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Abstract

Bernoulli algebra on set of proper common fractions with fixed denominator has been introduced and investigated. This
algebra is one of most important components of a discrete dynamical system called logistic bipendulum.
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1. Introduction

A dynamical system was introduced and investigated in (Kozlov, Buslaev, & Tatashev, 2015). This system is called a
bipendulum. The bipendulum consists of two cells V0 and V1. A channel connects the cells. There are two particles P0
and P1. Each particle is in one of the cell at every instant. Two numbers a(0) and a(1) are given. These numbers belong to
the segment [0, 1]. The binary representation of the number a(i)

a(i) = 0.a(i)
1 a(i)

2 . . . , i = 0, 1,

is called the plan of the particle Pi, i = 0, 1. If there are no delays, then the particle Pi is located in the cell a(i)
T at the

instant T, i = 0, 1; T = 1, 2, . . . The plan implementation can be delayed. If one of the particles is located in the cell V0
and, according to its plan, this particle has to come to the cell V1 at next instant, and the other particle is in the cell V1
and plans to come to the cell V0, then only one particle moves in accordance with a given rule. The choice is realized
in accordance with priorities (a dynamical system) or equiprobably (a Markov process). The average (in a certain sense)
number of delays is interesting for investigations. Suppose that the plans of particles are periodical fractions

a(i) = 0.a(i)
1 . . . a

(i)
l (al+1, . . . , al+m),

i.e. proper common fractions. Shift onto a position to the left is equivalent to applying of the Bernoulli operation to a
proper fraction. If we apply the Bernoulli shift to a fraction, we multiply the fraction by 2 and exclude the integer part.
An algebra on proper fractions k/N, k = 0, 1, . . . ,N −1, with respect to the Bernoulli shift has been introduced in (Kozlov,
Buslaev, & Tatashev, 2015), and is called a Bernoulli algebra. The set of the algebra elements can be divided into disjoint
subalgebras. It is found in (Kozlov, Buslaev, & Tatashev, 2015) that, if the plans are determined by elements of the same
subalgebra, then the system comes to the state of synergy, i.e., there are no delays in the present instant and in the future.
If plans of particles are given by elements of different orbits, then the tape velocities depend on orbits containing these
elements. Bernoulli algebras are investigated in this paper.

The aim of this paper is to represent set of proper common fractions as Bernoulli algebras. These algebras are sets of
logistic plans of bipendulums which was introduced earlier and are discrete dynamical systems with two positions and
two pendulums. We discuss connection with Markov chains, graph theory, binary positional representational of numbers,
and theory of functions. We have proved theorems about Bernoulli algebras.

2. Algebra of a Markov Process

In this section, we introduce a classification of elements of an algebra. This classification is similar to a known classifica-
tion of Markov chain states.

Suppose algebra G is a set of elements together with a unary operation ω.We shall give definitions that allow to classify
elements of the algebra. This classification is similar to the classification of Markov chain states (Gantmacher, 2004),
(Borovkov, 1986). Suppose x ∈ G. The sequence T (x) = ω(x), ω(ω(x)), . . . is called the trajectory of an element x. We
write x → y if y ∈ T (x). Elements x and y, x , y are called communicating with each other if y ∈ T (x) and x ∈ T (y), i.e.,
x→ y and y→ x. The element x is called inessential if x < T (y) for ∀ y ∈ T (x). The other elements are essential. The set
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of all essential elements can be divided into disjoint sets such that any two elements of the same set communicate with
each other, and any two elements of different sets do not communicate with each other. These sets are called classes of
communicating essential elements or orbits. An element x is called absorbing if ω(x) = x. If a class of communicating
essential elements contains d ≥ 1 elements, then this class is called a periodical class of communicating essential elements
or an orbit with period d.

3. Bernoulli Algebra on Common Fractions

In Section 3, we give definition of Bernoulli algebra. We introduce the concept of connected components of algebras.
This concept is similar to concept of connected components in graph theory.

Consider the set of proper common fractions with denominator N

GN =

{
0
N
,

1
N
,

2
N
, . . . ,

N − 1
N

}
with a unary operation, called the Bernoulli shift, (Schuster, 1984),

FB(x) = 2x − [2x],

where [2x] is the integral part of 2x.

Suppose WN is the algebra on the set GN with the operation FB, Figure 1. The number i/N (0 ≤ i ≤ N − 1) generates a
subalgebra. Denote by WN(i) the subalgebra generated by the element i/N, i = 0, 1, . . . ,N − 1.

Figure 1. Algebra W5, 5 = 1[1] + 1[4]

If i/N and j/N communicate with each other, then WN( j) = WN(i), i, j = 1, 2, . . . ,N − 1. If j/N < WN(i) and i/N < WN( j),
then WN(i) and WN( j) are disjoint subalgebras. Identifying subalgebras WN(i) and WN( j) with each other for WN(i) =
WN( j), we divide the algebra WN into kN disjoint subalgebras

WN(i1),WN(i2), . . . ,WN(ikN ).

Each of these subalgebras contains a class of communicating essential elements and a set of inessential elements. This
set of inessential elements can be empty. These subalgebras are called connected components of the algebra. We shall
introduce the concept of the algebra WN . graph. The graph of the algebra WN is directed graph (Harary, 1969) which
contains N vertices v0, v2, . . . , vN−1. The graph contains the arc (vi, v j), where vi is the tail of the arc and v j is the head
of the arc if and only if FB(i/N) = j/N. A connected component of the algebra WN graph corresponds to a connected
component of this algebra.

4. Binary Representation and Trajectory of the Element in the Bernoulli Algebra

In Section 4, we consider binary representation and trajectories of elements in Bernoulli algebra. We give geometric
interpretation of Bernoulli algebras in the form of graphs.

Consider a common fraction k/N, N ≥ 1, 0 ≤ k < N. The following theorem allows to find the binary representation of
this fraction

k
N
=

∞∑
i=1

ai · 2−i,

where ai is equal to 0 or 1, i = 1, 2, . . .
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Theorem 1. Suppose
b0 = k/N, bi = FB(bi−1), i = 1, 2, . . .

Then ai = 0 if bi ≥ bi−1, and ai = 1 if bi < bi−1.

Proof. The fractional part of the number 2i−1 k
N is equal to that value if we apply i − 1 times the operation FB(·), i.e., this

value equals to bi−1,

bi−1 =

∞∑
j=i

a j · 2i− j−1, i = 1, 2, . . .

This can be proved by induction on i. If ai = 0, then bi−1 < 0.5 and, therefore, bi = 2bi−1 ≥ bi−1. If ai = 1, then bi−1 > 0.5,
and, therefore, bi = 2bi−1 − 1 = bi−1 − (1 − bi−1) < bi−1. Theorem 1 has been proved.

Suppose numbers l (l ≥ 1) and m (m ≥ 1) are such that bl = bl+m, and there are no numbers i and j that i, j < l + m and
bi = b j. Then ai = ai+m for any i ≥ l. Hence the binary representation of the common fraction k/N contains an aperiodic
part with length l − 1 and a repeating part with length m.We write

k
N
= 0.a1 . . . al−1(al . . . al+m−1).

We have formulated an approach to find the binary representation of a common fraction. This approach is similar to the
approach of converting the decimal representation of a common fraction to the p-ary representation, (Broido & Ilyina,
2006). It is easy to reconstruct the trajectory of the element k/N of the algebra WN if we know the binary representation
of the number k/N, Figure 2.

Figure 2. Algebra W16, 16 = (8→ 4→ 2→ 1→ 1)

5. Variation of the Binary Representation

In Section 5, we consider functional representation of plans. We give definition of variation which is one of most important
characteristics of function. We also give definition of variation for binary representation of periodical fractions. This
definition is equivalent to the general definition.

Suppose the binary representation of the number k/N is

k
N
= 0.a1 . . . al(al+1 . . . al+m).

The variation of this representation is defined as

V (k/N) =
1
m

l+m∑
i=l+1

|ai+1 − ai|,
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where the addition, in indexes, is meant modulo m. The limit

Var(a) = lim
k→∞

1
k

k∑
i=1

|ai+1 − ai|

is called the variation of the binary representation of a real number a ∈ [0, 1)

a = 0, a1a2 . . . ak . . .

if this limit exists. It is evident, that V(k/N) = Var(k/N).

It is easy to give an example of a real number for that the variation of its binary representation is not defined. Suppose
a1 = 1, a j = 0, 2i ≤ j < 2i + 2i−1, a j = 1, 2i + 2i−1 ≤ j < 2i + 2i. Then the variation of the binary representation of the
number a is not defined. Some number theory problems, related to binary representation of numbers, are considered in
(Uteshev, Cherkasov, Shaposhnikov, 2001).

6. Markov Chain Interpretation of Algebra WN

In Section 6, we give Markov chain interpretation of Bernoulli algebras.

A Markov chain, (Gantmacher, 2004), (Borovkov, 1986), corresponds to the algebra WN . The chain contains N states
S 0, S 1, . . . , S N−1. The state S i corresponds to the element i/N of the algebra WN , i = 0, 1, . . . ,N − 1. The behavior of this
chain is deterministic and depends only on the initial state. If at the instant t − 1 the system is in the state S i, and

FB
( i

N

)
=

j
N
,

then, at the instant t, the chain will be at the state S j, i, j = 0, 1, . . . ,N − 1, with probability 1. Therefore, if

b0 =
k
N
, bi = FB(bi−1), i = 1, 2, . . . ,

and the chain is in the state S k, k = 0, 1, . . . ,N − 1, at the initial instant t = 0, then, at the instant t, the change will be in
the state corresponding to the value bt, t = 1, 2, . . . Denote by pi j the probability of the chain comes from the state S i to
the state S j for a step, i, j = 1, . . . ,N . Suppose P is the transition matrix of the chain

P =

 p00 p01 . . . p0,N−1
. . . . . . . . . . . .

pN−1,0 pN−1,1 . . . pN−1,N−1

 .
On the one hand, the matrix P is a stochastic matrix, and each element of this matrix is equal to 0 or 1. On the other hand,
each row of the matrix P contains exactly one 1. If N is odd, then the matrix P is a permutation matrix. Since

FB
(

0
N

)
=

0
N
= 0,

it follows that the state S 0 is absorbing, i.e., p00 = 1. If the state S k is inessential, and the chain comes from this state to
the absorbing state S 0 for l steps, then the binary representation of the number k/N contains just l positive digits

k
N
= 0.a1 . . . al = 0, a1 . . . al(0).

If the initial state S k belongs to a periodic class of communicating states, and this class contains d ≥ 1 states, then the
repeating part of the number k/N binary representation contains d digits

k
N
= 0.(a1 . . . ad).

If the initial state S k is inessential and the chain comes from this state after l steps to a class of communicating states with
period d, then the binary representation of the number k/N is

k
N
= 0.a1 . . . al(al+1 . . . al+d),
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i.e., the aperiodic part of the binary representation contains l digits, and the length of the repeating part equals d.

7. Binary Representation of Common Fractions and Division of the Algebra WN into Classes

In Section 7, we consider connection between Bernoulli algebras, binary representation, and Markov chains.

Consider examples. Suppose N = 8, Figure 3. There is an absorbing element 0/8 = 0.(0) and inessential elements

1
8
= 0.001(0),

2
8
=

1
4
= 0.01(0),

3
8
= 0.011(0),

4
8
= 0.1(0),

5
8
= 0.101(0)

6
8
= 0.11(0),

7
8
= 0.111(0).

Values of the variation functions are equal to

V
(

1
8

)
= 0, V

(
2
8

)
= 0, V

(
3
8

)
= 0,V

(
4
8

)
= 0,

V
(

5
8

)
= 0, V

(
6
8

)
= 0, V

(
7
8

)
= 0,

The transition matrix of the Markov chain of the algebra W8 have the form

P =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0


.

The state S 0 is absorbing. The other states are inessential, Figure 3.

Figure 3. Algebra W8, 8 = (4→ 2→ 1→ 1)

8. Algebras WN and W2N

In Section 8, we prove a theorem which allow to find the form of algebra W2N if the form of algebra WN is known.

Let us compare algebras WN and W2N with each other.

Theorem 2. Algebras WN and W2N contain the same number of connected components and, for any d, the same number
of orbits with period d. The algebra W2N contains a subalgebra isomorphic to the algebra WN . This subalgebra consists
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of elements 2i/2N, i = 0, 1, . . . ,N − 1. The algebra W2N also contains N inessential elements x = 2i + 1/2N, i =
0, 1, . . . ,N − 1, such that FB(x) = y for an element y of the subalgebra isomorphic to algebra WN .

Proof. The subalgebra W2N , with elements 2i/2N, i = 0, 1, . . . ,N − 1, is isomorphic to the algebra WN as the values of the
elements 2i/2N of the algebra W2N and the element i/N of the algebra WN , i = 0, 1, . . . ,N −1, are the same. The elements
2i + 1/2N, i = 0, 1, . . . ,N − 1, are inessential as, applying the Bernoulli shift, we obtain an element which belongs to the
subalgebra isomorphic to the algebra WN . Theorem 2 has been proved.

9. Structure of the Algebra WN for an Odd N

In Section 9, we prove theorems about Bernoulli algebras in the case of odd values of N.

9.1. Preliminary Definitions and Results

Suppose the canonical representation of the number N, N ≥ 2, has the form

N = ps1
1 . . . p

sl
l , (1)

where 2 < p1 < · · · < pl are prime numbers, s1, . . . , sl are natural numbers. We write N = ps, where p = (p1, . . . , pl),
s = (s1, . . . , sl). Denote by E(N) the Euler’s function (Vinogradov, 1972),

E(N) =
(
ps1

1 − ps1−1
1

)
. . .

(
psl

l − psl−1
l

)
.

Euler’s theorem on numbers, (Vinogradov, 1972). The value of E(N) is equal to number of positive integers less than
N that are coprime to N.

This function can be also represented as

E(N) = N
(
1 − 1

p1

) (
1 − 1

p2

)
. . .

(
1 − 1

pl

)
.

Euler’s theorem on divisibility, (Vinogradov, 1972). Suppose k and N are coprime natural numbers. Then N is a divisor
of kE(N) − 1.

Fermat’s little theorem is a special case of Euler’s theorem on divisibility.

Fermat’s little theorem, (Vinogradov, 1972). If k is prime, then k is a divisor of N = 2k − 2.

Denote by LCM(a1, . . . , aL) the least common multiple of numbers a1, . . . , al, and N has the form (1). Generalized Euler’s
function is the function e(N), e(1) = 1,

e(N) = LCM(ps1−1
1 (p1 − 1), . . . , psl−1

l (pl − 1)).

It is clear that any divisor of e(N) is a divisor of E(N).

The generalized Euler’s divisibility theorem, (Vinogradov, 1972). Let k and N be coprime positive integers. Then N is
a divisor of kE(N) − 1.

According to this theorem, if k and N are coprime then there exists a positive number l such that N is a divisor of kl − 1.
The smallest positive number l such that N is a divisor of kl − 1 is called the order of k modulo N, (Vinogradov, 1972).
Denote by m(N, k) the order of k modulo N.

The generalized Euler‘s order theorem, (Vinogradov, 1972). Let k and N be coprime positive integers. Then m(N, k)
is a divisor of e(N).

Denote by m(N) the order of 2 modulo N, i.e., m(N) = m(N, 2). The number m(N) is the smallest number m such that N, is
a divisor of 2m − 1. The elements of the algebra WN can be divided into two classes. They are the class of noncancelable
fractions and the class cancelable fractions

WN = Wcopr[ime]
N +Wcanc[elable]

N .

Consider the set of all elements k/N of the algebra WN such that k/N is a noncancelable fraction. The number of these
elements is equal to the number of positive integers less than N and coprime to N, i.e., the function e(N) is equal to Euler’s
function. Suppose

δ(k, E(N)) =
{ E(N)

m(N) , k = m(N),
0, k , m(N).

(2)
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In accordance with section 2 an orbit of period d is a set of elements of the algebra WN

k1

N
,

k2

N
, . . . ,

kd

N
,

0 ≤ ki ≤ N − 1, i = 1, . . . , d such that

ki+1

N
= FB

(
ki

N

)
,

k1

N
, i = 1, . . . , d − 1,

k1

N
= FB

(
kd

N

)
.

Denote by O(N, k) the number of orbits with period k (k ≥ 2).

9.2. Simple Case

Suppose N = ps, where p ≥ 3 is prime, s is a natural number;

E(N) = ps − ps−1.

Theorem 3. The following formula is true

O(N, k) =
s∑

r=1

δ(k, φ(pr)) =
s∑

r=1

δ(m(pr), E(pr)).

The proof is based on Lemma 1.

Lemma 1. Suppose r ≤ s, k/pr is an element of the algebra Wpr such that it is noncancelable fraction. Then this element
belongs to an orbit of period m(pr). The set of cancelable fractions of the algebra Wpr is a subalgebra isomorphic to the
algebra Wpr−1 .

Proof. Suppose the number a satisfies the equation

2m · k
N
=

k
N
+ a.

The number a is natural if and only if the number N is the divisor of 2m − 1. We take into account that k and N are
comprime, and k < N. Applying to a noncancelable element the Bernoulli shift operation m(N) times, we obtain the same
element. If the Bernoulli shift is applied to this element less than m(N) times, then the same element cannot be obtained.
It is obviously that the subalgebra of cancelable fractions of the algebra Wpr and the algebra Wpr−1 are isomorphic to each
other. Lemma 1 has been proved.

The graphs of algebras W13,W23,W27 are shown in Figures 4 – 6.

9.3. Common Case

Let N be as (1).

Lemma 2. Any element k/N of the algebra WN belongs to an orbit, and, if k/N ∈ Wcopr
N , i.e., the element k/N is noncance-

lable fraction, then the period of this orbit equals m(N).

Proof. Apply the Bernoulli shift operation to the element k/N i times. We obtain the same element if and only if the
equation

2i · k
N
=

k
N
+ a, (3)

contains natural number a. If i = e(N) in (3), then the number a is natural. Take into account, that N is coprime to 2.
Hence there exists an orbit of period not greater than e(N), such that this orbit contains the element k/N. If the fraction
k/N is a nocancelable fraction, then i = m(N, 2) = m(N) is the smallest value of i such that the number a is a natural
number. From this Lemma 2 follows.

Lemma 3. Let N be an odd natural number. Two elements a ∈ Wcopr
N , b ∈ Wcanc

N of the algebra WN cannot belong the
same orbit, i.e., if one of these elements is a noncancelable fraction, then the other element is a cancelable fraction.
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1

Figure 4. Algebra W13, 13 = 1[1] + 1[12]
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0
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0

0
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1
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0
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3 / 2 3

1

1

1 4 / 2 3 5 / 2 3
1

1

1

0

1

1

1

0 0

Figure 5. Algebra W23, 23 = 1[1] + 2[11]

Proof. If an element is cancelable fraction, and we apply the Bernoulli shift operation to this element any times, we can
obtain no noncancelable fraction.

Denote by δd,N the number of orbits with period d in the subalgebra Wcopr
N . In accordance with Lemmas 2 and 3,

δm(pr),pr =
E(pr)
m(pr)

.

If d , m(pr), then δd,pr = 0.

Suppose R = R(N) is the set of vectors r = (r1, . . . , rl) with integer nonnegative numbers, 0 ≤ r1 ≤ s1, . . . , 0 ≤ rl ≤ sl, and
at least one of numbers r1, . . . , rl is positive.

Theorem 4. Suppose O(N, k) is the number of orbits with period k (k ≥ 2) in algebra WN . Then

O(N, k) =
∑
r∈R
δ(k, pr),
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Figure 6. Algebra W27, 27 = 1[1] + 1[2] + 1[6] + 1[18], (Kozlov, Buslaev, & Tatashev, 2015)

where δ(k, pr) is calculated in accordance with (2).

Proof. If r1, r2 ∈ R(N), then, for N1 = pr1 , N2 = pr2 , N1 , N2 we have

Wcopr
N1
∩Wcopr

N2
= ∅.

Therefore any orbit is contained either in Wcopr
N1

or in Wcopr
N2
. From this fact and Lemmas 2 and 3, Theorem 4 follows.

10. Algebra WN for an even N

In Section 10, we prove theorems about Bernoulli algebras in the case of even values of N.

Consider the case of an even N. Suppose h is a natural number,

N = 2hN1,

where N1 = ps1
1 . . . p

sl
l , 2 < p1 < · · · < pl are prime numbers.

Lemma 4. The element i/N (i = 2hk) of the subalgebra WN belongs to an orbit with period m if and only if the element
k/N of the algebra WN/2h also belongs to an orbit with period m.

Proof. The number N/2h is odd. The element k/N of the algebra WN/2h belongs to an orbit in accordance with Lemma 2.
The period of this orbit is equal to m(N1), where m(N1) is the minimum l such that in the equation

2l · k
N1
=

k
N1
+ a (4)

the value a is a natural number. We can rewrite (4) as

2l · 2hk
2hN1

=
2hk

2hN1
+ a.

Hence, if we apply the Bernoulli shift operation to the element i
N of the algebra WN m(N1) times, then we obtain the same

element, and, if we apply the Bernoulli shift operation to the element i/N less than m(N1) times, we do not obtain the
same element. From this, Lemma 7 follows.

Lemma 5. Suppose the element i
N is such that i is no multiple of 2h. Then the element i/N is inessential.

Proof. If we apply the Bernoulli operation to the element i/N 2h times, then we obtain j/N, where j is a multiple of 2h.
We do not obtain the element i/N again if we apply the Bernoulli operation any times. From this, the lemma follows.

Theorem 5. Suppose h is a natural number,
N = 2hN1,

90



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 8, No. 3; 2016

where N1 = ps1
1 . . . p

sl
l , 2 < p1 < · · · < pL is prime numbers. Then algebras WN and WN/2h contain the same number of

orbits with each period.

Proof. Theorem 5 follows from lemmas 4 and 5.

Theorem 6. Suppose
N = 2hN1,

where N1 = ps1
1 . . . p

sl
l , 2 < p1 < · · · < pl, are prime numbers. Then the algebra WN contains N1 essential elements. The

other N − N1 elements are nonessential elements.

Proof. If the number of the Bernoulli shift algebra is odd, then, in accordance with Theorem 4, all elements of this algebra
are essential. From this fact and Theorem 5, Theorem 6 follows.

Theorem 7. Suppose h is a natural number,
N = 2hN1,

where N1 = ps1
1 . . . p

sl
l , 2 < p1 < · · · < pl are prime numbers. Then the graph of the algebra WN contains, as its subgraphs,

N1 trees, and the depth, or, in other words, height, of each of these tree equals h. Each of N1 essential elements of the
algebra WN is the root of just one tree, and the degree of the root equals 1. The degree of other vertices, for any tree, is
equal to 2 save the vertices of the level h. Any tree contains 2k elements. One of these elements is the root of the tree, and
there are 2i−1 elements that are vertices of the level i for any i = 1, . . . , h.

Proof. We shall prove that the roots of trees are essential elements of the set M0 containing elements

2hi
N
, i = 0, 1, . . . ,N1 − 1,

and the vertices of the level 1 are elements of the set M1

2h−1(2i + 1)
N

, i = 0, 1, . . . ,N1 − 1.

Indeed, suppose i < N1−1
2 . If we apply the Bernoulli shift operation to the element 2h−1(2i+1)

N , we obtain the element 2h(2i+1)
N .

Suppose i = N1−1
2 , the number N1 − 1 is a multiple of 2 as N1 is even. If we apply the Bernoulli shift to the element

(2i+1)2h−1

N , we obtain the element 0/N. Suppose i > N1−1
2 . Let us apply the Bernoulli shift to the element 2h−1(2i+1)

N .We have

2 · 2h−1(2i + 1)
N

= 2 ·
2
(

N1
2 + i + 1

2 −
N1
2

)
2h−1

N
=

=
2h · (2i + 1 − N1)

N
.

Hence each element of the set M1 corresponds to exactly one element of the set M0, i.e., each element of the set M1
corresponds to its successor belonging to the set M0. Let M j be the set of elements

2h− j(2i + 1)
N

,

j = 2, . . . , h, i = 0, 1, . . . , 2 j−1N1 − 1. It is easy to see that numerators of the elements of the set M j contain numbers
that are multiples of 2h− j but are not multiples of 2h− j+1. We shall prove that M j is the set of the vertices of the level j,
j = 1, 2, . . . , h, and, if j < h, any vertex of the set M j is the vertex of degree 2. Assume that i = i0 (0 ≤ i0 ≤ 2 j−2N1). In the
set M j, there is a successor of the elements 2h− j(2i0+1)

N and 2h− j(2i0+2 j−1N1+1)
N .Namely, this successor is 2h− j+1(2i0+1)

N , j = 1, . . . , h.

There are no any other predecessors of the element 2h− j+1(2i0+1)
N of the set M j−1. From this the theorem follows.

11. Algebras WN and Wd,Where d is a Divisor of N

In Section 11, we prove theorems which allow to compare algebra WN with algebra Wd, where d is a divisor of N.

Consider algebras WN and Wd, where d is a divisor of the number N.

Theorem 8. Let d be a divisor of the number N. If the element i/d of the algebra Wd belongs to the orbit with period m,
then the element N

d
i
N of the algebra WN belongs to an orbit with period m. If the elements i/d and j/d of the algebra Wd

belong to the same orbit, then elements N
d

i
N ,

N
d

j
N of the algebra WN also belong to the same orbit. If the elements i/d
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and jd of the algebra Wd belong to different orbits, then the elements N
d

i
2N and N

d
j

2N of the algebra WN also belong to
the different orbits. If the element i/d of the algebra Wd is inessential, then the element N

d
i
N of the algebra WN is also

inessential. Elements N
d

i
N and N

d
j

N of the algebra WN belong to the same components if and only if the elements i/N and
j/N of the algebra WN also belong to the same connected component.

Proof. The value of the element N
d

i
N of the algebra WN and the value of element i/d of the algebra Wd are the same for

any i = 1, 2, . . . , d − 1. From this, Theorem 8 follows.

Theorem 9. Let d be a divisor of the number N. Then the number of orbits with period m, the number of the connected
components and the number of elements WN are not less than in the algebra Wd.

Theorem 9 follows from Theorem 8.

12. Calculation of Numbers and Periods of Orbits of the Algebra W225

In Section 12, we give an example. We consider algebra W225.We calculate number of orbits of each period.

1) Divisors of the number 225 = (3, 5)(2,2), not equal to 1 and 225, are 3, 5, 9, 15, 25, 45, 75.

2) Values of the generalized Euler’s function e for divisors, not equal to 1 and 225, of the number 225 are e(3) = 2,
e(9) = 6, e(15) = 8, e(25) = 20, e(45) = 12, e(75) = 30, e(225) = 60.

3) There exist no divisors, not equal to 1 and 2, of the number e(3) = 2, Therefore, m(3) = e(3) = 2.

4) There exist a divisor 2 of the number e(5) = 4. The number 5 is not a divisor of 22 − 1. Therefore, m(5) = e(5) = 4.

5) There exist divisors 2 and 3 of the number e(9) = 6. The number 9 not a divisor of 22 − 1 or 23 − 1. m(9) = e(9) = 6.

6) There exist divisors 2 and 4 of the number e(15) = 8. The number 15 is not a divisor of 22 − 1 but 15 is a divisor of
24 − 1. m(15) = 4.

7) There are divisors 2, 4, 5, 10, not equal to 1 and 20, of the number E(25) = 20. The number 25 is not a divisor of 22−1,
24 − 1, 25 − 1, or 210 − 1. Therefore, m(25) = 20.

8) There exist divisors 2, 3, 4, 6 of the number e(45) = 12. The number 45 is not a divisor of 22 − 1, 23 − 1, 24 − 1, or
26 − 1. Therefore, m(45) = 12.

9) There exist divisors 2, 4, 5, 10 of the number e(75) = 20. The number 75 is not a divisor of 22 − 1, 24 − 1, 25 − 1, 28 − 1,
210 − 1. Therefore, m(75) = 20.

10) Let us calculate the number m(225). There exist divisors 2, 3, 4, 6, 10, 12, 15, 20, 30, 60 of the number e(225) = 60.
The number 225 is not a divisor of 22 − 1, 23 − 1, 24 − 1, 26 − 1, 28 − 1, 210 − 1, 212 − 1, 215 − 1, 220 − 1, or 230 − 1.
Therefore, m(225) = 60.

11) Let us calculate the number
δ
(
m

(
pr

)
, pr

)
for divisors of the number 225, not equal to 1, i.e., for any r ∈ R ∪ s :

m(3) = 2, δ(2, 3) = δ(m(3), 3) =
E(3)
m(3)

=
2
2
= 1,

m(5) = 4, δ(4, 5) = δ(m(5), 5) =
E(4)
m(4)

=
4
4
= 1,

m(9) = 6, δ(6, 9) = δ(m(9), 9) =
E(9)
m(9)

=
6
6
= 1,

m(15) = 4, δ(4, 15) = δ(m(15), 15) =
E(15)
m(15)

=
8
4
= 2,

m(25) = 20, δ(20, 25) = δ(m(25), 25) =
E(25)
m(25)

=
20
20
= 1,

δ(12, 45) = δ(m(45), 45) =
E(45)
m(45)

=
24
12
= 2,
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δ(20, 75) = δ(m(75), 75) =
E(75)
m(75)

=
40
20
= 2,

δ(60, 225) = δ(m(225), 225) =
E(120)
m(60)

= 2.

12) Let us calculate the value A(k, 225) for any k such that δ(k, 225) > 0 :

A(2, 225) = δ(2, 3) = 1,

A(4, 225) = δ(4, 5) + δ(4, 15) = 3,

A(6, 225) = δ(6, 9) = 1,

A(12, 225) = δ(12, 45) = 2,

A(20, 225) = δ(20, 25) + δ(20, 75) = 3,

A(60, 225) = δ(225, 60) = 2.

Thus the algebra W225 contains an orbit with period 1; an orbit with period 2; 3 orbits with period 4; one orbit with period
6; 2 orbits with period 12; 3 orbits with period 20; 2 orbits with period 60. Since the number 225 is odd, the depth of each
orbit equals 0.

13. Conclusion

We can use the concept of Bernoulli algebras in analysis of a dynamical system, (Kozlov, Buslaev, & Tatashev, 2015).
The same mathematical subject, which is considered in the paper, can be interpreted as an algebra, a Markov process, or a
graph. and related to the binary representation of numbers and a dynamical system, called a bipendulum. We can consider
a more general system. There are M particles P1, . . . , PM and K > 1 vertices V1, . . . ,VK . Behavior of the particle Pi is
determined by its plan ai, i = 1, . . . ,M. The plan of each particle is the K-ary representation of a number which belongs to
the segment [0, 1]. The generalized Bernoulli algebra WN(K) is related to the dynamical system, N ≥ 1. It is the algebra
of proper fractions { 0

N ,
1
N , . . . ,

N−1
N } with respect to a single unary operation. If this operation is applied to a fraction, then

the fraction is multiplied by K and the integer part is excluded. If K = 2, then this algebra is a Bernoulli algebra, i.e.,
WN(2) = WN .
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