Commutativity of Γ-Generalized Boolean Semirings with Derivations

Tossatham Makkala ${ }^{1}$ \& Utsanee Leerawat ${ }^{1}$
${ }^{1}$ Department of Mathematics, Kasetsart University, Bangkok, Thailand
Correspondence: Utsanee Leerawat, Department of Mathematics, Kasetsart University, Bangkok, 10900, Thailand. Email: fsciutl@ku.ac.th

Received: June 17, 2016 Accepted: July 6, 2016 Online Published: July 26, 2016
doi:10.5539/jmr.v8n4p132
URL: http://dx.doi.org/10.5539/jmr.v8n4p132

Abstract

In this paper the notion of derivations on Γ-generalized Boolean semiring are established, namely Γ - (f, g) derivation and $\Gamma-(f, g)$ generalized derivation. We also investigate the commutativity of prime Γ-generalized Boolean semiring admitting $\Gamma-(f, g)$ derivation and $\Gamma-(f, g)$ generalized derivation satisfying some conditions.

Keywords: Γ-generalized Boolean semiring, semiring, commutativity, derivation

1. Introduction

There has been a great deal of work concerning commutativity of prime rings and prime near rings with derivations or generalized derivations satisfying certain differential identity (Ali, 2012; Asci, 2007; Bell, 2012; Rehman, 2011; Quadri, 2003). The notion of semiring was first introduced by H.S. Vandiver (Vandiver, 1934) in 1934 and a generalization of semiring, Γ-semiring was first studied by M.K. Rao (Rao, 1995).
In 1987, H.E. Bell and G. Mason (Bell \& Mason, 1987) introduced derivations on Γ-near rings and studied some basic properties. The concept of Γ-derivations in Γ-near ring was introduced by Jun, Kim and Cho (Jun, 2003). Then Asci(Asci, 2007) investigated some commutativity conditions for Γ-near rings with derivations. Kazaz and Alkan (Kazaz \& Alkan, 2008) introduced the notion of two-side Γ - α derivation of Γ-near rings and investigated some commutativity of prime and semiprime Γ-near rings. In 2011, the notion of derivations in prime Γ-semiring was introduced by M.A. Javed et al (Javed et al, 2013). In 2013, K.K. Dey and A.C. Paul (Dey \& Paul, 2013) studied on generalized derivations of prime gamma ring. Later in 2014, M.R. Khan and M.M. Hasnain (Khan \& Hasnain, 2014) introduced the notion of generalized Γ-derivation in Γ-near rings and investigated some basic properties.
In this paper, we introduce the notion of $\Gamma-(f, g)$ derivations and $\Gamma-(f, g)$ generalized derivations on Γ-generalized Boolean semirings, and investigate some related properties. We also investigate some commutativity results for Γ-generalized Boolean semiring involving $\Gamma-(f, g)$ derivation and $\Gamma-(f, g)$ generalized derivation.

2. Preliminaries

We first recall some definitions and prove lemmas use in proving our main results.
A Γ-generalized Boolean semiring (or simply Γ-GB-semiring) is a triple $(R,+, \Gamma)$, where
(1) $(R,+)$ is an abelian group.
(2) Γ is a nonempty finite set of binary operations satisfying the following properties
(i) $a \alpha b \in R$ for all $a, b \in R$ and $\alpha \in \Gamma$,
(ii) $a \alpha(b+c)=a \alpha b+a \alpha c$ for all $a, b, c \in R$ and $\alpha \in \Gamma$,
(iii) $a \alpha(b \beta c)=(a \alpha b) \beta c=(b \alpha a) \beta c$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$,
(iv) $a \alpha(b \beta c)=a \beta(b \alpha c)$ for all $a, b, c \in R$ and $\alpha, \beta \in \Gamma$.

The following are some basic properties on Γ-GB-semiring then the proof is straightforward and hence omitted. For any $a, b, c \in R$ and $\alpha \in \Gamma$, we have
(i) $-(-a)=a$,
(ii) $a \alpha 0=0$,
(iii) $a \alpha(-b)=-(a \alpha b)$,
(iv) $a \alpha(b-c)=(a \alpha b)-(a \alpha c)$,
(v) $-(a+b)=-a-b$,
(vi) $-(a-b)=-a+b$,
(vii) $-(a \alpha(b+c))=-(a \alpha b)-(a \alpha c)$,
(viii) $-(a \alpha(b-c))=-(a \alpha b)+(a \alpha c)$.

A nonempty subset I of R is said to be a Γ-ideal of R if
(1) $(I,+)$ is a subgroup of $(R,+)$,
(2) $r \alpha a \in I$ for all $r \in R, a \in I$, and $\alpha \in \Gamma$ (i.e. $R \Gamma I \subseteq I$),
(3) $(r+a) \alpha s-r \alpha s \in I$ for all $r, s \in R, a \in I$, and $\alpha \in \Gamma$.

An automorphism f on R is a $Г Г$-isomorphism from R onto R if
(1) $f(a+b)=f(a)+f(b)$,
(2) $f(a \alpha b)=f(a) \alpha f(b)$ for all $a, b \in R$ and $\alpha \in \Gamma$.
R is a prime Γ-GB-semiring if $x \Gamma R \Gamma y=\{0\}$ for all $x, y \in R$, then $x=0$ or $y=0$.
For any $x, y \in R$ and $\alpha \in \Gamma$, the symbol $[x, y]_{\alpha}$ will represent the commutator $x \alpha y-y \alpha x$ and the symbol $(x \circ y)_{\alpha}$ stands for skew-commutator $x \alpha y+y \alpha x$.
Next, the following are some basic properties of commutator and skew-commutator. The proofs of these properties are straightforward and hence omitted.
(i) $[x \alpha y, z]_{\beta}=x \alpha[y, z]_{\beta}=y \alpha[x, z]_{\beta}+z \alpha[y, x]_{\beta}$,
(ii) $[x, y \alpha z]_{\beta}=y \alpha[x, z]_{\beta}=z \alpha[x, y]_{\beta}+x \alpha[y, z]_{\beta}$,
(iii) $(x \circ y \alpha z)_{\beta}=y \alpha(x \circ z)_{\beta}=z \alpha(x \circ y)_{\beta}+x \alpha[y, z]_{\beta}$,
(iv) $(x \alpha y \circ z)_{\beta}=x \alpha(y \circ z)_{\beta}=y \alpha(x \circ z)_{\beta}+z \alpha[x, y]_{\beta}$.

The center of R, written $Z(R)$, is defined to be the set

$$
Z(R)=\{a \in R \mid a \alpha b=b \alpha a \text { for all } b \in R \text { and } \alpha \in \Gamma\}
$$

Next, we start with following lemmas which will be used extensively.
Lemma 2.1. Let R be a Γ-GB-semiring. If $x \in Z(R)$ then $y \alpha x \in Z(R)$ and $x \alpha y \in Z(R)$ for all $y \in R$ and $\alpha \in \Gamma$.
Proof. Let $x \in Z(R), y, z \in R$, and $\alpha \in \Gamma$. Then
$(y \alpha x) \beta z=x \alpha(y \beta z)=(y \beta z) \alpha x=z \beta(y \alpha x)$ for all $\beta \in \Gamma$. So $y \alpha x \in Z(R)$. Since $x \in Z(R), x \alpha y=y \alpha x \in Z(R)$. This completes the proof.
Lemma 2.2. Let R be a prime Γ-GB-semiring such that $0 \alpha a=a$ for all $a \in R$ and $\alpha \in \Gamma$ and let $I \neq\{0\}$ be a Γ-ideal of R. Then for any $x, y \in R$
(i) If $x \Gamma I=\{0\}$, then $x=0$.
(ii) If $I \Gamma x=\{0\}$, then $x=0$.
(iii) If $x \Gamma \Gamma \Gamma y=\{0\}$, then $x=0$ or $y=0$.

Proof. (i) Let $x \in R$ be such that $x \Gamma I=\{0\}$. Since $I \neq\{0\}$, there exists nonzero z in I. We have $x \Gamma R \Gamma z \subseteq x \Gamma I=\{0\}$ and so $x \Gamma R \Gamma z=\{0\}$. Since R is prime and $z \neq 0$, it follows that $x=0$.
(ii) Let $x \in R$ be such that $I \Gamma x=\{0\}$. Since $I \neq\{0\}$, there exists nonzero z in I and since $z \beta r=(0+z) \beta r-0 \beta r \in I$ for all $r \in R$ and $\beta \in \Gamma, z \Gamma R \subseteq I$. We have $z \Gamma R \Gamma x \subseteq I \Gamma x=\{0\}$ and so $z \Gamma R \Gamma x=\{0\}$. Since R is prime and $z \neq 0$, it follows that $x=$ 0
(iii) Let $x, y \in R$ be such that $x \Gamma I \Gamma y=\{0\}$. Then $x \Gamma R \Gamma I \Gamma y \subseteq x \Gamma I \Gamma y=\{0\}$ and so $x \Gamma R \Gamma I \Gamma y=\{0\}$. Since R is prime, it follows that $x=0$ or $I \Gamma y=\{0\}$. By (ii) we get $y=0$.
Lemma 2.3. Let R be a prime Γ-GB-semiring and Δ be a nonzero function from R into R. Then $\Delta(x) \in Z(R)$ for all $x \in R$ if and only if R is commutative.
Proof. If R is commutative, then it is obvious that $\Delta(x) \in Z(R)$ for all $x \in R$. Suppose that $\Delta(x) \in Z(R)$ for all $x \in R$. By Lemma 2.1, we have $\Delta(x) \alpha y \in Z(R)$ for all $y \in R$ and $\alpha \in \Gamma$. It follows that $[\Delta(x) \alpha y, t]_{\beta}=0$ for all $t, x, y \in R$ and $\alpha, \beta \in \Gamma$. To show that R is commutative, let $x, y \in R$ and $\alpha \in R$. Since Δ is a nonzero function on R, there exists $z \in R$ such that
$\Delta(z) \neq 0$. For any $t \in R$ and $\beta, \gamma \in \Gamma$ we have
$\Delta(z) \beta t \gamma[x, y]_{\alpha}=[\Delta(z) \beta(t \gamma x), y]_{\alpha}=0$. So, $\Delta(z) \Gamma R \Gamma[x, y]_{\alpha}=\{0\}$.
Since R is prime and $\Delta(z) \neq 0,[x, y]_{\alpha}=0$. It follows that $x \alpha y=y \alpha x$. Thus R is commutative. This completes the proof.
Lemma 2.4. Let R be a prime Γ-GB-semiring and Δ be a nonzero function from R into R.
If $[\Delta(x), y]_{\alpha} \in Z(R)$ or $(\Delta(x) \circ y)_{\alpha} \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$ then R is commutative.
Proof. First, assume that $[\Delta(x), y]_{\alpha} \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$. Then we have $\left[[\Delta(x), y]_{\alpha}, t\right]_{\beta}=0$ for all $t \in R$ and $\beta \in \Gamma$. Replacing y by $\Delta(z) \gamma y$, we obtain $\left[[\Delta(x), \Delta(z) \gamma y]_{\alpha}, t\right]_{\beta}=0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Then
$[\Delta(x), y]_{\alpha} \gamma[\Delta(z), t]_{\beta}=[\Delta(x), y]_{\alpha} \gamma[\Delta(z), t]_{\beta}+t \gamma\left[[\Delta(x), y]_{\alpha}, \Delta(z)\right]_{\beta}=\left[\Delta(z) \gamma[\Delta(x), y]_{\alpha}, t\right]_{\beta}=0$. for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$.
Now to show that R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. We obtain
$[\Delta(x), y]_{\alpha} \beta t \gamma[\Delta(x), y]_{\alpha}=[\Delta(x), y]_{\alpha} \beta[\Delta(x), t \gamma y]_{\alpha}=0$, for all $t \in R$ and $\beta, \gamma \in \Gamma$.
So $[\Delta(x), y]_{\alpha} \Gamma R \Gamma[\Delta(x), y]_{\alpha}=\{0\}$. Since R is prime, $[\Delta(x), y]_{\alpha}=0$.
It follows that $\Delta(x) \in Z(R)$. By Lemma 2.3, we get required result.
Next, assume that $(\Delta(x) \circ y)_{\alpha} \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$. Then we have $\left[(\Delta(x) \circ y)_{\alpha}, t\right]_{\beta}=0$ for all $t \in R$ and $\beta \in \Gamma$. Replacing y by $\Delta(z) \gamma y$, we obtain
$\left[(\Delta(x) \circ \Delta(z) \gamma y)_{\alpha}, t\right]_{\beta}=0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Then
$[\Delta(z), t]_{\beta} \gamma(\Delta(x) \circ y)_{\alpha}=(\Delta(x) \circ y)_{\alpha} \gamma[\Delta(z), t]_{\beta}+t \gamma\left[(\Delta(x) \circ y)_{\alpha}, \Delta(z)\right]_{\beta}=\left[\Delta(z) \gamma(\Delta(x) \circ y)_{\alpha}, t\right]_{\beta}=\left[(\Delta(x) \circ \Delta(z) \gamma y)_{\alpha}, t\right]_{\beta}=0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$. Replacing y by $y \delta w$, we get $[\Delta(z), t]_{\beta} \gamma(\Delta(x) \circ y \delta w)_{\alpha}=0$ for all $w \in R$ and $\delta \in \Gamma$. Then
$\Delta(x) \gamma[\Delta(z), t]_{\beta} \delta[y, w]_{\alpha}=[\Delta(z), t]_{\beta} \gamma \Delta(x) \delta[y, w]_{\alpha}=[\Delta(z), t]_{\beta} \gamma\left(w \delta(\Delta(x) \circ y)_{\alpha}+\Delta(x) \delta[y, w]_{\alpha}\right)=[\Delta(z), t]_{\beta} \gamma(\Delta(x) \circ y \delta w)_{\alpha}=0$ for all $w, t, x, y, z \in R$ and $\alpha, \beta, \gamma, \delta \in \Gamma$.
Now to show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. We obtain
$\Delta(z) \beta t \gamma[\Delta(x), y]_{\alpha} \delta[s \pi y, x]_{\alpha}=\Delta(z) \beta[\Delta(x), y]_{\alpha} \gamma[t \delta(s \pi y), x]_{\alpha}=0$ for all $s, t, z \in R$ and $\beta, \delta, \pi \in \Gamma$. So $\Delta(z) \Gamma R \Gamma[\Delta(x), y]_{\alpha} \delta[s \pi y, x]_{\alpha}$ $=\{0\}$. Since $\Delta \neq 0$, there exists $z \in R$ such that $\Delta(z) \neq 0$ and R is prime, $[\Delta(x), y]_{\alpha} \delta[s \pi y, x]_{\alpha}=0$. And we have $[\Delta(x), y]_{\alpha} \delta s \pi[y, x]_{\alpha}=0$. So $[\Delta(x), y]_{\alpha} \Gamma R \Gamma[y, x]_{\alpha}=\{0\}$. Since R is prime, $[\Delta(x), y]_{\alpha}=0$ or $[y, x]_{\alpha}=0$.
If $[\Delta(x), y]_{\alpha}=0$. It follows that $\Delta(x) \in Z(R)$ by Lemma 2.3, R is commutative.
If $[y, x]_{\alpha}=0, R$ is commutative. This completes the proof.
Lemma 2.5. Let R be a prime Γ-GB-semiring and ζ be an automorphism on R. If there exists a nonzero z in R such that $z \beta \zeta[x, y]_{\alpha}=0$ or $z \beta \zeta(x \circ y)_{\alpha}=0$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Then R is commutative.
Proof. Case 1 Assume that there exists a nonzero z in R such that $z \beta \zeta[x, y]_{\alpha}=0$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Then for any $t, x, y \in R$ and $\alpha, \beta, \gamma \in \Gamma$, we have
$z \beta \zeta(t) \gamma \zeta[x, y]_{\alpha}=z \beta \zeta\left(t \gamma[x, y]_{\alpha}\right)=z \beta \zeta[t \gamma x, y]_{\alpha}=0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$.
Since ζ is surjective, $z \Gamma R \Gamma \zeta[x, y]_{\alpha}=0$. Since R is prime and $z \neq 0, \zeta[x, y]_{\alpha}=0$
Since $\zeta(0)=0$ and ζ is injective, $[x, y]_{\alpha}=0$, it follows that R is commutative.
$\underline{\text { Case } 2}$ Assume that there exists a nonzero z in R such that $z \beta \zeta[x, y]_{\alpha}=0$ for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. Similarly to case 1 , we have
$z \beta \zeta(t) \gamma \zeta[x, y]_{\alpha}=z \beta \zeta(t) \gamma \zeta[x, y]_{\alpha}+0=z \beta \zeta(t) \gamma \zeta[x, y]_{\alpha}+z \beta \zeta(y) \zeta(x \circ t)_{\alpha}=z \beta \zeta\left(y \gamma(x \circ t)_{\alpha}+t \gamma[x, y]_{\alpha}\right)=z \beta \zeta(x \gamma y \circ t)_{\alpha}=0$, for all $t \in R$ and $\beta, \gamma \in \Gamma$. We use the same argument in the proof of case 1 , we conclude that R is commutative. This completes the proof.

3. Derivations on Γ-Generalized Boolean Semirings

In this section we establish derivations on Γ - generalized Boolean semiring and investigate some results satisfying certain identities involving these derivations.
Definition 3.1. Let R be a Γ-GB-semiring and let f and g be automorphisms on R. An additive mapping $d: R \rightarrow R$ is called a $\Gamma-(f, g)$ derivation

$$
d(x \alpha y)=f(x) \alpha d(y)+d(x) \alpha g(y) \text { for all } x, y \in R \text { and } \alpha \in \Gamma .
$$

An additive mapping $D: R \rightarrow R$ is called a left (resp. right) $\Gamma-(f, g)$ generalized derivation if there exists nonzero $\Gamma-(f, g)$ derivation d on R satisfiying

$$
D(x \alpha y)=f(x) \alpha d(y)+D(x) \alpha g(y)(\text { resp. } D(x \alpha y)=f(x) \alpha D(y)+d(x) \alpha g(y))
$$

for all $x, y \in R$ and $\alpha \in \Gamma$.
Lemma 3.2. Let R be a Γ-GB-semiring and D be a left $\Gamma-(f, g)$ generalized derivation on R. Then
$[f(x) \alpha d(y)+D(x) \alpha g(y)] \beta g(z)=f(x) \alpha d(y) \beta g(z)+D(x) \alpha g(y) \beta g(z)$.
Proof. Let $x, y, z \in R$ and $\alpha, \beta \in \Gamma$, we have

$$
\begin{aligned}
D((x \alpha y) \beta z) & =f(x \alpha y) \beta d(z)+D(x \alpha z) \beta g(z) \\
& =f(x) \alpha f(y) \beta d(z)+(f(x) \alpha d(y)+D(x) \alpha g(y)) \beta g(z) \text { and } \\
D(x \alpha(y \beta z)) & =f(x) \alpha d(y \beta z)+D(x) \alpha g(y \beta z) \\
& =f(x) \alpha(f(y) \beta d(z)+d(y) \beta g(z))+D(x) \alpha g(y) \beta g(z) \\
& =f(x) \alpha f(y) \beta d(z)+f(x) \alpha d(y) \beta g(z)+D(x) \alpha g(y) \beta g(z)
\end{aligned}
$$

Since $D((x \alpha y) \beta z)=D(x \alpha(y \beta z))$,
$(f(x) \alpha d(y)+D(x) \alpha g(y)) \beta g(z)=f(x) \alpha d(y) \beta g(z)+D(x) \alpha g(y) \beta g(z)$. This completes the proof.
Corollary 3.3. Let R be a Γ-GB-semiring. Let d be a Γ - (f, g) derivation on R and f, g be automorphisms on R. Then $[f(x) \alpha d(y)+d(x) \alpha g(y)] \beta g(z)=f(x) \alpha d(y) \beta g(z)+d(x) \alpha g(y) \beta g(z)$.
Lemma 3.4. Let R be a prime Γ-GB-semiring. Let D be a nonzero $\Gamma-(f, g)$ generalized derivation on R and f, g be automorphisms on R. If $f(x) \alpha d(y)+D(x) \alpha g(y) \in Z(R)$ for all $x, y \in R$ and $\alpha \in \Gamma$ then R is commutative.

4. Commutativity of Γ-generalized Boolean Semirings

In this section, we show that Γ-generalized Boolean semiring with derivations satisfying certain conditions are commutative.
Theorem 4.1. Let R be a prime Γ-GB-semiring and let f, g be automorphisms on R. If d is a nonzero Γ - (f, g) derivation on R satisfying any one of the following
(i) $[d(x), g(y)]_{\alpha}=[f(x), g(y)]_{\alpha}$,
(ii) $d[x, y]_{\alpha}=[f(x), g(y)]_{\alpha}$,
(iii) $(d(x) \circ g(y))_{\alpha}=(f(x) \circ g(y))_{\alpha}$,
(iv) $d(x \circ y)_{\alpha}=(f(x) \circ g(y))_{\alpha}$,
(v) $d(x \circ y)_{\alpha}=[f(x), g(y)]_{\alpha}$,
(vi) $d[x, y]_{\alpha}=(f(x) \circ g(y))_{\alpha}$,
for all $x, y \in R$ and $\alpha \in \Gamma$. Then R is commutative.
Proof. (i) Assume that $[d(x), g(y)]_{\alpha}=[f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by $z \beta x$, we obtain $[d(z \beta x), g(y)]_{\alpha}$ $=[f(z \beta x), g(y)]_{\alpha}$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. Then

$$
\begin{aligned}
d(z \beta x) \alpha g(y)-g(y) \alpha d(z \beta x) & =[f(z \beta x), g(y)]_{\alpha} \\
f(z) \beta d(x) \alpha g(y)+d(z) \beta g(x) \alpha g(y)-g(y) \alpha f(z) \beta d(x)-g(y) \alpha d(z) \beta g(x) & =f(z) \beta[f(x), g(y)]_{\alpha} \\
f(z) \beta[d(x), g(y)]_{\alpha}+d(z) \beta[g(x), g(y)]_{\alpha} & =f(z) \beta[f(x), g(y)]_{\alpha} \\
d(z) \beta g[x, y]_{\alpha} & =0 .
\end{aligned}
$$

Since $d \neq 0$, there exists $z \in R$ such that $d(z) \neq 0$. By Lemma 2.5, it follows that R is commutative.
The proof of (ii) - (vi) are obtained similarly to that of (i).
Theorem 4.2. Let R be a prime Γ-GB-semiring and f, g be automorphisms on R. If d is a nonzero $\Gamma-(f, g)$ derivation on R such that
(i) $[d(x), y]_{\alpha} \in Z(R)$, or
(ii) $(d(x) \circ y)_{\alpha} \in Z(R)$,
for all $x, y \in R$ and $\alpha \in \Gamma$. Then R is commutative.
Proof. This follows directly from Lemma 2.4.

Theorem 4.3. Let R be a prime Γ-GB-semiring such that $0 \alpha a=0$ for all $a \in R$ and $\alpha \in \Gamma$. Let d be a nonzero $\Gamma-(f, f)$ derivation on R where f is a nonzero automorphism on R. If
(i) $d[x, y]_{\alpha}=[d(x), f(y)]_{\alpha}$, or
(ii) $d(x \circ y)_{\alpha}=(d(x) \circ f(y))_{\alpha}$,
for all $x, y \in R$ and $\alpha \in \Gamma$. Then R is commutative.
Proof. (i) Assume that $d[x, y]_{\alpha}=[d(x), f(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by $z \beta x$, we obtain $d[z \beta x, y]_{\alpha}=$ $[d(z \beta x), f(y)]_{\alpha}$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. Then

$$
\begin{aligned}
d((z \beta x) \alpha y-y \alpha(z \beta x)) & =d(z \beta x) \alpha f(y)-f(y) \alpha d(z \beta x) \\
f(z \beta x) \alpha d(y)+d(z \beta x) \alpha f(y)-f(y) \alpha d(z \beta x)-d(y) \alpha f(z \beta x) & =d(z \beta x) \alpha f(y)-f(y) \alpha d(z \beta x) \\
f(z) \beta[f(x), d(y)]_{\alpha} & =0 .
\end{aligned}
$$

Hence $f(z) \beta[f(x), d(y)]_{\alpha}=0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.
To show that R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$. We have
$f(z) \beta f(t) \gamma[f(x), d(y)]_{\alpha}=f(z) \beta[f(t \gamma x), d(y)]_{\alpha}=0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$.
Since f is surjective, $f(z) \Gamma R \Gamma[f(x), d(y)]_{\alpha}=\{0\}$.
Since R is prime and $f(z) \neq 0,[f(x), d(y)]_{\alpha}=0$.
And since f is surjective on $R, d(y) \in Z(R)$. By Lemma 2.3, it follows that R is commutative.
(ii) Using similar techniques as above, we obtain $f(z) \beta(f(x) \circ d(y))_{\alpha}=0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$. We have
$f(z) \beta f(t) \gamma(f(x) \circ d(y))_{\alpha}=f(z) \beta(f(t \gamma x) \circ d(y))_{\alpha}=0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$.
Since f is surjective, $f(z) \Gamma R \Gamma(f(x) \circ d(y))_{\alpha}=\{0\}$.
Since R is prime and $f(z) \neq 0,(f(x) \circ d(y))_{\alpha}=0 \in Z(R)$.
By Theorem 4.2(ii), it follows that R is commutative. This completes the proof.
Theorem 4.4. Let R be a nonzero prime Γ-GB-semiring such that $0 \alpha a=0$ for all $a \in R$ and $\alpha \in \Gamma$ and f, g be automorphism on R. Let D be a left $\Gamma-(f, g)$ generalized derivation on R satisfying
(i) $[D(x), g(y)]_{\alpha}=[f(x), g(y)]_{\alpha}$, or
(ii) $(D(x) \circ g(y))_{\alpha}=(f(x) \circ g(y))_{\alpha}$,
for all $x, y \in R$ and $\alpha \in \Gamma$. If there exists $0 \neq z \in R$ such that $D(z)=0$, then R is commutative.
Proof. (i) Assume that $[D(x), g(y)]_{\alpha}=[f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$.
Replacing x by $z \beta x$ we obtain $[D(z \beta x), g(y)]_{\alpha}=[f(z \beta x), g(y)]_{\alpha}$. For each $x, y, z \in R$ and $\alpha, \beta \in \Gamma$ we have

$$
D(z \beta x) \alpha g(y)-g(y) \alpha D(z \beta x)=[f(z) \beta f(x), g(y)]_{\alpha}
$$

$(f(z) \beta d(x)+D(x) \beta g(x)) \alpha g(y)-g(y) \alpha(f(z) \beta d(x)+D(x) \beta g(x))=f(z) \beta[f(x), g(y)]_{\alpha}$
$f(z) \beta d(x) \alpha g(y)+D(x) \beta g(x) \alpha g(y)-g(y) \alpha f(z) \beta d(x)-g(y) \alpha D(x) \beta g(x)=f(z) \beta[f(x), g(y)]_{\alpha}$ $f(z) \beta[d(x), g(y)]_{\alpha}+D(z) \beta[g(x), g(y)]_{\alpha}=f(z) \beta[f(x), g(y)]_{\alpha}$
$f(z) \beta\left([d(x), g(y)]_{\alpha}-[f(x), g(y)]_{\alpha}\right)+D(z) \beta[g(x), g(y)]_{\alpha}=0$.
Hence $f(z) \beta\left([d(x), g(y)]_{\alpha}-[f(x), g(y)]_{\alpha}\right)+D(z) \beta[g(x), g(y)]_{\alpha}=0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.
To show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since there exists $0 \neq z \in R$ such that $D(z)=0$, we have

$$
\begin{aligned}
f(z) \beta g(t) \gamma\left([d(x), g(y)]_{\alpha}-[f(x), g(y)]_{\alpha}\right)= & f(z) \beta\left(g(t) \gamma[d(x), g(y)]_{\alpha}-g(t) \gamma[f(x), g(y)]_{\alpha}\right) \\
= & f(z) \beta\left([d(x), g(t \gamma y)]_{\alpha}-[f(x), g(t \gamma y)]_{\alpha}\right) \\
= & f(x) \beta\left([d(x), g(t \gamma y)]_{\alpha}-[f(x), g(t \gamma y)]_{\alpha}\right) \\
& +D(z) \beta[g(x), g(t \gamma y)]_{\alpha} \\
= & 0
\end{aligned}
$$

Thus $f(z) \beta g(t) \gamma\left([d(x), g(y)]_{\alpha}-[f(x), g(y)]_{\alpha}\right)=0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$.
Since g is surjective, $f(z) \Gamma R \Gamma\left([d(x), g(y)]_{\alpha}-[f(x), g(y)]_{\alpha}\right)=\{0\}$.
Since f is injective, $f(z) \neq 0$. And R is prime, we have $[d(x), g(y)]_{\alpha}-[f(x), g(y)]_{\alpha}=0$.

Thus $[d(x), g(y)]_{\alpha}=[f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$.
By Theorem 4.1(i), it follows that R is commutative.
(ii) Using similar techniques as above, we obtain
$f(z) \beta\left((d(x) \circ g(y))_{\alpha}-(f(x) \circ g(y))_{\alpha}\right)+D(z) \beta(g(x) \circ g(y))_{\alpha}=0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.
To show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since there exists $0 \neq z \in R$ such that $D(z)=0$, we have

$$
\begin{aligned}
f(z) \beta g(t) \gamma\left((d(x) \circ g(y))_{\alpha}-(f(x) \circ g(y))_{\alpha}\right)= & f(z) \beta\left(g(t) \gamma(d(x) \circ g(y))_{\alpha}-g(t) \gamma(f(x) \circ g(y))_{\alpha}\right) \\
= & f(z) \beta\left((d(x) \circ g(t \gamma y))_{\alpha}-(f(x) \circ g(t \gamma y))_{\alpha}\right) \\
= & f(x) \beta\left((d(x) \circ g(t \gamma y))_{\alpha}-(f(x) \circ g(t \gamma y))_{\alpha}\right) \\
& +D(z) \beta(g(x) \circ g(t \gamma y))_{\alpha} \\
= & 0
\end{aligned}
$$

Thus $f(z) \beta g(t) \gamma\left((d(x) \circ g(y))_{\alpha}-(f(x) \circ g(y))_{\alpha}\right)=0$ for all $t, x, y, z \in R$ and $\alpha, \beta, \gamma \in \Gamma$.
The same argument in the proof of (i) and by Theorem 4.1(iii) we conclude that R is commutative. This completes the proof.
Theorem 4.5. Let R be a prime Γ-GB-semiring and f, g be automorphisms on R. Let D be a right $\Gamma-(f, g)$ generalized derivation on R satisfying any one of the following
(i) $D[x, y]_{\alpha}=[f(x), g(y)]_{\alpha}$,
(ii) $D(x \circ y)_{\alpha}=(f(x) \circ g(y))_{\alpha}$,
(iii) $D(x \circ y)_{\alpha}=[f(x), g(y)]_{\alpha}$,
(iv) $D[x, y]_{\alpha}=(f(x) \circ g(y))_{\alpha}$,
for all $x, y \in R$ and $\alpha \in \Gamma$. Then R is commutative.
Proof. (i) Assume that $D[x, y]_{\alpha}=[f(x), g(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$. Replacing x by $z \beta x$, we obtain $D[z \beta x, y]_{\alpha}=$ $[f(z \beta x), g(y)]_{\alpha}$. For each $x, y, z \in R$ and $\alpha, \beta \in \Gamma$ we have

$$
\begin{aligned}
D\left(z \beta[x, y]_{\alpha}\right) & =[f(z) \beta f(x), g(y)]_{\alpha} \\
f(z) \beta D[x, y]_{\alpha}+d(z) \beta g[x, y]_{\alpha} & =f(z) \beta[f(x), g(y)]_{\alpha} \\
f(z) \beta\left(D[x, y]_{\alpha}-[f(x), g(y)]_{\alpha}\right)+d(z) \beta g[x, y]_{\alpha} & =0 \\
d(z) \beta g[x, y]_{\alpha} & =0 .
\end{aligned}
$$

To show that R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $d \neq 0$, there exists $z \in R$ such that $d(z) \neq 0$, we have $d(z) \beta g[x, y]_{\alpha}=0$. By Lemma 2.5, it follows that R is commutative.
The proof of (ii) - (iv) are obtained similarly to that of (i).
Theorem 4.6 Let R be a prime Γ-GB-semiring and f, g be automorphisms on R. Let D be a nonzero left (resp. right) $\Gamma-(f, g)$ generalized derivation on R such that
(i) $[D(x), y]_{\alpha} \in Z(R)$, or
(ii) $(D(x) \circ y)_{\alpha} \in Z(R)$,
for all $x, y \in R$ and $\alpha \in \Gamma$. Then R is commutative.
Proof. This follows directly from Lemma 2.4.
Theorem 4.7. Let R be a prime Γ-GB-semiring such that $0 \alpha a=0$ for all $a \in R$ and $\alpha \in \Gamma$. Let f be a nonzero automorphism on R. If D is a left $\Gamma-(f, f)$ generalized derivation on R such that
(i) $D[x, y]_{\alpha}=[D(x), f(y)]_{\alpha}$, or
(ii) $D(x \circ y)_{\alpha}=(D(x) \circ f(y))_{\alpha}$,
for all $x, y \in R$ and $\alpha \in \Gamma$. Then R is commutative.
Proof. (i) Assume that $D[x, y]_{\alpha}=[D(x), f(y)]_{\alpha}$ for all $x, y \in R$ and $\alpha \in \Gamma$
Replacing x by $z \beta x$, we obtain $D[z \beta x, y]_{\alpha}=[D(z \beta x), f(y)]_{\alpha}$.
For each $x, y, z \in R$ and $\alpha, \beta \in \Gamma$, we have

```
    \(D\left(z \beta[x, y]_{\alpha}\right)=D(z \beta x) \alpha f(y)-f(y) \alpha D(z \beta x)\)
\(f(z) \beta d[x, y]_{\alpha}+D(z) \beta f[x, y]_{\alpha}=d(z \beta x) \alpha f(y)-f(y) \alpha D(z \beta x)\)
\(f(z) \beta f(x) \alpha d(y)+f(z) \beta d(x) \alpha f(y)-f(z) \beta f(y) \alpha d(x)-f(z) \beta d(y) \alpha f(x)+D(z) \beta f(x) \alpha f(y)-D(z) \beta f(y) \alpha f(x)=f(z) \beta d(x) \alpha f(y)+\)
\(D(z) \beta f(x) \alpha f(y)-f(y) \alpha f(z) \beta d(x)-f(y) \alpha D(z) \beta f(x)\)
so, \(f(z) \beta[f(x), d(y)]_{\alpha}=0\) for all \(x, y, z \in R\) and \(\alpha, \beta \in \Gamma\).
```

To show that R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$, we have
$f(z) \beta f(t) \gamma[f(x), d(y)]_{\alpha}=f(z) \beta[f(t \gamma x), d(y)]_{\alpha}=0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$
Since f is surjective, $f(z) \Gamma R \Gamma[f(x), d(y)]_{\alpha}=0$.
Since R is prime and $f(z) \neq 0,[f(x), d(y)]_{\alpha}=0$.
Since f is surjective, $d(y) \in Z(R)$. By Lemma 2.3, it follows that R is commutative.
(ii) Using similar techniques as above, we have, $f(z) \beta(f(x) \circ d(y))_{\alpha}=0$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

To show R is commutative, let $x, y \in R$ and $\alpha \in \Gamma$. Since $f \neq 0$, there exists $z \in R$ such that $f(z) \neq 0$, we have
$f(z) \beta f(t) \gamma(f(x) \circ d(y))_{\alpha}=f(z) \beta(f(t \gamma x) \circ d(y))_{\alpha}=0$ for all $t \in R$ and $\beta, \gamma \in \Gamma$
Since f is surjective, $f(z) \Gamma R \Gamma(f(x) \circ d(y))_{\alpha}=0$.
Since R is prime and $f(z) \neq 0,(f(x) \circ d(y))_{\alpha}=0 \in Z(R)$.
By Theorem 4.2(ii), it follows that R is commutative. This completes the proof.

Acknowledgements

The authors would like to thank the reviews for their valuable comments and suggestions.

References

Ali, S. (2012). On generalized *-derivations in *-rings. Palestine Journal of Mathematics, 1, 32-37.
Asci, M. (2007). $\Gamma-(\sigma, \tau)$ derivation on gamma near rings. International Mathematical Forum, Journal for Theory and Applications, 2(1-4), 97-102.

Ashraf, M., Boua, A., \& Raji, A. (2014). On derivations and commutativity in prime near-rings. Journal of Taibah University for Science, 8, 301-306. http://dx.doi.org/10.1016/j.jtusci.2014.02.002
Bell, H. E., \& Mason, G. (1987). On derivations in near-rings. North-Holland Mathematics Studies, 137, 31-35. http://dx.doi.org/10.1016/S0304-0208(08)72283-7

Bell, H. E., Boua, A., \& Oukhtite, L. (2012). On derivations of prime near-rings. African Diaspora Journal of Mathematics, 14, 65-72.
Chandramouleeswaran, M., \& Thiruveni, V. (2011). A note on α derivations in semirings. Int. J. Pure App. Sci. Technol, 2(1), 71-77.

Dey, K. K., Paul, A. C., \& Rakhimov, I. S. (2012). On prime-gamma-near-rings with generalized derivations. International Journal of Mathematics and Mathematical Sciences., 14 pages.
Dey, K. K., \& Paul, A. C. (2013). Generalized derivations of prime gamma rings. J. Bangladesh Math. Soc, 33, 33-39.
Javed, M. A., Aslam, M., \& Hussain, M. (2013). On derivations of prime Γ-semirings. Southest Asian Bulletin of Mathematics, 37, 859-865.

Jun, Y. B., Kim, K. H., \& Cho, Y. U. (2003). On gamma-derivations in gamma-near-rings. Soochow Journal of Mathematics, 29(3), 275-282.
Kazaz, M., \& Alkan, A. (2008). Two-sided Γ - α-derivations in prime and semiprime Γ-near-rings. Korean Mathematical Society, 23(4), 469-477. http://dx.doi.org/10.4134/CKMS.2008.23.4.469

Khan, M. R., \& Hasnain, M. M. (2014). Gamma nearrings with generalized gamma derivations. Novi Sad J. Math, 44(2), 19-28.

Madhuchelvi, L. (2016). On generallized derivations in Г-near rings. Int Jr. of Mathematical Sciences E Applications, 6(1), 98-101.

Quadri, M. A., Shadab, M., \& Rehman, N. (2003). Generalized derivations and commutativity of prime rings. Indian J.
pure appl. Math., 34(9), 1393-1396.
Rao, M. K. (1995). Γ-semiring-1. Southeast Asain Bull. Math., 19, 49-54.
Rehman, N. (2011). A note on prime rings with left derivations. Proceeding of the sixth China-Japan-Korea International Conference on Ring Theory., 123-128.
Vandiver, H. S. (1934). Note on a simple type of algebra in which the cancellation law of addition does not hold. Bull. Amer. Math. Soc., 40, 914-920. http://dx.doi.org/10.1090/s0002-9904-1934-06003-8

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

