Commutativity of Γ -Generalized Boolean Semirings with Derivations

Tossatham Makkala¹ & Utsanee Leerawat¹

¹ Department of Mathematics, Kasetsart University, Bangkok, Thailand

Correspondence: Utsanee Leerawat, Department of Mathematics, Kasetsart University, Bangkok, 10900, Thailand. E-mail: fsciutl@ku.ac.th

Received: June 17, 2016Accepted: July 6, 2016Online Published: July 26, 2016doi:10.5539/jmr.v8n4p132URL: http://dx.doi.org/10.5539/jmr.v8n4p132

Abstract

In this paper the notion of derivations on Γ -generalized Boolean semiring are established, namely Γ -(f, g) derivation and Γ -(f, g) generalized derivation. We also investigate the commutativity of prime Γ -generalized Boolean semiring admitting Γ -(f, g) derivation and Γ -(f, g) generalized derivation satisfying some conditions.

Keywords: **F**-generalized Boolean semiring, semiring, commutativity, derivation

1. Introduction

There has been a great deal of work concerning commutativity of prime rings and prime near rings with derivations or generalized derivations satisfying certain differential identity (Ali, 2012; Asci, 2007; Bell, 2012; Rehman, 2011; Quadri, 2003). The notion of semiring was first introduced by H.S. Vandiver (Vandiver, 1934) in 1934 and a generalization of semiring, Γ -semiring was first studied by M.K. Rao (Rao, 1995).

In 1987, H.E. Bell and G. Mason (Bell & Mason, 1987) introduced derivations on Γ -near rings and studied some basic properties. The concept of Γ -derivations in Γ -near ring was introduced by Jun, Kim and Cho (Jun, 2003). Then Asci(Asci, 2007) investigated some commutativity conditions for Γ -near rings with derivations. Kazaz and Alkan (Kazaz & Alkan, 2008) introduced the notion of two-side Γ - α derivation of Γ -near rings and investigated some commutativity of prime and semiprime Γ -near rings. In 2011, the notion of derivations in prime Γ -semiring was introduced by M.A. Javed et al (Javed et al, 2013). In 2013, K.K. Dey and A.C. Paul (Dey & Paul, 2013) studied on generalized derivations of prime gamma ring. Later in 2014, M.R. Khan and M.M. Hasnain (Khan & Hasnain, 2014) introduced the notion of generalized Γ -derivation in Γ -near rings and investigated some basic properties.

In this paper, we introduce the notion of Γ -(f, g) derivations and Γ -(f, g) generalized derivations on Γ -generalized Boolean semirings, and investigate some related properties. We also investigate some commutativity results for Γ -generalized Boolean semiring involving Γ -(f, g) derivation and Γ -(f, g) generalized derivation.

2. Preliminaries

We first recall some definitions and prove lemmas use in proving our main results.

- A Γ -generalized Boolean semiring (or simply Γ -GB-semiring) is a triple (R, +, Γ), where
- (1) (R, +) is an abelian group.

(2) Γ is a nonempty finite set of binary operations satisfying the following properties

(i) $a\alpha b \in R$ for all $a, b \in R$ and $\alpha \in \Gamma$,

(ii) $a\alpha(b+c) = a\alpha b + a\alpha c$ for all $a, b, c \in R$ and $\alpha \in \Gamma$,

(iii) $a\alpha(b\beta c) = (a\alpha b)\beta c = (b\alpha a)\beta c$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$,

(iv) $a\alpha(b\beta c) = a\beta(b\alpha c)$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$.

The following are some basic properties on Γ -GB-semiring then the proof is straightforward and hence omitted. For any $a, b, c \in R$ and $\alpha \in \Gamma$, we have

- (i) -(-a) = a,
- (ii) $a\alpha 0 = 0$,
- (iii) $a\alpha(-b) = -(a\alpha b)$,
- (iv) $a\alpha(b-c) = (a\alpha b) (a\alpha c)$,
- (v) (a + b) = -a b,

(vi) - (a - b) = -a + b,

(vii) $-(a\alpha(b+c)) = -(a\alpha b) - (a\alpha c),$

(viii) $-(a\alpha(b-c)) = -(a\alpha b) + (a\alpha c)$.

A nonempty subset I of R is said to be a Γ -ideal of R if

(1) (I, +) is a subgroup of (R, +),

(2) $r\alpha a \in I$ for all $r \in R$, $a \in I$, and $\alpha \in \Gamma$ (i.e. $R\Gamma I \subseteq I$),

(3) $(r + a)\alpha s - r\alpha s \in I$ for all $r, s \in R, a \in I$, and $\alpha \in \Gamma$.

An automorphism f on R is a $\Gamma\Gamma$ -isomorphism from R onto R if

(1) f(a + b) = f(a) + f(b),

(2) $f(a\alpha b) = f(a)\alpha f(b)$ for all $a, b \in R$ and $\alpha \in \Gamma$.

R is a prime Γ -GB-semiring if $x\Gamma R\Gamma y = \{0\}$ for all $x, y \in R$, then x = 0 or y = 0.

For any $x, y \in R$ and $\alpha \in \Gamma$, the symbol $[x, y]_{\alpha}$ will represent the commutator $x\alpha y - y\alpha x$ and the symbol $(x \circ y)_{\alpha}$ stands for skew-commutator $x\alpha y + y\alpha x$.

Next, the following are some basic properties of commutator and skew-commutator. The proofs of these properties are straightforward and hence omitted.

(i) $[x\alpha y, z]_{\beta} = x\alpha[y, z]_{\beta} = y\alpha[x, z]_{\beta} + z\alpha[y, x]_{\beta}$,

(ii) $[x, y\alpha z]_{\beta} = y\alpha[x, z]_{\beta} = z\alpha[x, y]_{\beta} + x\alpha[y, z]_{\beta}$,

(iii) $(x \circ y\alpha z)_{\beta} = y\alpha(x \circ z)_{\beta} = z\alpha(x \circ y)_{\beta} + x\alpha[y, z]_{\beta},$

(iv) $(x\alpha y \circ z)_{\beta} = x\alpha(y \circ z)_{\beta} = y\alpha(x \circ z)_{\beta} + z\alpha[x, y]_{\beta}$.

The center of R, written Z(R), is defined to be the set

 $Z(R) = \{a \in R | a\alpha b = b\alpha a \text{ for all } b \in R \text{ and } \alpha \in \Gamma\}$

Next, we start with following lemmas which will be used extensively.

Lemma 2.1. Let *R* be a Γ -GB-semiring. If $x \in Z(R)$ then $y\alpha x \in Z(R)$ and $x\alpha y \in Z(R)$ for all $y \in R$ and $\alpha \in \Gamma$.

Proof. Let $x \in Z(R)$, $y, z \in R$, and $\alpha \in \Gamma$. Then

 $(y\alpha x)\beta z = x\alpha(y\beta z) = (y\beta z)\alpha x = z\beta(y\alpha x)$ for all $\beta \in \Gamma$. So $y\alpha x \in Z(R)$. Since $x \in Z(R)$, $x\alpha y = y\alpha x \in Z(R)$. This completes the proof.

Lemma 2.2. Let *R* be a prime Γ -GB-semiring such that $0\alpha a = a$ for all $a \in R$ and $\alpha \in \Gamma$ and let $I \neq \{0\}$ be a Γ -ideal of *R*. Then for any $x, y \in R$

(i) If $x\Gamma I = \{0\}$, then x = 0.

(ii) If $I\Gamma x = \{0\}$, then x = 0.

(iii) If $x\Gamma I\Gamma y = \{0\}$, then x = 0 or y = 0.

Proof. (i) Let $x \in R$ be such that $x\Gamma I = \{0\}$. Since $I \neq \{0\}$, there exists nonzero z in I. We have $x\Gamma R\Gamma z \subseteq x\Gamma I = \{0\}$ and so $x\Gamma R\Gamma z = \{0\}$. Since R is prime and $z \neq 0$, it follows that x = 0.

(ii) Let $x \in R$ be such that $I\Gamma x = \{0\}$. Since $I \neq \{0\}$, there exists nonzero z in I and since $z\beta r = (0 + z)\beta r - 0\beta r \in I$ for all $r \in R$ and $\beta \in \Gamma$, $z\Gamma R \subseteq I$. We have $z\Gamma R\Gamma x \subseteq I\Gamma x = \{0\}$ and so $z\Gamma R\Gamma x = \{0\}$. Since R is prime and $z \neq 0$, it follows that x = 0

(iii) Let $x, y \in R$ be such that $x\Gamma I \Gamma y = \{0\}$. Then $x\Gamma R \Gamma I \Gamma y \subseteq x\Gamma I \Gamma y = \{0\}$ and so $x\Gamma R \Gamma I \Gamma y = \{0\}$. Since *R* is prime, it follows that x = 0 or $I \Gamma y = \{0\}$. By (ii) we get y = 0.

Lemma 2.3. Let *R* be a prime Γ -GB-semiring and Δ be a nonzero function from *R* into *R*. Then $\Delta(x) \in Z(R)$ for all $x \in R$ if and only if *R* is commutative.

Proof. If *R* is commutative, then it is obvious that $\Delta(x) \in Z(R)$ for all $x \in R$. Suppose that $\Delta(x) \in Z(R)$ for all $x \in R$. By Lemma 2.1, we have $\Delta(x)\alpha y \in Z(R)$ for all $y \in R$ and $\alpha \in \Gamma$. It follows that $[\Delta(x)\alpha y, t]_{\beta} = 0$ for all $t, x, y \in R$ and $\alpha, \beta \in \Gamma$.

To show that R is commutative, let $x, y \in R$ and $\alpha \in R$. Since Δ is a nonzero function on R, there exists $z \in R$ such that

 $\Delta(z) \neq 0$. For any $t \in R$ and $\beta, \gamma \in \Gamma$ we have

 $\Delta(z)\beta t\gamma[x,y]_{\alpha}=[\Delta(z)\beta(t\gamma x),y]_{\alpha}=0. \text{ So, } \Delta(z)\Gamma R\Gamma[x,y]_{\alpha}=\{0\}.$

Since *R* is prime and $\Delta(z) \neq 0$, $[x, y]_{\alpha} = 0$. It follows that $x\alpha y = y\alpha x$. Thus *R* is commutative. This completes the proof.

Lemma 2.4. Let *R* be a prime Γ -GB-semiring and Δ be a nonzero function from *R* into *R*.

If $[\Delta(x), y]_{\alpha} \in Z(R)$ or $(\Delta(x) \circ y)_{\alpha} \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$ then R is commutative.

Proof. First, assume that $[\Delta(x), y]_{\alpha} \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$. Then we have $[[\Delta(x), y]_{\alpha}, t]_{\beta} = 0$ for all $t \in R$ and $\beta \in \Gamma$. Replacing y by $\Delta(z)\gamma y$, we obtain $[[\Delta(x), \Delta(z)\gamma y]_{\alpha}, t]_{\beta} = 0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Then

 $[\Delta(x), y]_{\alpha} \gamma[\Delta(z), t]_{\beta} = [\Delta(x), y]_{\alpha} \gamma[\Delta(z), t]_{\beta} + t \gamma[[\Delta(x), y]_{\alpha}, \Delta(z)]_{\beta} = [\Delta(z) \gamma[\Delta(x), y]_{\alpha}, t]_{\beta} = 0. \text{ for all } t, x, y, z \in \mathbb{R} \text{ and } \alpha, \beta, \gamma \in \Gamma.$

Now to show that *R* is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. We obtain

 $[\Delta(x), y]_{\alpha}\beta t\gamma [\Delta(x), y]_{\alpha} = [\Delta(x), y]_{\alpha}\beta [\Delta(x), t\gamma y]_{\alpha} = 0, \text{ for all } t \in R \text{ and } \beta, \gamma \in \Gamma.$

So $[\Delta(x), y]_{\alpha} \Gamma R \Gamma [\Delta(x), y]_{\alpha} = \{0\}$. Since *R* is prime, $[\Delta(x), y]_{\alpha} = 0$.

It follows that $\Delta(x) \in Z(R)$. By Lemma 2.3, we get required result.

Next, assume that $(\Delta(x) \circ y)_{\alpha} \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$. Then we have $[(\Delta(x) \circ y)_{\alpha}, t]_{\beta} = 0$ for all $t \in R$ and $\beta \in \Gamma$. Replacing y by $\Delta(z)\gamma y$, we obtain

 $[(\Delta(x) \circ \Delta(z)\gamma y)_{\alpha}, t]_{\beta} = 0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Then

 $[\Delta(z), t]_{\beta}\gamma(\Delta(x) \circ y)_{\alpha} = (\Delta(x) \circ y)_{\alpha}\gamma[\Delta(z), t]_{\beta} + t\gamma[(\Delta(x) \circ y)_{\alpha}, \Delta(z)]_{\beta} = [\Delta(z)\gamma(\Delta(x) \circ y)_{\alpha}, t]_{\beta} = [(\Delta(x) \circ \Delta(z)\gamma y)_{\alpha}, t]_{\beta} = 0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Replacing y by $y\delta w$, we get $[\Delta(z), t]_{\beta}\gamma(\Delta(x) \circ y\delta w)_{\alpha} = 0$ for all $w \in R$ and $\delta \in \Gamma$. Then

 $\Delta(x)\gamma[\Delta(z),t]_{\beta}\delta[y,w]_{\alpha} = [\Delta(z),t]_{\beta}\gamma\Delta(x)\delta[y,w]_{\alpha} = [\Delta(z),t]_{\beta}\gamma(w\delta(\Delta(x)\circ y)_{\alpha} + \Delta(x)\delta[y,w]_{\alpha}) = [\Delta(z),t]_{\beta}\gamma(\Delta(x)\circ y\delta w)_{\alpha} = 0$ for all $w, t, x, y, z \in R$ and $\alpha, \beta, \gamma, \delta \in \Gamma$.

Now to show *R* is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. We obtain

 $\Delta(z)\beta t\gamma[\Delta(x), y]_{\alpha}\delta[s\pi y, x]_{\alpha} = \Delta(z)\beta[\Delta(x), y]_{\alpha}\gamma[t\delta(s\pi y), x]_{\alpha} = 0 \text{ for all } s, t, z \in R \text{ and } \beta, \delta, \pi \in \Gamma. \text{ So } \Delta(z)\Gamma R\Gamma[\Delta(x), y]_{\alpha}\delta[s\pi y, x]_{\alpha} = \{0\}.$ Since $\Delta \neq 0$, there exists $z \in R$ such that $\Delta(z) \neq 0$ and R is prime, $[\Delta(x), y]_{\alpha}\delta[s\pi y, x]_{\alpha} = 0$. And we have $[\Delta(x), y]_{\alpha}\delta s\pi[y, x]_{\alpha} = 0.$ So $[\Delta(x), y]_{\alpha}\Gamma R\Gamma[y, x]_{\alpha} = \{0\}.$ Since R is prime, $[\Delta(x), y]_{\alpha}\delta[s\pi y, x]_{\alpha} = 0.$

If $[\Delta(x), y]_{\alpha} = 0$. It follows that $\Delta(x) \in Z(R)$ by Lemma 2.3, *R* is commutative.

If $[y, x]_{\alpha} = 0$, *R* is commutative. This completes the proof.

Lemma 2.5. Let *R* be a prime Γ -GB-semiring and ζ be an automorphism on *R*. If there exists a nonzero *z* in *R* such that $z\beta\zeta[x, y]_{\alpha} = 0$ or $z\beta\zeta(x \circ y)_{\alpha} = 0$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Then *R* is commutative.

Proof. Case 1 Assume that there exists a nonzero *z* in *R* such that $z\beta\zeta[x, y]_{\alpha} = 0$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Then for any $t, x, y \in R$ and $\alpha, \beta, \gamma \in \Gamma$, we have

 $z\beta\zeta(t)\gamma\zeta[x,y]_{\alpha} = z\beta\zeta(t\gamma[x,y]_{\alpha}) = z\beta\zeta[t\gamma x,y]_{\alpha} = 0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$.

Since ζ is surjective, $z\Gamma R\Gamma \zeta[x, y]_{\alpha} = 0$. Since *R* is prime and $z \neq 0$, $\zeta[x, y]_{\alpha} = 0$

Since $\zeta(0) = 0$ and ζ is injective, $[x, y]_{\alpha} = 0$, it follows that *R* is commutative.

<u>Case 2</u> Assume that there exists a nonzero *z* in *R* such that $z\beta\zeta[x, y]_{\alpha} = 0$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Similarly to case 1, we have

 $z\beta\zeta(t)\gamma\zeta[x,y]_{\alpha} = z\beta\zeta(t)\gamma\zeta[x,y]_{\alpha} + 0 = z\beta\zeta(t)\gamma\zeta[x,y]_{\alpha} + z\beta\zeta(y)\zeta(x \circ t)_{\alpha} = z\beta\zeta(y\gamma(x \circ t)_{\alpha} + t\gamma[x,y]_{\alpha}) = z\beta\zeta(x\gamma y \circ t)_{\alpha} = 0$, for all $t \in R$ and $\beta, \gamma \in \Gamma$. We use the same argument in the proof of case 1, we conclude that *R* is commutative. This completes the proof.

3. Derivations on Γ-Generalized Boolean Semirings

In this section we establish derivations on Γ - generalized Boolean semiring and investigate some results satisfying certain identities involving these derivations.

Definition 3.1. Let *R* be a Γ -GB-semiring and let *f* and *g* be automorphisms on *R*. An additive mapping $d : R \to R$ is called a Γ -(*f*, *g*) derivation

$$d(x\alpha y) = f(x)\alpha d(y) + d(x)\alpha g(y)$$
 for all $x, y \in R$ and $\alpha \in \Gamma$.

An additive mapping $D: R \to R$ is called a left (resp. right) Γ -(f, g) generalized derivation if there exists nonzero Γ -(f, g) derivation d on R satisfying

 $D(x\alpha y) = f(x)\alpha d(y) + D(x)\alpha g(y) \text{ (resp. } D(x\alpha y) = f(x)\alpha D(y) + d(x)\alpha g(y))$

for all $x, y \in R$ and $\alpha \in \Gamma$.

Lemma 3.2. Let *R* be a Γ -GB-semiring and *D* be a left Γ -(*f*, *g*) generalized derivation on *R*. Then

 $[f(x)\alpha d(y) + D(x)\alpha g(y)]\beta g(z) = f(x)\alpha d(y)\beta g(z) + D(x)\alpha g(y)\beta g(z).$

Proof. Let $x, y, z \in R$ and $\alpha, \beta \in \Gamma$, we have

 $D((x\alpha y)\beta z) = f(x\alpha y)\beta d(z) + D(x\alpha z)\beta g(z)$ = $f(x)\alpha f(y)\beta d(z) + (f(x)\alpha d(y) + D(x)\alpha g(y))\beta g(z)$ and $D(x\alpha(y\beta z)) = f(x)\alpha d(y\beta z) + D(x)\alpha g(y\beta z)$ = $f(x)\alpha (f(y)\beta d(z) + d(y)\beta g(z)) + D(x)\alpha g(y)\beta g(z)$ = $f(x)\alpha f(y)\beta d(z) + f(x)\alpha d(y)\beta g(z) + D(x)\alpha g(y)\beta g(z).$

Since $D((x\alpha y)\beta z) = D(x\alpha(y\beta z))$,

 $(f(x)\alpha d(y) + D(x)\alpha g(y))\beta g(z) = f(x)\alpha d(y)\beta g(z) + D(x)\alpha g(y)\beta g(z)$. This completes the proof.

Corollary 3.3. Let *R* be a Γ -GB-semiring. Let *d* be a Γ -(*f*, *g*) derivation on *R* and *f*, *g* be automorphisms on *R*. Then

 $[f(x)\alpha d(y) + d(x)\alpha g(y)]\beta g(z) = f(x)\alpha d(y)\beta g(z) + d(x)\alpha g(y)\beta g(z).$

Lemma 3.4. Let *R* be a prime Γ -GB-semiring. Let *D* be a nonzero Γ -(*f*, *g*) generalized derivation on *R* and *f*, *g* be automorphisms on *R*. If $f(x)\alpha d(y) + D(x)\alpha g(y) \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$ then *R* is commutative.

4. Commutativity of Γ-generalized Boolean Semirings

In this section, we show that Γ -generalized Boolean semiring with derivations satisfying certain conditions are commutative.

Theorem 4.1. Let *R* be a prime Γ -GB-semiring and let *f*, *g* be automorphisms on *R*. If *d* is a nonzero Γ -(*f*, *g*) derivation on *R* satisfying any one of the following

(i) $[d(x), g(y)]_{\alpha} = [f(x), g(y)]_{\alpha}$,

(ii)
$$d[x, y]_{\alpha} = [f(x), g(y)]_{\alpha}$$

(iii) $(d(x) \circ g(y))_{\alpha} = (f(x) \circ g(y))_{\alpha}$,

(iv) $d(x \circ y)_{\alpha} = (f(x) \circ g(y))_{\alpha}$,

(v) $d(x \circ y)_{\alpha} = [f(x), g(y)]_{\alpha}$,

(vi) $d[x, y]_{\alpha} = (f(x) \circ g(y))_{\alpha}$,

for all $x, y \in R$ and $\alpha \in \Gamma$. Then *R* is commutative.

Proof. (i) Assume that $[d(x), g(y)]_{\alpha} = [f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by $z\beta x$, we obtain $[d(z\beta x), g(y)]_{\alpha} = [f(z\beta x), g(y)]_{\alpha}$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. Then

$$\begin{aligned} d(z\beta x)\alpha g(y) - g(y)\alpha d(z\beta x) &= [f(z\beta x), g(y)]_{\alpha} \\ f(z)\beta d(x)\alpha g(y) + d(z)\beta g(x)\alpha g(y) - g(y)\alpha f(z)\beta d(x) - g(y)\alpha d(z)\beta g(x) &= f(z)\beta [f(x), g(y)]_{\alpha} \\ f(z)\beta [d(x), g(y)]_{\alpha} + d(z)\beta [g(x), g(y)]_{\alpha} &= f(z)\beta [f(x), g(y)]_{\alpha} \\ d(z)\beta g[x, y]_{\alpha} &= 0. \end{aligned}$$

Since $d \neq 0$, there exists $z \in R$ such that $d(z) \neq 0$. By Lemma 2.5, it follows that R is commutative.

The proof of (ii) - (vi) are obtained similarly to that of (i).

Theorem 4.2. Let *R* be a prime Γ -GB-semiring and *f*, *g* be automorphisms on *R*. If *d* is a nonzero Γ -(*f*, *g*) derivation on *R* such that

(i) $[d(x), y]_{\alpha} \in Z(R)$, or

(ii) $(d(x) \circ y)_{\alpha} \in Z(R)$,

for all $x, y \in R$ and $\alpha \in \Gamma$. Then *R* is commutative.

Proof. This follows directly from Lemma 2.4.

Theorem 4.3. Let *R* be a prime Γ -GB-semiring such that $0\alpha a = 0$ for all $a \in R$ and $\alpha \in \Gamma$. Let *d* be a nonzero Γ -(f, f) derivation on *R* where *f* is a nonzero automorphism on *R*. If

(i) $d[x, y]_{\alpha} = [d(x), f(y)]_{\alpha}$, or

(ii) $d(x \circ y)_{\alpha} = (d(x) \circ f(y))_{\alpha}$,

for all $x, y \in R$ and $\alpha \in \Gamma$. Then *R* is commutative.

Proof. (i) Assume that $d[x, y]_{\alpha} = [d(x), f(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by $z\beta x$, we obtain $d[z\beta x, y]_{\alpha} = [d(z\beta x), f(y)]_{\alpha}$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. Then

 $\begin{aligned} d((z\beta x)\alpha y - y\alpha(z\beta x)) &= d(z\beta x)\alpha f(y) - f(y)\alpha d(z\beta x) \\ f(z\beta x)\alpha d(y) + d(z\beta x)\alpha f(y) - f(y)\alpha d(z\beta x) - d(y)\alpha f(z\beta x) &= d(z\beta x)\alpha f(y) - f(y)\alpha d(z\beta x) \\ f(z)\beta [f(x), d(y)]_{\alpha} &= 0. \end{aligned}$

Hence $f(z)\beta[f(x), d(y)]_{\alpha} = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show that *R* is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$. We have

 $f(z)\beta f(t)\gamma [f(x),d(y)]_{\alpha}=f(z)\beta [f(t\gamma x),d(y)]_{\alpha}=0 \text{ for all } t\in R \text{ and } \beta,\gamma\in\Gamma.$

Since f is surjective, $f(z)\Gamma R\Gamma[f(x), d(y)]_{\alpha} = \{0\}.$

Since *R* is prime and $f(z) \neq 0$, $[f(x), d(y)]_{\alpha} = 0$.

And since f is surjective on R, $d(y) \in Z(R)$. By Lemma 2.3, it follows that R is commutative.

(ii) Using similar techniques as above, we obtain $f(z)\beta(f(x) \circ d(y))_{\alpha} = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show *R* is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$. We have

 $f(z)\beta f(t)\gamma (f(x) \circ d(y))_{\alpha} = f(z)\beta (f(t\gamma x) \circ d(y))_{\alpha} = 0 \text{ for all } t \in R \text{ and } \beta, \gamma \in \Gamma.$

Since f is surjective, $f(z)\Gamma R\Gamma(f(x) \circ d(y))_{\alpha} = \{0\}.$

Since *R* is prime and $f(z) \neq 0$, $(f(x) \circ d(y))_{\alpha} = 0 \in Z(R)$.

By Theorem 4.2(ii), it follows that R is commutative. This completes the proof.

Theorem 4.4. Let *R* be a nonzero prime Γ -GB-semiring such that $0\alpha a = 0$ for all $a \in R$ and $\alpha \in \Gamma$ and f, g be automorphism on *R*. Let *D* be a left Γ -(*f*, *g*) generalized derivation on *R* satisfying

(i) $[D(x), g(y)]_{\alpha} = [f(x), g(y)]_{\alpha}$, or

(ii) $(D(x) \circ g(y))_{\alpha} = (f(x) \circ g(y))_{\alpha}$,

for all $x, y \in R$ and $\alpha \in \Gamma$. If there exists $0 \neq z \in R$ such that D(z) = 0, then R is commutative.

Proof. (i) Assume that $[D(x), g(y)]_{\alpha} = [f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$.

Replacing *x* by $z\beta x$ we obtain $[D(z\beta x), g(y)]_{\alpha} = [f(z\beta x), g(y)]_{\alpha}$. For each $x, y, z \in R$ and $\alpha, \beta \in \Gamma$ we have

 $D(z\beta x)\alpha g(y) - g(y)\alpha D(z\beta x) = [f(z)\beta f(x), g(y)]_{\alpha}$

 $(f(z)\beta d(x) + D(x)\beta g(x))\alpha g(y) - g(y)\alpha(f(z)\beta d(x) + D(x)\beta g(x)) = f(z)\beta[f(x), g(y)]_{\alpha}$ $f(z)\beta d(x)\alpha g(y) + D(x)\beta g(x)\alpha g(y) - g(y)\alpha f(z)\beta d(x) - g(y)\alpha D(x)\beta g(x) = f(z)\beta[f(x), g(y)]_{\alpha}$

$$f(z)\beta[d(x),g(y)]_{\alpha} + D(z)\beta[g(x),g(y)]_{\alpha} = f(z)\beta[f(x),g(y)]_{\alpha}$$

$$f(z)\beta([d(x), g(y)]_{\alpha} - [f(x), g(y)]_{\alpha}) + D(z)\beta[g(x), g(y)]_{\alpha} = 0.$$

Hence $f(z)\beta([d(x), g(y)]_{\alpha} - [f(x), g(y)]_{\alpha}) + D(z)\beta[g(x), g(y)]_{\alpha} = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show *R* is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since there exists $0 \neq z \in R$ such that D(z) = 0, we have

$$\begin{aligned} f(z)\beta g(t)\gamma ([d(x), g(y)]_{\alpha} - [f(x), g(y)]_{\alpha}) &= f(z)\beta (g(t)\gamma [d(x), g(y)]_{\alpha} - g(t)\gamma [f(x), g(y)]_{\alpha}) \\ &= f(z)\beta ([d(x), g(t\gamma y)]_{\alpha} - [f(x), g(t\gamma y)]_{\alpha}) \\ &= f(x)\beta ([d(x), g(t\gamma y)]_{\alpha} - [f(x), g(t\gamma y)]_{\alpha}) \\ &+ D(z)\beta [g(x), g(t\gamma y)]_{\alpha} \\ &= 0 \end{aligned}$$

Thus $f(z)\beta g(t)\gamma([d(x), g(y)]_{\alpha} - [f(x), g(y)]_{\alpha}) = 0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$.

Since g is surjective, $f(z)\Gamma R\Gamma([d(x), g(y)]_{\alpha} - [f(x), g(y)]_{\alpha}) = \{0\}.$

Since f is injective, $f(z) \neq 0$. And R is prime, we have $[d(x), g(y)]_{\alpha} - [f(x), g(y)]_{\alpha} = 0$.

Thus $[d(x), g(y)]_{\alpha} = [f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$.

By Theorem 4.1(i), it follows that R is commutative.

(ii) Using similar techniques as above, we obtain

 $f(z)\beta((d(x) \circ g(y))_{\alpha} - (f(x) \circ g(y))_{\alpha}) + D(z)\beta(g(x) \circ g(y))_{\alpha} = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show *R* is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since there exists $0 \neq z \in R$ such that D(z) = 0, we have

$$\begin{aligned} f(z)\beta g(t)\gamma((d(x)\circ g(y))_{\alpha} - (f(x)\circ g(y))_{\alpha}) &= f(z)\beta(g(t)\gamma(d(x)\circ g(y))_{\alpha} - g(t)\gamma(f(x)\circ g(y))_{\alpha}) \\ &= f(z)\beta((d(x)\circ g(t\gamma y))_{\alpha} - (f(x)\circ g(t\gamma y))_{\alpha}) \\ &= f(x)\beta((d(x)\circ g(t\gamma y))_{\alpha} - (f(x)\circ g(t\gamma y))_{\alpha}) \\ &+ D(z)\beta(g(x)\circ g(t\gamma y))_{\alpha} \\ &= 0 \end{aligned}$$

Thus $f(z)\beta g(t)\gamma((d(x) \circ g(y))_{\alpha} - (f(x) \circ g(y))_{\alpha}) = 0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$.

The same argument in the proof of (i) and by Theorem 4.1(iii) we conclude that R is commutative. This completes the proof.

Theorem 4.5. Let *R* be a prime Γ -GB-semiring and *f*, *g* be automorphisms on *R*. Let *D* be a right Γ -(*f*, *g*) generalized derivation on *R* satisfying any one of the following

(i)
$$D[x, y]_{\alpha} = [f(x), g(y)]_{\alpha}$$
,

(ii) $D(x \circ y)_{\alpha} = (f(x) \circ g(y))_{\alpha}$,

- (iii) $D(x \circ y)_{\alpha} = [f(x), g(y)]_{\alpha}$,
- (iv) $D[x, y]_{\alpha} = (f(x) \circ g(y))_{\alpha}$,

for all $x, y \in R$ and $\alpha \in \Gamma$. Then *R* is commutative.

Proof. (i) Assume that $D[x, y]_{\alpha} = [f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by $z\beta x$, we obtain $D[z\beta x, y]_{\alpha} = [f(z\beta x), g(y)]_{\alpha}$. For each $x, y, z \in R$ and $\alpha, \beta \in \Gamma$ we have

$$D(z\beta[x, y]_{\alpha}) = [f(z)\beta f(x), g(y)]_{\alpha}$$

$$f(z)\beta D[x, y]_{\alpha} + d(z)\beta g[x, y]_{\alpha} = f(z)\beta [f(x), g(y)]_{\alpha}$$

$$f(z)\beta (D[x, y]_{\alpha} - [f(x), g(y)]_{\alpha}) + d(z)\beta g[x, y]_{\alpha} = 0$$

$$d(z)\beta g[x, y]_{\alpha} = 0.$$

To show that *R* is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $d \neq 0$, there exists $z \in R$ such that $d(z) \neq 0$, we have $d(z)\beta g[x, y]_{\alpha} = 0$. By Lemma 2.5, it follows that *R* is commutative.

The proof of (ii) - (iv) are obtained similarly to that of (i).

Theorem 4.6 Let *R* be a prime Γ -GB-semiring and *f*, *g* be automorphisms on *R*. Let *D* be a nonzero left (resp. right) Γ -(*f*, *g*) generalized derivation on *R* such that

(i) $[D(x), y]_{\alpha} \in Z(R)$, or

(ii) $(D(x) \circ y)_{\alpha} \in Z(R)$,

for all $x, y \in R$ and $\alpha \in \Gamma$. Then *R* is commutative.

Proof. This follows directly from Lemma 2.4.

Theorem 4.7. Let *R* be a prime Γ -GB-semiring such that $0\alpha a = 0$ for all $a \in R$ and $\alpha \in \Gamma$. Let *f* be a nonzero automorphism on *R*. If *D* is a left Γ -(*f*, *f*) generalized derivation on *R* such that

(i)
$$D[x, y]_{\alpha} = [D(x), f(y)]_{\alpha}$$
, or

(ii) $D(x \circ y)_{\alpha} = (D(x) \circ f(y))_{\alpha}$,

for all $x, y \in R$ and $\alpha \in \Gamma$. Then *R* is commutative.

Proof. (i) Assume that $D[x, y]_{\alpha} = [D(x), f(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$

Replacing x by $z\beta x$, we obtain $D[z\beta x, y]_{\alpha} = [D(z\beta x), f(y)]_{\alpha}$.

For each $x, y, z \in R$ and $\alpha, \beta \in \Gamma$, we have

 $D(z\beta[x, y]_{\alpha}) = D(z\beta x)\alpha f(y) - f(y)\alpha D(z\beta x)$

 $\begin{aligned} f(z)\beta d[x,y]_{\alpha} &+ D(z)\beta f[x,y]_{\alpha} &= d(z\beta x)\alpha f(y) - f(y)\alpha D(z\beta x) \\ f(z)\beta f(x)\alpha d(y) + f(z)\beta d(x)\alpha f(y) - f(z)\beta f(y)\alpha d(x) - f(z)\beta d(y)\alpha f(x) + D(z)\beta f(x)\alpha f(y) - D(z)\beta f(y)\alpha f(x) = f(z)\beta d(x)\alpha f(y) + D(z)\beta f(x)\alpha f(y) - f(y)\alpha f(z)\beta d(x) - f(y)\alpha D(z)\beta f(x) \end{aligned}$

so, $f(z)\beta[f(x), d(y)]_{\alpha} = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show that R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$, we have

 $f(z)\beta f(t)\gamma[f(x), d(y)]_{\alpha} = f(z)\beta[f(t\gamma x), d(y)]_{\alpha} = 0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$

Since f is surjective, $f(z)\Gamma R\Gamma[f(x), d(y)]_{\alpha} = 0$.

Since *R* is prime and $f(z) \neq 0$, $[f(x), d(y)]_{\alpha} = 0$.

Since *f* is surjective, $d(y) \in Z(R)$. By Lemma 2.3, it follows that *R* is commutative.

(ii) Using similar techniques as above, we have, $f(z)\beta(f(x) \circ d(y))_{\alpha} = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$, we have

 $f(z)\beta f(t)\gamma (f(x) \circ d(y))_{\alpha} = f(z)\beta (f(t\gamma x) \circ d(y))_{\alpha} = 0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$

Since f is surjective, $f(z)\Gamma R\Gamma(f(x) \circ d(y))_{\alpha} = 0$.

Since *R* is prime and $f(z) \neq 0$, $(f(x) \circ d(y))_{\alpha} = 0 \in Z(R)$.

By Theorem 4.2(ii), it follows that R is commutative. This completes the proof.

Acknowledgements

The authors would like to thank the reviews for their valuable comments and suggestions.

References

Ali, S. (2012). On generalized *-derivations in *-rings. Palestine Journal of Mathematics, 1, 32-37.

- Asci, M. (2007). Γ -(σ , τ) derivation on gamma near rings. *International Mathematical Forum, Journal for Theory and Applications*, 2(1-4), 97-102.
- Ashraf, M., Boua, A., & Raji, A. (2014). On derivations and commutativity in prime near-rings. Journal of Taibah University for Science, 8, 301-306. http://dx.doi.org/10.1016/j.jtusci.2014.02.002
- Bell, H. E., & Mason, G. (1987). On derivations in near-rings. *North-Holland Mathematics Studies*, 137, 31-35. http://dx.doi.org/10.1016/S0304-0208(08)72283-7
- Bell, H. E., Boua, A., & Oukhtite, L. (2012). On derivations of prime near-rings. African Diaspora Journal of Mathematics, 14, 65-72.
- Chandramouleeswaran, M., & Thiruveni, V. (2011). A note on α derivations in semirings. *Int. J. Pure App. Sci. Technol*, 2(1), 71-77.
- Dey, K. K., Paul, A. C., & Rakhimov, I. S. (2012). On prime-gamma-near-rings with generalized derivations. *International Journal of Mathematics and Mathematical Sciences.*, 14 pages.
- Dey, K. K., & Paul, A. C. (2013). Generalized derivations of prime gamma rings. J. Bangladesh Math. Soc, 33, 33-39.
- Javed, M. A., Aslam, M., & Hussain, M. (2013). On derivations of prime Γ-semirings. Southest Asian Bulletin of Mathematics, 37, 859-865.
- Jun, Y. B., Kim, K. H., & Cho, Y. U. (2003). On gamma-derivations in gamma-near-rings. Soochow Journal of Mathematics, 29(3), 275-282.
- Kazaz, M., & Alkan, A. (2008). Two-sided Γ-α-derivations in prime and semiprime Γ-near-rings. Korean Mathematical Society, 23(4), 469-477. http://dx.doi.org/10.4134/CKMS.2008.23.4.469
- Khan, M. R., & Hasnain, M. M. (2014). Gamma nearrings with generalized gamma derivations. *Novi Sad J. Math*, 44(2), 19-28.
- Madhuchelvi, L. (2016). On generallized derivations in Γ -near rings. Int Jr. of Mathematical Sciences & Applications, 6(1), 98-101.
- Quadri, M. A., Shadab, M., & Rehman, N. (2003). Generalized derivations and commutativity of prime rings. Indian J.

pure appl. Math., 34(9), 1393-1396.

- Rao, M. K. (1995). F-semiring-1. Southeast Asain Bull. Math., 19, 49-54.
- Rehman, N. (2011). A note on prime rings with left derivations. *Proceeding of the sixth China-Japan-Korea International Conference on Ring Theory.*, 123-128.
- Vandiver, H. S. (1934). Note on a simple type of algebra in which the cancellation law of addition does not hold. *Bull. Amer. Math. Soc.*, 40, 914-920. http://dx.doi.org/10.1090/s0002-9904-1934-06003-8

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).