T )) = f (L(x), 1T , 1T ) + f (x, L(1T ), 1T ) + f (x, 1T , L(1T ))
= 0 + (r + s + v)[x, L(1T )] + (u + v + w)[L(1T ), x]
= (r + s − u − w)[x, L(1T )].

Others are derived similarly. �

If one of the coefficients in this lemma is nonzero and regular, then we can cancel it to say L(1T ) is in the center.

Proposition 8. The following are equivalent.

1. r + s = u + w, t + u = s + v, and v + w = r + t.

2. r + t + u = r + s + v = u + v + w.

Proof. The equivalence is evident. �

By the proposition, we only need to study the following mutually exclusive cases.

• Case 1: r + s , u + w, t + u , s + v, or v + w , r + t.

• Case 2: r + t + u = u + v + w = r + s + v = 0.

• Case 3: r + t + u = u + v + w = r + s + v , 0.

The first case is examined in the following section. The second case results in a generalization of the theorem by (Xiao &
Wei, 2012) on triple Lie derivations. It is discussed in Section 5. The third case will be left unsolved. The difficulty in the
third case lies in the fact that L(1T ) may not belong to the center. It complicates the effort to derive meaningful properties
of f -derivations.

4. Case 1

In this case, Lemma 7 and the regularity of coefficients condition imply that L(1T ) ∈ Z(T ). Applying Lemma 6 to

L( f (1T , y, z)) = f (L(1T ), y, z) + f (1T , L(y), z) + f (1T , y, L(z))

yields
(r + t + u)L([y, z]) = (r + t + u)(L(1T )[y, z] + [L(y), z] + [y, L(z)]).

Similarly with y = 1T or z = 1T , we get

(u + v + w)L([z, x]) = (u + v + w)(L(1T )[z, x] + [L(z), x] + [z, L(x)]),
(r + s + v)L([x, y]) = (r + s + v)(L(1T )[x, y] + [L(x), y] + [x, L(y)]).

Since not all of r + t + u, u + v + w, and r + s + v are zeros in Case 1, by the regularity of coefficients,

L([x, y]) = L(1T )[x, y] + [L(x), y] + [x, L(y)].

The next proposition describes the structure of L.
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Proposition 9. Let T be a triangular algebra satisfying (♣). Suppose c ∈ Z(T ) and L : T → T is a linear map such that

L([x, y]) = c[x, y] + [L(x), y] + [x, L(y)]

for all x, y ∈ T . Then L = d + h − ci where d is a derivation, h is a central map vanishing on commutators, and i is the
identity map.

Proof. Let L′ = L + ci. Then L′ is a Lie derivation since

L′([x, y]) =L([x, y]) + c[x, y]
=c[x, y] + [L(x), y] + [x, L(y)] + c[x, y]
=[L(x) + cx, y] + [x, L(y) + cy]
=[L′(x), y] + [x, L′(y)].

We apply Theorem 11 in (Cheung, 2003) assuming (♣). Then L′ = d + h where d is a derivation, h is a central map
vanishing on commutators. Therefore, L = d + h − ci. �

Theorem 10. Let L be an f -derivation on T where

f (x, y, z) = rxyz + sxzy + tyxz + uyzx + vzxy + wzyx

with r, s, t, u, v,w ∈ R, r + s + t + u + v + w = 0. Assume condition (♣). If r + s , u + w, t + u , s + v, or v + w , r + t,
then L(1T ) ∈ Z(T ) and

L = d + h − L(1T )i

where d : T → T is a derivation, h : T → Z(T ) satisfies h([x, y]) = 0 for all x, y ∈ T , and i : T → T is the identity
map. Furthermore, in one of the following three cases, L(1T ) = 0 and h = 0, thus L is a derivation.

1. r + s = u + w , 0, t + u , s + v, and v + w , r + t.

2. r + s , u + w, t + u = s + v , 0, and v + w , r + t.

3. r + s , u + w, t + u , s + v, and v + w = r + t , 0.

Proof. We have seen that c = L(1T ) ∈ Z(T ) and L = d + h − ci by Proposition 9. It remains to show L = d in one of
three special cases. We may assume the second case where t + u = s + v , 0 without loss of generality. Note that for any
m ∈ M, h(m) = h([1A,m]) = 0 and h(1T ) = (L − d + ci)(1T ) = c − 0 + c = 2c.

Since both L and d are f -derivations, so is L − d = h − ci. For any x, y, z ∈ T ,

(h − ci)( f (x, y, z) = f ((h − ci)(x), y, z) + f (x, (h − ci)(y), z) + f (x, y, (h − ci)(z)).

Simplifying the equation, we get

h( f (x, y, z)) = f (h(x), y, z) + f (x, h(y), z) + f (x, y, h(z)) − 2c f (x, y, z).

Substitute x = 1A, y = m, z = 1B where m is an arbitrary element of M. Then f (1A,m, 1B) = rm ∈ M. Hence, the
left-hand side is zero. We can simplify the right-hand side using Lemma 6. Then we have

0 = (r + t + u)h(1A)[1A,m] + (r + s + v)h(1B)[1A,m] − 2c(rm)
= (r + t + u)h(1A)m + (r + s + v)h(1B)m − (h(1A) + h(1B))(rm)
= ((t + u)h(1A) + (s + v)h(1B))m.

By Lemma 4, we get (t+u)h(1A)+(s+v)h(1B) = 0. Since t+u = s+v , 0 and they are regular, we have h(1A)+h(1B) = 0,
or 2c = h(1T ) = 0. Since T is 2-torsion free, c = 0.

Next, we substitute x = 1A, y = 1A, and z = m. Then f (1A, 1A,m) = rm + tm ∈ M. So the left hand side is zero again.
Then

0 = (r + t + u)h(1A)[1A,m] + (u + v + w)h(1A)[m, 1A]
= (r + t − v − w)h(1A)m,
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which implies h(1A) = 0 since r + t − v − w is nonzero, h(1A) ∈ Z(T ), and m is arbitrary. We also have h(1B) =
h(1T ) − h(1A) = 0.

Finally, we show that h(a) = h(b) = 0 for any a ∈ A and b ∈ B. If we substitute x = a, y = 1A, and z = m, then
(r + t + u)h(a)[1A,m] = (r + t + u)h(a)m = 0, which implies (r + t + u)h(a) = 0 by Lemma 4. Rotating the values of x, y,
and z, we also get (u+ v+w)h(a) = 0 and (r+ s+ v)h(a) = 0. Not all three of the coefficients are zeros, therefore h(a) = 0.
Similarly, h(b) = 0. �

Example 11. Let f (x, y, z) = x[y, z] + [x, y]z. Any f -derivation on T is a derivation because r + s = −2, u + w = 0,
t + u = s + v = 1, v + w = 0, and r + t = −1.

5. Case 2

In this case r + t + u = u + v + w = r + s + v = 0 and r + s + t + u + v + w = 0. Solving the system of linear equations we
get v = t,w = r, u = s, and t = −r − s. Therefore,

f (x, y, z) = r(xyz − yxz − zxy + zyx) + s(xzy − yxz + yzx − zxy)
= r[[x, y], z] + s[[x, z], y].

If r + s = 0, then f (x, y, z) = r([[x, y], z] − [[x, z], y]) = r[[z, y], x] by the Jacobi identity. Then L is a Lie triple derivation.
So this case is resolved by Theorem 2.1 in (Xiao & Wei, 2012). The case when r + s , 0 is resolved by the next theorem,
which is a generalization of Theorem 2.1 in (Xiao & Wei, 2012).

Theorem 12. Let T be a 2-torsion free triangular algebra
[
A M
0 B

]
, and assumeM is faithful as a leftA-module and

as a right B-module. Suppose that T satisfies conditions (♣) and (♠). Let r, s ∈ R and assume r, s, and r+ s are T -regular.
If L is an f -derivation where f (x, y, z) = r[[x, y], z]+ s[[x, z], y], then L is of standard form, that is, there exist a derivation
d : T → T and a linear map h : T → Z(T ) such that L = d + h and h(r[[x, y], z] + s[[x, z], y]) = 0 for all x, y, z ∈ T .

The theorem is proved after a series of lemmas, which are direct extensions of results by Xiao and Wei. We assume all
conditions in the theorem for all subsequent lemmas, and we let α = πAL, µ = πML, and β = πBL. Then L = α + µ + β.

Lemma 13. L(1T ) ∈ Z(T )

Proof. Since 1T is in the center, [1T , x] = 0 for all x ∈ T . Therefore,

0 =L(r[[1T , y], z] + s[[1T , z], y])
=r[[L(1T ), y], z] + r[[1T , L(y)], z] + r[[1T , y], L(z)]

+ s[[L(1T ), z], y] + s[[1T , L(z)], y] + s[[1T , z], L(y)]
=r[[L(1T ), y], z] + s[[L(1T ), z], y].

Let L(1T ) = a + m′ + b. We want to show that m′ = 0 and am = mb for all m ∈ M. Substitute y = z = 1B. Then

0 = r[[a + m′ + b, 1B], 1B] + s[[a + m′ + b, 1B], 1B] = (r + s)m′.

Therefore, m′ = 0 since r + s is regular. Next, let y = m and z = 1B. Then

0 =r[[a + b,m], 1B] + s[[a + b, 1B],m]
=r[am − mb, 1B] + s[0,m]
=r(am − mb).

Since r is regular, am = mb for all m ∈ M. �

Lemma 14. For any m ∈ M, L(m) ∈ M.

Proof. For x = m, y = 1B, and z = 1B,

L( f (m, 1B, 1B)) = f (L(m), 1B, 1B) + f (m, L(1B), 1B) + f (m, 1B, L(1B)).

The left-hand side is (r + s)L(m) since [[m, 1B], 1B] = m. On the other hand, f (L(m), 1B, 1B), f (m, L(1B), 1B), and
f (m, 1B, L(1B)) belong toM because [t, 1B] ∈ M and [m, t] ∈ M for any t ∈ T by Lemma 1 (6) and (7). Since r + s is
regular, L(m) ∈ M. �
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Lemma 15. α(1A) + β(1A) ∈ Z(T ) and α(1B) + β(1B) ∈ Z(T ). Thus, ϕα(1A) = β(1A) and ϕα(1B) = β(1B).

Proof. Let L(1B) = a+m′ + b where a = α(1B), m′ = µ(1B), and b = β(1B). As in the previous lemma, let x = m, y = 1B,
and z = 1B. Then

L( f (m, 1B, 1B)) = f (L(m), 1B, 1B) + f (m, L(1B), 1B) + f (m, 1B, L(1B)).

The left-hand side is (r + s)L(m). On the other side, by Lemma 1 and 14,

f (L(m), 1B, 1B) = (r + s)[[L(m), 1B, ]1B] = (r + s)L(m),
f (m, L(1B), 1B) = r[[m, a + m′ + b], 1B] + s[[m, 1B], a + m′ + b]

= (r + s)(−am + mb),
f (m, 1B, L(1B)) = r[[m, 1B], a + m′ + b] + s[[m, a + m′ + b], 1B]

= (r + s)(−am + mb).

Thus, (r + s)L(m) = (r + s)(L(m) − 2(am − mb)). Since r + s is regular and T is 2-torsion free, am = mb for all m ∈ M,
i.e., a + b = α(1B) + β(1B) ∈ Z(T ). Similarly, we can prove α(1A) + β(1A) ∈ Z(T ) by substituting x = m, y = 1A, and
z = 1A. �

Lemma 16. β(a) ∈ Z(B) and α(b) ∈ Z(A) for any a ∈ A and b ∈ B.

Proof. Note that f (a,m, 1B) = r[[a,m], 1B] + s[[a, 1B],m] = ram. Then

L(ram) = r ([[L(a),m], 1B] + [[a, L(m)], 1B] + [[a,m], L(1B)]) + s ([[L(a), 1B],m] + [[a, L(1B)],m] + [[a, 1B], L(m)]) .

Each component on the right side is computed as follows.

[[L(a),m], 1B] = [[α(a) + µ(a) + β(a),m], 1B] = α(a)m − mβ(a),
[[a, L(m)], 1B] = aL(m) by Lemma 14,
[[a,m], L(1B)] = [am, α(1B) + µ(1B) + β(1B)] = [am, µ(1B)] = 0 by Lemma 15,

[[L(a), 1B],m] = [[α(a) + µ(a) + β(a), 1B],m] = [µ(a),m] = 0,
[[a, L(1B)],m] = 0 since [a, L(1B)] = [a, µ(1B)] ∈ M by Lemma 15,
[[a, 1B], L(m)] = [0, L(m)] = 0.

Then rL(am) = L(ram) = r (α(a)m − mβ(a) + aL(m)). Since r is regular,

L(am) = α(a)m − mβ(a) + aL(m).

Similarly, with x = b, y = m, and z = 1A, we get

L(mb) = mβ(b) − α(b)m + L(m)b.

Now we compute L(amb) in two ways. First,

L(a(mb)) =α(a)mb − mbβ(a) + aL(mb)
=α(a)mb − mbβ(a) + amβ(b) − aα(b)m + aL(m)b.

Similarly,

L((am)b) =amβ(b) − α(b)am + L(am)b
=amβ(b) − α(b)am + α(a)mb − mβ(a)b + aL(m)b.

Comparing two results, we obtain
α(b)am − aα(b)m = mbβ(a) − mβ(a)b

or
[α(b), a]m = m[b, β(a)],

which leads to [α(b), a] + [b, β(a)] ∈ Z(T ). Then, [α(b), a] ∈ Z(A) and [b, β(a)] ∈ Z(B). Since a and b are arbitrary,
α(b) ∈ Z(A), β(a) ∈ Z(B) by condition (♠). �
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The consequence of the lemma is that α(b) ∈ πA(Z(T )) and β(a) ∈ πB(Z(T )) by condition (♣). Therefore, απB + ϕαπB
and ϕ−1βπA + βπA are maps into the centerZ(T ). Now we define h : T → Z(T ) to be the sum of those central maps

h = απB + ϕαπB + ϕ
−1βπA + βπA,

and define d = L − h. It remains to prove that h vanishes on f (x, y, z) and d is a derivation.

Lemma 17. h( f (x, y, z)) = 0 for any x, y, z ∈ T

Proof. By Lemma 1(10), πB( f (x, y, z)) = f (πBx, πBy, πBz). Then

απB( f (x, y, z)) = πALπB( f (x, y, z))
= πAL( f (πBx, πBy, πBz))
= πA( f (LπBx, πBy, πBz) + f (πBx, LπBy, πBz) + f (πBx, πBy, LπBz))
= f (πALπBx, 0, 0) + f (0, πALπBy, 0) + f (0, 0, πALπBz)
= 0.

Similarly, other components of h( f (x, y, z)) are zeros as well. �

Lemma 18. d has the following properties for any a ∈ A, m ∈ M, and b ∈ B.

1. d(1T ) = 0,

2. d(m) = L(m) ∈ M,

3. d(a) ∈ A +M,

4. d(b) ∈ B +M.

Proof. First, by Lemma 13,

L(1T ) = α(1T ) + β(1T ) = α(1A) + α(1B) + β(1A) + β(1B).

By Lemma 15, ϕα(1B) = β(1B) and ϕ−1β(1A) = α(1A), thus,

h(1T ) =α(1B) + ϕα(1B) + ϕ−1β(1A) + β(1A)
=α(1B) + β(1B) + α(1A) + β(1A).

Therefore, d(1T ) = 0. Second, since h(m) = 0 by definition, d(m) = L(m) ∈ M by Lemma 14. Lastly,

πBd(a) =πBL(a) − πBh(a)

=β(a) − πB(ϕ−1β(a) + β(a))
=β(a) − β(a) = 0.

Thus d(a) ∈ A +M. Similarly, d(b) ∈ B +M.

�

To prove that d is a derivation, we prove that it is a derivation component-wise, then we combine the results together.

Lemma 19. d(am) = d(a)m + ad(m) and d(mb) = d(m)b + md(b) for any a ∈ A, m ∈ M, and b ∈ B.

Proof. As in the proof of Lemma 16,
L(am) = α(a)m − mβ(a) + aL(m)

and by Lemma 18 (2),
d(am) = α(a)m − mβ(a) + ad(m).
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On the other hand,

d(a)m = πAd(a)m (by Lemma 18 (3))
= πAL(a)m − πAh(a)m

= α(a)m − πA(ϕ−1β(a) + β(a))m

= α(a)m − ϕ−1β(a)m
= α(a)m − mβ(a). (by Lemma 3)

Hence, d(am) = d(a)m + ad(m). Similarly, d(mb) = d(m)b + md(b).

�

Lemma 20. d(a1a2) = d(a1)a2 + a1d(a2) and d(b1b2) = d(b1)b2 + b1d(b2) for any a1, a2 ∈ A and b1, b2 ∈ B.

Proof. By the previous lemma,
d((a1a2)m) = d(a1a2)m + a1a2d(m).

We also have

d(a1(a2m)) =d(a1)a2m + a1d(a2m)
=d(a1)a2m + a1d(a2)m + a1a2d(m).

Comparing two results, we have
d(a1a2)m = (d(a1)a2 + a1d(a2))m.

By the faithfulness ofM,
d(a1a2) = d(a1)a2 + a1d(a2).

Similarly,
d(b1b2) = d(b1)b2 + b1d(b2).

�

Lemma 21. d(a)b + ad(b) = 0 for any a ∈ A and b ∈ B.

Proof. Obviously, f (a, b, 1B) = r[[a, b], 1B] + s[[a, 1B], b] = 0. Then

0 = L( f (a, b, 1B)) = f (L(a), b, 1B) + f (a, L(b), 1B) + f (a, b, L(1B))
= f (d(a), b, 1B) + f (a, d(b), 1B) + f (a, b, d(1B))
+ f (h(a), b, 1B) + f (a, h(b), 1B) + f (a, b, h(1B))

= f (d(a), b, 1B) + f (a, d(b), 1B) + f (a, b, d(1B))

since h is a central map. We compute each component of the last line one by one. Note that for any a ∈ A and b ∈ B,
bd(a) = 0, d(b)a = 0, and d(b)1B = d(b) by Lemma 18 (3) and (4). With this,

f (d(a), b, 1B) = r[[d(a), b], 1B] + s[[d(a), 1B], b]
= r[d(a)b, 1B] + s[d(a)1B, b]
= (r + s)d(a)b,

f (a, d(b), 1B) = r[[a, d(b)], 1B] + s[[a, 1B], d(b)]
= r[ad(b), 1B]
= rad(b),

f (a, b, d(1B)) = r[[a, b], d(1B)] + s[[a, d(1B)], b]
= sad(1B)b.

As d(b) = d(1Bb) = d(1B)b+1Bd(b) by the previous lemma, the last one is equal to sa(d(b)−1Bd(b)) = sad(b). Therefore,
taking the sum of three equations, we have (r + s)(d(a)b + ad(b)) = 0. Since r + s is regular, d(a)b + ad(b) = 0. �

45



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 5; 2016

Lemma 22. d(t1t2) = d(t1)t2 + t1d(t2) for any t1, t2 ∈ T .

Proof. Let t1 = a1 + m1 + b1 and t2 = a2 + m2 + b2. Then, by Lemma 19 and Lemma 20,

d(t1t2) =d((a1 + m1 + b1)(a2 + m2 + b2))
=d(a1a2 + a1m2 + m1b2 + b1b2)
=d(a1)a2 + a1d(a2) + d(a1)m2 + a1d(m2)

+ d(m1)b2 + m1d(b2) + d(b1)b2 + b1d(b2).

On the other hand, by Lemma 18 and Lemma 21,

d(t1)t2 + t1d(t2) =(d(a1) + d(m1) + d(b1))(a2 + m2 + b2)
+ (a1 + m1 + b1)(d(a2) + d(m2) + d(b2))

=d(a1)a2 + d(a1)m2 + d(a1)b2 + d(m1)b2 + d(b1)b2

+ a1d(a2) + a1d(m2) + a1d(b2) + m1d(b2) + b1d(b2)
=d(a1)a2 + d(a1)m2 + d(m1)b2 + d(b1)b2

+ a1d(a2) + a1d(m2) + m1d(b2) + b1d(b2).

Therefore, d(t1t2) = d(t1)t2 + t1d(t2). �

This completes the proof of Theorem 12.
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