Commutativity of Γ-Generalized Boolean Semirings with Derivations

Tossatham Makkala1 & Utsanee Leerawat1

1 Department of Mathematics, Kasetsart University, Bangkok, Thailand

Correspondence: Utsanee Leerawat, Department of Mathematics, Kasetsart University, Bangkok, 10900, Thailand. E-mail: fsciutl@ku.ac.th

Received: June 17, 2016 Accepted: July 6, 2016 Online Published: July 26, 2016

doi:10.5539/jmr.v8n4p132 URL: http://dx.doi.org/10.5539/jmr.v8n4p132

Abstract

In this paper the notion of derivations on Γ-generalized Boolean semiring are established, namely Γ-(f, g) derivation and Γ-(f, g) generalized derivation. We also investigate the commutativity of prime Γ-generalized Boolean semiring admitting Γ-(f, g) derivation and Γ-(f, g) generalized derivation satisfying some conditions.

Keywords: Γ-generalized Boolean semiring, semiring, commutativity, derivation

1. Introduction

There has been a great deal of work concerning commutativity of prime rings and prime near rings with derivations or generalized derivations satisfying certain differential identity (Ali, 2012; Asci, 2007; Bell, 2012; Rehman, 2011; Quadri, 2003). The notion of semiring was first introduced by H.S. Vandiver (Vandiver, 1934) in 1934 and a generalization of semiring, Γ-semiring was first studied by M.K. Rao (Rao, 1995).

In 1987, H.E. Bell and G. Mason (Bell & Mason, 1987) introduced derivations on Γ-near rings and studied some basic properties. The concept of Γ-derivations in Γ-near ring was introduced by Jun, Kim and Cho (Jun, 2003). Then Asci(Asci, 2007) investigated some commutativity conditions for Γ-near rings with derivations. Kazaz and Alkan (Kazaz & Alkan, 2008) introduced the notion of two-side Γ-α derivation of Γ-near rings and investigated some commutativity of prime and semiprime Γ-near rings. In 2011, the notion of derivations in prime Γ-semiring was introduced by M.A. Javed et al (Javed et al, 2013). In 2013, K.K. Dey and A.C. Paul (Dey & Paul, 2013) studied on generalized derivations of prime gamma ring. Later in 2014, M.R. Khan and M.M. Hasnain (Khan & Hasnain, 2014) introduced the notion of generalized Γ-derivation in Γ-near rings and investigated some basic properties.

In this paper, we introduce the notion of Γ-(f, g) derivations and Γ-(f, g) generalized derivations on Γ-generalized Boolean semirings, and investigate some related properties. We also investigate some commutativity results for Γ-generalized Boolean semiring involving Γ-(f, g) derivation and Γ-(f, g) generalized derivation.

2. Preliminaries

We first recall some definitions and prove lemmas use in proving our main results.

A Γ-generalized Boolean semiring (or simply Γ-GB-semiring) is a triple $(R, +, \Gamma)$, where

(1) $(R, +)$ is an abelian group.

(2) Γ is a nonempty finite set of binary operations satisfying the following properties

(i) $a\alpha b \in R$ for all $a, b \in R$ and $\alpha \in \Gamma$,

(ii) $a\alpha(b + c) = a\alpha b + a\alpha c$ for all $a, b, c \in R$ and $\alpha \in \Gamma$,

(iii) $a\alpha(b\beta c) = (a\alpha b)\beta c = (b\alpha a)\beta c$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$,

(iv) $a\alpha(b\beta c) = a\beta(b\alpha c)$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$.

The following are some basic properties on Γ-GB-semiring then the proof is straightforward and hence omitted. For any $a, b, c \in R$ and $\alpha \in \Gamma$, we have

(i) $-(-a) = a$,

(ii) $a\alpha 0 = 0$,

(iii) $a\alpha(-b) = -(a\alpha b)$,

(iv) $a\alpha(b - c) = (a\alpha b) - (a\alpha c)$,

(v) $-(a + b) = -a - b$,

Lemma 2.1, we have Δ follows that 0 or I.

To show that Δ is commutative, let f be a prime Γ-GB-semiring if 0 or I.

Next, we start with following lemmas which will be used extensively.

The center of R, written $Z(R)$, is defined to be the set

$$Z(R) = \{a \in R | aab = baa \text{ for all } b \in R \text{ and } a \in \Gamma\}$$

Next, we start with following lemmas which will be used extensively.

Lemma 2.1. Let R be a Γ-GB-semiring. If $x \in Z(R)$ then $yax \in Z(R)$ and $xay \in Z(R)$ for all $y \in R$ and $a \in \Gamma$.

Proof. Let $x \in Z(R), y, z \in R$, and $a \in \Gamma$. Then

$$(yax)z = x(ayz) = (ybz)x = z(ayx) = y(aza) = yz(a) = yz$$

This completes the proof.

Lemma 2.2. Let R be a prime Γ-GB-semiring such that $0aa = a$ for all $a \in R$ and $a \in \Gamma$ and let $I \neq \{0\}$ be a Γ-ideal of R. Then for any $x, y \in R$

(i) If $xI = I = \{0\}$, then $x = 0$.

(ii) If $IIx = I = \{0\}$, then $x = 0$.

(iii) If $xIvy = I = \{0\}$, then $x = 0$ or $y = 0$.

Proof. (i) Let $x \in R$ be such that $xI = \{0\}$. Since $I \neq \{0\}$, there exists nonzero z in I. We have $x\Gamma Gz \subseteq xI = \{0\}$ and so $x\Gamma Gz = \{0\}$. Since R is prime and $z \neq 0$, it follows that $x = 0$.

(ii) Let $x \in R$ be such that $IIx = \{0\}$. Since $I \neq \{0\}$, there exists nonzero z in I and since $zbr = (0 + z)b - 0b \in I$ for all $r \in R$ and $\beta \in \Gamma, z\Gamma R \subseteq I$. We have $z\Gamma Rx \subseteq IIx = \{0\}$ and so $z\Gamma Rx = \{0\}$. Since R is prime and $z \neq 0$, it follows that $x = 0$.

(iii) Let $x, y \in R$ be such that $xIvy = \{0\}$. Then $x\Gamma R\Gamma y \subseteq xIvy = \{0\}$ and so $x\Gamma R\Gamma y = \{0\}$. Since R is prime, it follows that $x = 0$ or $Iy = \{0\}$. By (ii) we get $y = 0$.

Lemma 2.3. Let R be a prime Γ-GB-semiring and Δ be a nonzero function from R into R. Then $\Delta(x) \in Z(R)$ for all $x \in R$ if and only if R is commutative.

Proof. If R is commutative, then it is obvious that $\Delta(x) \in Z(R)$ for all $x \in R$. Suppose that $\Delta(x) \in Z(R)$ for all $x \in R$. By Lemma 2.1, we have $\Delta(x)y \in Z(R)$ for all $y \in R$ and $a \in \Gamma$. It follows that $[\Delta(x)y, t] = 0$ for all $t, x, y \in R$ and $a, \beta \in \Gamma$.

To show that R is commutative, let $x, y \in R$ and $a \in R$. Since Δ is a nonzero function on R, there exists $z \in R$ such that
Δ(z) ≠ 0. For any t ∈ R and β, γ ∈ Γ we have
Δ(z)βγ[x, y]0 = [Δ(z)]β(γxy), y]0 = 0. So, Δ(z)ΓΓGamma
An additive mapping \(D : R \to R \) is called a left (resp. right) \(\Gamma \)-\((f, g)\) generalized derivation if there exists nonzero \(\Gamma \)-\((f, g)\) derivation \(d \) on \(R \) satisfying

\[
D(xay) = f(x)ad(y) + D(x)ag(y) \quad (\text{resp. } D(xay) = f(x)\alpha D(y) + d(x)\alpha g(y))
\]

for all \(x, y \in R \) and \(\alpha \in \Gamma \).

Lemma 3.2. Let \(R \) be a \(\Gamma \)-GB-semiring and \(D \) be a left \(\Gamma \)-\((f, g)\) generalized derivation on \(R \). Then

\[
[f(x)ad(y) + D(x)ag(y)] \beta g(z) = f(x)ad(y)\beta g(z) + D(x)ag(y)\beta g(z).
\]

Proof. Let \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \), we have

\[
D((x\alpha y)\beta z) = f(x\alpha y)\beta d(z) + D((x\alpha z)\beta y) = f(x)af(y)\beta d(z) + (f(x)ad(y) + D(x)ag(y)) \beta g(z) \quad \text{and}
\]

\[
D(x\alpha y(\beta z)) = f(x)ad(y)\beta d(z) + D(x)ag(y)\beta z = f(x)af(y)\beta d(z) + (f(x)ad(y) + D(x)ag(y)) \beta g(z)
\]

Since \(D((x\alpha y)\beta z) = D(x\alpha (y\beta z)) \),

\[
(f(x)ad(y) + D(x)ag(y)) \beta g(z) = f(x)ad(y)\beta g(z) + D(x)ag(y)\beta g(z).
\]

This completes the proof.

Corollary 3.3. Let \(R \) be a \(\Gamma \)-GB-semiring. Let \(d \) be a \(\Gamma \)-\((f, g)\) derivation on \(R \) and \(f, g \) be automorphisms on \(R \). Then

\[
[f(x)ad(y) + D(x)ag(y)] \beta g(z) = f(x)ad(y)\beta g(z) + D(x)ag(y)\beta g(z).
\]

Lemma 3.4. Let \(R \) be a prime \(\Gamma \)-GB-semiring. Let \(D \) be a nonzero \(\Gamma \)-\((f, g)\) generalized derivation on \(R \) and \(f, g \) be automorphisms on \(R \). If \(f(x)ad(y) + D(x)ag(y) \in Z(R) \) for all \(x, y \in R \) and \(\alpha \in \Gamma \) then \(R \) is commutative.

4. Commutativity of \(\Gamma \)-generalized Boolean Semirings

In this section, we show that \(\Gamma \)-generalized Boolean semiring with derivations satisfying certain conditions are commutative.

Theorem 4.1. Let \(R \) be a prime \(\Gamma \)-GB-semiring and let \(f, g \) be automorphisms on \(R \). If \(d \) is a nonzero \(\Gamma \)-\((f, g)\) derivation on \(R \) satisfying any one of the following

(i) \([d(x), g(y)]_\alpha = [f(x), g(y)]_\alpha \),

(ii) \(d(x, y)_\alpha = [f(x), g(y)]_\alpha \),

(iii) \((d(x) \circ g(y))_\alpha = (f(x) \circ g(y))_\alpha \),

(iv) \(d(x \circ y)_\alpha = (f(x) \circ g(y))_\alpha \),

(v) \(d(x \circ y)_\alpha = [f(x), g(y)]_\alpha \),

(vi) \(d(x, y)_\alpha = (f(x) \circ g(y))_\alpha \),

for all \(x, y, z \in R \) and \(\alpha \in \Gamma \). Then \(R \) is commutative.

Proof. (i) Assume that \([d(x), g(y)]_\alpha = [f(x), g(y)]_\alpha \) for all \(x, y \in R \) and \(\alpha \in \Gamma \). Replacing \(x \) by \(z\beta x \), we obtain \([d(z\beta x), g(y)]_\alpha = [f(z\beta x), g(y)]_\alpha \) for all \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \). Then

\[
d(z\beta x)ag(y) - g(y)ad(z\beta x) = [f(z\beta x), g(y)]_\alpha
\]

\[
f(z)\beta d(x)ag(y) + d(z)\beta g(x)ag(y) - g(y)af(z)\beta d(x) - g(y)ad(z)\beta g(x) = [f(z)\beta f(x), g(y)]_\alpha
\]

\[
f(z)\beta d(x, y)_\alpha + d(z)\beta g(x, y)_\alpha = [f(z)\beta f(x, y)]_\alpha
\]

Since \(d \neq 0 \), there exists \(z \in R \) such that \(d(z) \neq 0 \). By Lemma 2.5, it follows that \(R \) is commutative.

The proof of (ii) - (vi) are obtained similarly to that of (i).

Theorem 4.2. Let \(R \) be a prime \(\Gamma \)-GB-semiring and \(f, g \) be automorphisms on \(R \). If \(d \) is a nonzero \(\Gamma \)-\((f, g)\) derivation on \(R \) such that

(i) \([d(x), y]_\alpha \in Z(R) \), or

(ii) \((d(x) \circ y)_\alpha \in Z(R) \),

for all \(x, y \in R \) and \(\alpha \in \Gamma \). Then \(R \) is commutative.

Proof. This follows directly from Lemma 2.4.
Theorem 4.3. Let R be a prime Γ-GB-semiring such that $0aa = 0$ for all $a \in R$ and $\alpha \in \Gamma$. Let d be a nonzero Γ-(f, f) derivation on R where f is a nonzero automorphism on R. If

(i) $d[x, y]_\alpha = [d(x), f(y)]_\alpha$, or

(ii) $d(x \circ y)_\alpha = (d(x) \circ f(y))_\alpha,$

for all $x, y \in R$ and $\alpha \in \Gamma$. Then R is commutative.

Proof. (i) Assume that $d[x, y]_\alpha = [d(x), f(y)]_\alpha$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by βx, we obtain $d[z\beta x, y]_\alpha = [dz\beta x, f(y)]_\alpha$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. Then

d([z\beta x]y − y[z\beta x]) = d(z\beta x)f(y) − f(y)ad(z\beta x)

d(z\beta x)ay + d(z\beta x)af(y) − f(y)ad(z\beta x) − d(z\beta x)f(y) − f(y)ad(z\beta x) = 0.

d(z\beta x)f(x) = 0.

Hence $f(z)\beta[f(x), d(y)]_\alpha = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show that R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$. We have $f(z)\beta[tf(x), d(y)]_\alpha = f(z)\beta[f(tyx), d(y)]_\alpha = 0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$.

Since f is surjective, $f(z)\Gamma R[f(x), d(y)]_\alpha = [0].$

Since R is prime and $f(z) \neq 0$, $[f(x), d(y)]_\alpha = 0.$

And since f is surjective on R, $d(y) \in Z(R).$ By Lemma 2.3, it follows that R is commutative.

(ii) Using similar techniques as above, we obtain $f(z)\beta(f(x) \circ d(y))_\alpha = 0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$. We have $f(z)\beta[f(t)\gamma(f(x) \circ d(y))_\alpha = f(z)\beta[f(tyx) \circ d(y))_\alpha = 0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$.

Since f is surjective, $f(z)\Gamma R[f(x) \circ d(y)]_\alpha = [0].$

Since R is prime and $f(z) \neq 0$, $(f(x) \circ d(y))_\alpha = 0 \in Z(R).$

By Theorem 4.2(ii), it follows that R is commutative. This completes the proof.

Theorem 4.4. Let R be a nonzero prime Γ-GB-semiring such that $0aa = 0$ for all $a \in R$ and $\alpha \in \Gamma$ and f, g be automorphism on R. Let D be a left Γ-(f, g) generalized derivation on R satisfying

(i) $[D(x), g(y)]_\alpha = [f(x), g(y)]_\alpha$, or

(ii) $(D(x) \circ g(y))_\alpha = (f(x) \circ g(y))_\alpha,$

for all $x, y \in R$ and $\alpha \in \Gamma$. If there exists $0 \neq z \in R$ such that $D(z) = 0$, then R is commutative.

Proof. (i) Assume that $[D(x), g(y)]_\alpha = [f(x), g(y)]_\alpha$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by βx, we obtain $[D(z\beta x), g(y)]_\alpha = [f(z\beta x), g(y)]_\alpha$. For each $x, y, z \in R$ and $\alpha, \beta \in \Gamma$ we have

$$D(z\beta x)g(y) − g(y)\alpha D(z\beta x) = [f(z)\beta f(x), g(y)]_\alpha$$

$$f(z)\beta \alpha \beta d(x) + D(x)\beta \beta g(x)\alpha g(y) − g(y)\alpha f(z)\beta \beta d(x) + D(x)\beta \beta g(x)\alpha g(y) − g(y)\alpha = [f(z)\beta \beta f(x), g(y)]_\alpha$$

$$f(z)\beta \beta d(x)g(y) − g(y)\alpha f(z)\beta \beta d(x)g(y) − g(y)\alpha D(z\beta x)g(x) = [f(z)\beta \beta f(x), g(y)]_\alpha$$

$$f(z)\beta \beta \beta d(x, g(y))_\alpha + D(z\beta \beta g(x, g(y))_\alpha = [f(z)\beta \beta f(x), g(y)]_\alpha$$

Hence $f(z)\beta[\beta d(x, g(y))_\alpha − [f(x), g(y)]_\alpha + D(z\beta \beta g(x, g(y))_\alpha = 0.$

To show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since there exists $0 \neq z \in R$ such that $D(z) = 0$, we have

$$f(z)\beta g(t)\gamma([d(x), g(y)]_\alpha − [f(x), g(y)]_\alpha) = f(z)\beta g(t)\gamma([d(x), g(y)]_\alpha − [f(x), g(y)]_\alpha)$$

$$f(z)\beta g(t)\gamma([d(x), g(y)]_\alpha − [f(x), g(y)]_\alpha)$$

Thus $f(z)\beta g(t)\gamma([d(x), g(y)]_\alpha − [f(x), g(y)]_\alpha) = 0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$.

Since g is surjective, $f(z)\Gamma R([d(x), g(y)]_\alpha − [f(x), g(y)]_\alpha) = [0].$

Since f is injective, $f(z) \neq 0$. And R is prime, we have $[d(x), g(y)]_\alpha − [f(x), g(y)]_\alpha = 0.$
Thus \([d(x), g(y)]_a = [f(x), g(y)]_a\) for all \(x, y \in R\) and \(\alpha \in \Gamma\).

By Theorem 4.1(ii), it follows that \(R\) is commutative.

(ii) Using similar techniques as above, we obtain

\[
f(z)\beta((d(x) \circ g(y))_a) - (f(x) \circ g(y))_a + D(z)\beta(g(x) \circ g(y))_a = 0\quad \text{for all } x, y, z \in R \text{ and } \alpha, \beta \in \Gamma.
\]

To show \(R\) is commutative, let \(x, y \in R\) and \(\alpha \in \Gamma\). Since there exists \(0 \neq z \in R\) such that \(D(z) = 0\), we have

\[
f(z)\beta((d(x) \circ g(y))_a) - (f(x) \circ g(y))_a = f(z)\beta(g(t)y((d(x) \circ g(y))_a - g(t)\gamma(f(x) \circ g(y))_a)
\]

\[
= f(z)\beta((d(x) \circ g(tyy))_a - (f(x) \circ g(tyy))_a)
\]

\[
= f(x)\beta((d(x) \circ g(tyy))_a - (f(x) \circ g(tyy))_a)
\]

\[
+ D(z)\beta(g(x) \circ g(tyy))_a = 0
\]

Thus \(f(z)\beta(g(t)y((d(x) \circ g(y))_a - (f(x) \circ g(y))_a) = 0\) for all \(t, x, y, z \in R\) and \(\alpha, \beta, \gamma \in \Gamma\).

The same argument in the proof of (i) and by Theorem 4.1(iii) we conclude that \(R\) is commutative. This completes the proof.

Theorem 4.5. Let \(R\) be a prime \(\Gamma\)-GB-semiring and \(f, g\) be automorphisms on \(R\). Let \(D\) be a right \(\Gamma\)-(\(f, g\)) generalized derivation on \(R\) satisfying any one of the following

(i) \(D(x, y)_a = [f(x), g(y)]_a\),

(ii) \(D(x \circ y)_a = (f(x) \circ g(y))_a\),

(iii) \(D(x) \circ y)_a = [f(x), g(y)]_a\),

(iv) \(D(x)_a = (f(x) \circ g(y))_a\),

for all \(x, y \in R\) and \(\alpha \in \Gamma\). Then \(R\) is commutative.

Proof. (i) Assume that \(D(x, y)_a = [f(x), g(y)]_a\) for all \(x, y \in R\) and \(\alpha \in \Gamma\). Replacing \(x\) by \(z\beta x\), we obtain \(D[z\beta x, y)_a = [f(z\beta x), g(y)]_a\). For each \(x, y, z \in R\) and \(\alpha, \beta \in \Gamma\) we have

\[
D(z\beta [x, y]_a) = f(z)\beta D[x, y]_a + d(z)\beta [g, x, y]_a = f(z)\beta [f(x), g(y)]_a
\]

\[
f(z)\beta D[x, y]_a - [f(x), g(y)]_a + d(z)\beta [g, x, y]_a = 0
\]

\[
d(z)\beta [g, x, y]_a = 0.
\]

To show that \(R\) is commutative, let \(x, y \in R\) and \(\alpha \in \Gamma\). Since \(d \neq 0\), there exists \(z \in R\) such that \(d(z) \neq 0\), we have \(d(z)\beta [g, x, y]_a = 0\). By Lemma 2.5, it follows that \(R\) is commutative.

The proof of (ii) - (iv) are obtained similarly to that of (i).

Theorem 4.6 Let \(R\) be a prime \(\Gamma\)-GB-semiring and \(f, g\) be automorphisms on \(R\). Let \(D\) be a nonzero left (resp. right) \(\Gamma\)-(\(f, g\)) generalized derivation on \(R\) such that

(i) \([D(x), y]_a \in Z(R)\), or

(ii) \((D(x) \circ y)_a \in Z(R)\),

for all \(x, y \in R\) and \(\alpha \in \Gamma\). Then \(R\) is commutative.

Proof. This follows directly from Lemma 2.4.

Theorem 4.7. Let \(R\) be a prime \(\Gamma\)-GB-semiring such that \(0aa = 0\) for all \(a \in R\) and \(\alpha \in \Gamma\). Let \(f\) be a nonzero automorphism on \(R\). If \(D\) is a left \(\Gamma\)-(\(f, f\)) generalized derivation on \(R\) such that

(i) \([D(x), y]_a = [D(x), f(y)]_a\), or

(ii) \((D(x) \circ y)_a = (D(x) \circ f(y))_a\),

for all \(x, y \in R\) and \(\alpha \in \Gamma\). Then \(R\) is commutative.

Proof. (i) Assume that \([D(x, y)]_a = [D(x, f(y))_a\) for all \(x, y \in R\) and \(\alpha \in \Gamma\)

Replacing \(x\) by \(z\beta x\), we obtain \([D[z\beta x, y]_a = [D(z\beta x), f(y)]_a\).

For each \(x, y, z \in R\) and \(\alpha, \beta \in \Gamma\), we have
\[
D(z\beta[x,y]_\alpha) = D(z\beta x)\alpha f(y) - f(y)\alpha D(z\beta x)
\]
\[
f(z)\beta d[x,y]_\alpha + D(z\beta)f[x,y]_\alpha = d(z\beta x)\alpha f(y) - f(y)\alpha D(z\beta x)
\]
\[
f(z)\beta f(x)\alpha d(y) + f(z)\beta d(x)\alpha f(y) - f(z)\beta f(y)\alpha d(x) - f(z)\beta d(y)\alpha f(x) + D(z)\beta f(x)\alpha f(y) - f(y)\alpha f(z)\beta d(x) - f(y)\alpha D(z)\beta f(x)
\]
so, \(f(z)\beta [f(x), d(y)]_\alpha = 0 \) for all \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \).

To show that \(R \) is commutative, let \(x, y \in R \) and \(\alpha \in \Gamma \). Since \(f \neq 0 \), there exists \(z \in R \) such that \(f(z) \neq 0 \), we have
\[
f(z)\beta f(t)\gamma [f(x), d(y)]_\alpha = f(z)\beta f(ty)\alpha f(x) = f(z)\beta [f(x), d(y)]_\alpha = 0
\]
Since \(f \) is surjective, \(f(z)\Gamma RT [f(x), d(y)]_\alpha = 0 \).

Since \(R \) is prime and \(f(z) \neq 0 \), \([f(x), d(y)]_\alpha = 0 \).

Since \(f \) is surjective, \(d(y) \in Z(R) \). By Lemma 2.3, it follows that \(R \) is commutative.

(ii) Using similar techniques as above, we have, \(f(z)\beta (f(x) \circ d(y))_\alpha = 0 \) for all \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \).

To show \(R \) is commutative, let \(x, y \in R \) and \(\alpha \in \Gamma \). Since \(f \neq 0 \), there exists \(z \in R \) such that \(f(z) \neq 0 \), we have
\[
f(z)\beta f(t)\gamma (f(x) \circ d(y))_\alpha = f(z)\beta (f(ty) \circ d(y))_\alpha = 0
\]
Since \(f \) is surjective, \(f(z)\Gamma R T (f(x) \circ d(y))_\alpha = 0 \).

Since \(R \) is prime and \(f(z) \neq 0 \), \((f(x) \circ d(y))_\alpha = 0 \in Z(R) \).

By Theorem 4.2(ii), it follows that \(R \) is commutative. This completes the proof.

Acknowledgements

The authors would like to thank the reviews for their valuable comments and suggestions.

References

pure appl. Math., 34(9), 1393-1396.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).