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Abstract 
In this paper, the so-called residual-power-series (RPS) method is presented for solving nonlinear boundary-layer 
equations. The RPS method provides a single unified treatment for the linear and nonlinear terms in the equations. The 
accuracy and efficiency of the RPS method is demonstrated for both a single and a system of two coupled 
boundary-layer equations on an unbounded domain. 
Keywords: boundary-layer problem, residual-power-series, diagonal Padé approximation 
1. Introduction 
The residual-power-series (RPS) method, first proposed by (Abu Arqub, 2013), is a powerful method for solving linear 
and nonlinear problems. Most recently, Abu Arqub et al., (2013) employed the RPS method to solve Lane- Emden type 
equations. The RPS method is straightforward and simple toapply. The RPS method yields a Taylor expansion of the 
solution, and as a result, the exact solution is obtained whenever it is a polynomial. Moreover, the solution and all of its 
derivatives are applicable for each arbitrary point in a given interval. The RPS method has small computational 
requirements and high precision, and furthermore, it requires less time. 
Many problems of interest in fluid mechanics are reduced, by introduction of suitable similarity variables, to nonlinear 
ordinary differential equations with appropriate boundary conditions (see for example (Vajravelu, 2001), (Kuiken, 1981), 
(Mishra and Mishra, 2012). The solutions of these nonlinear two-point boundary value problems are normally obtained 
by using, for example, the traditional finite difference methods. Approximate analytical treatments based on the 
Adomian decomposition method of the equations given by (Vajravelu, 2001) and (Kuiken,1981) were presented by 
(Kechil and Hashim, 2007a, 2007b). In this work, we shall extend for the first time the applicability of the RPS to 
boundary-layer equations on an unbounded domain. 
2. Residual-Power-Series (RPS) Method  
To describe the basic ideas of the RPS method (Abu Arqub, 2013) and to achieve our goal, we consider the system of 
initial value problem (IVP) 

    Ψ𝑖𝑖
(𝑛𝑛)(𝜂𝜂) = Γ𝑖𝑖 �𝜂𝜂,Ψ𝑖𝑖(𝜂𝜂),Ψ𝑖𝑖′(𝜂𝜂), … ,Ψ𝑖𝑖

(𝑛𝑛−1)(𝜂𝜂)� ,      𝑖𝑖 = 1,2, … , 𝑟𝑟            (1) 

subject to the initial conditions 

            Ψ𝑖𝑖(𝜂𝜂0) = Ψ𝑖𝑖,0,Ψ𝑖𝑖′(𝜂𝜂0) = Ψ𝑖𝑖,1,Ψ𝑖𝑖
(𝑛𝑛−1)(𝜂𝜂0) = Ψ𝑖𝑖,𝑛𝑛−1                    (2) 

Where Γ𝑖𝑖: (𝜂𝜂0 − 𝜀𝜀, 𝜂𝜂0 + 𝜀𝜀) × ℛ𝑛𝑛 → ℛ𝑛𝑛  is a nonlinear analytic function, 𝜂𝜂  denotes the independent variable, 
Ψ𝑖𝑖(𝜂𝜂),Ψ𝑖𝑖′(𝜂𝜂), … ,Ψ𝑖𝑖

(𝑛𝑛−1)(𝜂𝜂) are unkown functions, and 𝜂𝜂0, 𝜀𝜀 are real. 
Assume that y𝑖𝑖(𝜂𝜂) are analytic functios on the given interval.  
Therefore, these solutions can be represented as a power series as follows: 

      Ψ𝑖𝑖(𝜂𝜂) = ∑ 𝑐𝑐𝑖𝑖,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚+∞
𝑚𝑚=0                (3) 

where the coefficients 𝑐𝑐𝑖𝑖,𝑚𝑚 are given by 

𝑐𝑐𝑖𝑖,𝑚𝑚 = Ψ𝑖𝑖
(𝑚𝑚)(𝜂𝜂0)

𝑚𝑚!
= Ψ𝑖𝑖,𝑚𝑚

𝑚𝑚!
,        𝑚𝑚 = 0,1, … ,𝑛𝑛 − 1                           (4) 

According to equations (2)-(4), the series solution can be written as  
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Ψ𝑖𝑖(𝜂𝜂) = Ψ𝑖𝑖,0 + Ψ𝑖𝑖,1(𝜂𝜂 − 𝜂𝜂0) + Ψ𝑖𝑖,2
2!

(𝜂𝜂 − 𝜂𝜂0)2 + ⋯+ Ψ𝑖𝑖,𝑛𝑛−1
(𝑛𝑛−1)!

(𝜂𝜂 − 𝜂𝜂0)𝑛𝑛−1 + ∑ 𝑐𝑐𝑖𝑖,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚+∞
𝑚𝑚=0         (5) 

In practice, we approximate the solution by the kth-truncated series 

Ψ𝑖𝑖(𝜂𝜂) = Ψ𝑖𝑖,0 + Ψ𝑖𝑖,1(𝜂𝜂 − 𝜂𝜂0) + Ψ𝑖𝑖,2
2!

(𝜂𝜂 − 𝜂𝜂0)2 + ⋯+ Ψ𝑖𝑖,𝑛𝑛−1
(𝑛𝑛−1)!

(𝜂𝜂 − 𝜂𝜂0)𝑛𝑛−1 + ∑ 𝑐𝑐𝑖𝑖,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘
𝑚𝑚=0         (6) 

Now, to determine the rest of the coefficients 𝑐𝑐𝑖𝑖,𝑚𝑚 for 𝑚𝑚 = 𝑛𝑛,𝑛𝑛 + 1, … , 𝑘𝑘 we define kth-residual function as follows 

𝑅𝑅𝑖𝑖(𝜂𝜂) = Ψ𝑖𝑖
(𝑛𝑛)(𝜂𝜂) − Γ𝑖𝑖 �𝜂𝜂,Ψ𝑖𝑖(𝜂𝜂),Ψ𝑖𝑖′(𝜂𝜂), … ,Ψ𝑖𝑖

(𝑛𝑛−1)(𝜂𝜂)�          (7) 

It is clear that 𝑅𝑅𝑖𝑖(𝜂𝜂) = 0 for each 𝜂𝜂 
∑ 𝑐𝑐𝑖𝑖,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘
𝑚𝑚=0               (8) 

Now, to determine the rest of the coefficients 𝑐𝑐𝑖𝑖,𝑚𝑚 for 𝑚𝑚 = 𝑛𝑛,𝑛𝑛 + 1, … , 𝑘𝑘 we define kth-residual function as follows 

                   𝑅𝑅𝑖𝑖(𝜂𝜂) = Ψ𝑖𝑖
(𝑛𝑛)(𝜂𝜂0) − Γ𝑖𝑖 �𝜂𝜂 − Ψ𝑖𝑖(𝜂𝜂),Ψ𝑖𝑖′(𝜂𝜂), … ,Ψ𝑖𝑖

(𝑛𝑛−1)(𝜂𝜂)�      (9) 

It is clear that 𝑅𝑅𝑖𝑖(𝜂𝜂) = 0 for each ∈ (𝑡𝑡0 − 𝜀𝜀, 𝜂𝜂0 + 𝜀𝜀), this is to confirm that these residual functions are differentiable 
infinitely many times at 𝜂𝜂 = 𝜂𝜂0. Moreover,  

                     𝑑𝑑𝑚𝑚

𝑑𝑑𝑑𝑑𝑚𝑚
𝑅𝑅𝑖𝑖(𝜂𝜂)�

𝜂𝜂=𝜂𝜂0
= 0                           (10) 

Equation (6) and equation (10) for 𝑚𝑚 = 𝑛𝑛,𝑛𝑛 + 1, … , 𝑘𝑘, generate 𝑘𝑘 − 𝑛𝑛 + 1set of linear and nonlinear algebraic 
equations, respectively. These equations can be easily solved by symbolic computation software such as Maple and 
Mathematica for the unknown coefficients 𝑐𝑐𝑖𝑖,𝑚𝑚. 
3. Numerical Examples 
3.1 Example 1 
First we consider the following nonlinear boundary-value problem (Vajravelu, 2001) 

𝑓′′′ + 𝑓𝑓′′ − 2𝑟𝑟
𝑟𝑟+1

(𝑓′)2 = 0            (11) 

𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′(∞) = 0                       (12) 
where 𝑟𝑟is a real number and the primes denote differentiation with respect to 𝜂𝜂. Equations (11) and (12) model many 
viscous flow problems. One such example is the velocity field in the flow and heat transfer phenomenon over a 
nonlinearly stretching sheet (Vajravelu, 2001). We note that the special case 𝑟𝑟 = 1  admits the exact solution 
𝑓(𝜂𝜂) = 1 − 𝑒𝑥𝑝(−𝜂𝜂) with 𝑓′′(0) = −1. 
To construct the solutions of system (11)-(12) by using the RPS, we should first rewrite the boundary conditions (12) in 
the form of initial conditions as follows 

𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′′(0) = 𝛼                       (13) 

where 𝛼 = 𝑓′′(0) is to be determined from the boundary conditions at infinity in (12). Clearly, the first three terms of 
the approximation of 𝑓(𝜂𝜂) are𝑓0(𝜂𝜂) = 0, 𝑓1(𝜂𝜂) = 𝜂𝜂 and 𝑓2(𝜂𝜂) = 𝛼𝛼

2!
𝜂𝜂2. Then the kth-truncated series has the form 

𝑓(𝜂𝜂) = 𝜂𝜂 + 𝛼𝛼
2!
𝜂𝜂2 + ∑ 𝑐𝑐𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘

𝑚𝑚=3 = 𝛼𝛼
2!
𝜂𝜂2 + 𝑐𝑐3𝜂𝜂3 + 𝑐𝑐4𝜂𝜂4 + ⋯+ 𝑐𝑐𝑘𝑘𝜂𝜂𝑘𝑘               (14) 

Table 1. Numerical values of α with the corresponding values of r usingdiagonal Padé approximants of 𝑓32′  

r [5/5] [7/7] [10/10]  α of [3] 

1 1.0003410482 –0.9999999051 –1.0000000000 –1.0000 
5 1.1982743450 –1.1986417560 –1.1985277159 –1.1945 
10 1.2365525777 –1.2334477611 –1.2369318045 –1.2348 
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To find the coefficients 𝑐𝑐𝑚𝑚 by our RPS algorithm, we construct the residual function as follows. 

𝑅𝑅(𝜂𝜂) = ∑ 𝑚𝑚(𝑚𝑚 − 1)(𝑚𝑚 − 2)𝑐𝑐𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚−3𝑘𝑘
𝑚𝑚=3 + �𝜂𝜂 + 𝛼𝛼

2!
𝜂𝜂2 + ∑ 𝑐𝑐𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘

𝑚𝑚=3 � × (𝛼 + ∑ 𝑚𝑚(𝑚𝑚 −𝑘𝑘
𝑚𝑚=3

1)𝑐𝑐𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚−2)2 − 2𝑟𝑟
𝑟𝑟+1

(1 + 𝛼𝜂𝜂 + ∑ 𝑚𝑚𝑐𝑐𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚−1𝑘𝑘
𝑚𝑚=3 )2                         (15) 

We have obtained the 32-term approximation to 𝑓(𝜂𝜂), but for the lack ofspace, only the first six terms are given below. 

𝑓32(𝜂𝜂) = 𝜂𝜂 + 𝛼𝛼
2
𝜂𝜂2 + 𝑟𝑟

3𝑟𝑟+3
𝜂𝜂3 + 𝛼𝛼(3𝑟𝑟−1)

24(𝑟𝑟+1)
𝜂𝜂4 + �−𝛼𝛼2+�3𝛼𝛼2+4�𝑟𝑟2+2�𝛼𝛼2−2�𝑟𝑟�

120(𝑟𝑟+1)2
𝜂𝜂5 + 𝛼𝛼�19𝑟𝑟2−18𝑟𝑟+3�

720(𝑟𝑟+1)2
𝜂𝜂6 + ⋯          (16) 

Now to determine the value of 𝛼 we impose the condition at infinity in (12). The difficulty at infinity is overcome by 
employing the diagonal Padé approximants (Boyd, 1997) that approximate𝑓32. Table 1 shows that the values of −1 
obtained via diagonal Padé approximants converge to the exact value −1 for the case𝑟𝑟 = 1. For the cases𝑟𝑟 = 5 
and𝑟𝑟 = 10, we make a comparison withthe results of Vajravelu, (2001)who solved the problem numerically using 
theintegration scheme of the fourth-order Runge-Kutta. It is observed that thenumerical results are in well agreement 
with that of Vajravelu, (2001). Figure 1demonstrates the agreement of the rational function Padé approximant[10/10] of 
𝑓and𝑓′ with the exact solution at 𝑟𝑟 = 1 and also illustrates thevariations of𝑓(𝜂𝜂)and 𝑓′(𝜂𝜂). 
3.2 Example 2 
Next we shall apply the RPS for solving a nonlinear system of coupled ordinary equations. Kuiken, (1981) considered 
the problem of cooling of a low-heat-resistance sheet that moves downwards in a viscous fluid which he modeled by the 
following nonlinear boundary-value problem, 

𝑓′′′(𝜂𝜂) + θ(𝜂𝜂) − �𝑓′(𝜂𝜂)�2 = 0              (17) 

θ′′(𝜂𝜂) − 3𝜎𝑓′(𝜂𝜂)θ(𝜂𝜂) = 0                       (18) 

subject to the boundary conditions 

𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′(+∞) = 0                             (19) 

θ(0) = 1, θ(+∞) = 0                                 (20) 

where the primes denote differentiation with respect to 𝜂𝜂and 𝜎is a constant. 

 
Figure 1. Variations of 𝑓(𝜂𝜂)and 𝑓′(𝜂𝜂)using 𝑓32[10/10]and comparisonwith the exact solution for 𝑟𝑟 = 1. 

To construct the solutions of system (17)-(20) by using the RPS, we takethe following initial conditions 

𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′′(0) = 𝛼                   (21) 

θ(0) = 1, θ′(0) = 𝛿                             (22) 
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where 𝛼 = 𝑓′′(0) and 𝛿 = θ′(0) are to be determined from the boundary conditions at infinity. Taking the first three 
terms of the approximation of 𝑓(𝜂𝜂) as 𝑓0(𝜂𝜂) = 0, 𝑓1(𝜂𝜂) = 0 and 𝑓2(𝜂𝜂) = 𝛼𝛼

2!
𝜂𝜂2, then the kth-truncatedseries has the 

form 

      𝑓(𝜂𝜂) = 𝛼𝛼
2!
𝜂𝜂2 + ∑ 𝑐𝑐1,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘

𝑚𝑚=3 = 𝛼𝛼
2!
𝜂𝜂2 + 𝑐𝑐1,3𝜂𝜂3 + 𝑐𝑐1,4𝜂𝜂4 + ⋯+ 𝑐𝑐1,𝑘𝑘𝜂𝜂𝑘𝑘                (23) 

Next if we select the first two terms of the approximation of θ(𝜂𝜂)  as θ0(𝜂𝜂) = 1  and θ1(𝜂𝜂) = 𝛿𝜂𝜂 , then the 
kth-truncated series has the form 

      θ(𝜂𝜂) = 1 + 𝛿𝜂𝜂 + ∑ 𝑐𝑐2,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘
𝑚𝑚=2 = 1 + 𝛿𝜂𝜂 + 𝑐𝑐2,2𝜂𝜂2 + 𝑐𝑐2,3𝜂𝜂3 + ⋯+ 𝑐𝑐2,𝑘𝑘𝜂𝜂𝑘𝑘               (24) 

To find the coefficients 𝑐𝑐𝑖𝑖,𝑚𝑚by RPS, we construct the residual functions as follows 

𝑅𝑅1(𝜂𝜂) = ∑ 𝑚𝑚(𝑚𝑚 − 1)(𝑚𝑚 − 2)𝑐𝑐1,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚−3𝑘𝑘
𝑚𝑚=3 + 1 + 𝛿𝜂𝜂 + ∑ 𝑐𝑐2,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘

𝑚𝑚=2 − �𝛼𝜂𝜂 + ∑ 𝑚𝑚𝑐𝑐1,𝑚𝑚(𝜂𝜂 −𝑘𝑘
𝑚𝑚=3

𝜂𝜂0)𝑚𝑚−1�2                                         (25) 

𝑅𝑅2(𝜂𝜂) = ∑ 𝑚𝑚(𝑚𝑚 − 1)𝑐𝑐2,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚−2𝑘𝑘
𝑚𝑚=2 − 3𝜎�𝛼𝜂𝜂 + ∑ 𝑚𝑚𝑐𝑐1,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚−1𝑘𝑘

𝑚𝑚=3 � × �1 + 𝛿𝜂𝜂 + ∑ 𝑐𝑐2,𝑚𝑚(𝜂𝜂 − 𝜂𝜂0)𝑚𝑚𝑘𝑘
𝑚𝑚=2 �   (26) 

We have obtained the 23th-order and 22th-order approximations to 𝑓(𝜂𝜂) and θ(𝜂𝜂), respectively, but for the lack of 
space, only the first five terms produced below. 

𝑓23(𝜂𝜂) =

𝛼𝛼
2
𝜂𝜂2 − 1

6
𝜂𝜂3 − 𝛽

24
𝜂𝜂4 + 𝛼𝛼2

60
𝜂𝜂5 + 1

240
(−𝛼𝜎 − 2𝜎)𝜂𝜂6 + (−6𝛼𝛼𝛽𝜎−8𝛼𝛼𝛽+3𝜎+6)

5040
𝜂𝜂7 + �5𝛼𝛼3+3𝛽𝜎+5𝛽�

10080
𝜂𝜂8 +

�−18𝛼𝛼2𝜎2−21𝛼𝛼2𝜎−66𝛼𝛼2+6𝛽2𝜎+10𝛽2�
181440

𝜂𝜂9 − 𝛼𝛼�15𝛼𝛼𝛽𝜎2+19𝛼𝛼𝛽𝜎+42𝛼𝛼𝛽−24𝜎2−31𝜎−56�
604800

𝜂𝜂10 + ⋯                           (27) 

θ22(𝜂𝜂) =

1 + 𝛽𝜂𝜂 + 𝛼𝛼
2
𝜂𝜂3 + 𝜎(2𝛼𝛼𝛽−1)

8
𝜂𝜂4 − 𝛽𝜎

10
𝜂𝜂5 + 𝜎�6𝛼𝛼2𝜎+𝛼𝛼2−2𝛽2�

120
𝜂𝜂6 + 𝛼𝛼𝜎(15𝛼𝛼𝛽𝜎+5𝛼𝛼𝛽−24𝜎−3)

840
𝜂𝜂7 − 𝜎(123𝛼𝛼𝛽𝜎+22𝛼𝛼𝛽−24𝜎−3)

6720
𝜂𝜂8 +

𝜎�126𝛼𝛼3𝜎2+126𝛼𝛼3𝜎+10𝛼𝛼3−168𝛼𝛼𝛽2𝜎−28𝛼𝛼𝛽2+195𝛽𝜎+31𝛽�
60480

𝜂𝜂9 + ⋯                                               (28) 

The undetermined values of 𝛼 and 𝛽 are calculated from the boundary onditions at infinity in (19) and (20). The 
results presented in Tables 2 and 3 are in good agreement with that given by (Kuiken, 1981). Figures 2-3 illustrate the 
variation of 𝑓(𝜂𝜂),𝑓(𝜂𝜂) and θ(𝜂𝜂) approximated by the diagonal Padéapproximants in the cases𝜎 = 0.1, 𝜎 = 1 and 
𝜎 = 10. 
Table 2. Numerical values of α usingdiagonal Padé approximants of 𝑓23′  and θ22. 

σ [4/4] [5/5] [6/6]  α of [4] 
0.001 1.1135529418 1.1272760416 1.1252849854 1.1231381347 
0.01 1.0631737963 1.0741895683 1.0638385351 1.0633808585 
0.1 0.9128082210 0.9238226280 0.9242158493 0.9240830397 
1 0.6941230861 0.6998750497 0.6932195158 0.6932116298 
10 0.4511240728 0.4502429544 0.4476712316 0.4471165250 
100 0.2679197151 0.2681474363 0.2641295627 0.2645235434 
1000 0.2204061432 0.1524783266 0.1500456755 0.1512901971 
10000 0.0858587180 0.0858519249 0.0844775473 0.0855408524 
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Table 3. Numerical values of α usingdiagonal Padé approximants of 𝑓23′  and θ22. 

σ [4/4] [5/5] [6/6]  α of [4] 

0.001 –0.0371141028 –0.0415417739 –0.0436188230 –0.0468074648 
0.01 –0.1274922800 –0.1221616907 –0.1351353865 –0.1357607439 
0.1 –0.3621215470 –0.3505589981 –0.3499273453 –0.3500596733 
1 –0.7694165843 –0.7614765813 –0.7698955992 –0.7698611967 
10 –1.5028543431 –1.5007437650 –1.4985484075 –1.4970992078 
100 –2.7627624234 –2.7637067330 –2.7445541894 –2.7468855016 
1000 –5.7787858408 –4.9468469883 –4.9104728566 –4.9349476252 
10000 –8.8057265644 –8.8032691004 –8.7384279086 –8.8044492660 

 

 

Figure 2. Variations of 𝑓(𝜂𝜂)and 𝑓′(𝜂𝜂)using 𝑓23[6,6]for 𝜎 = 0.1, 
𝛼 = 0.9242158493and 𝛽 = −0.3499273453.𝑓23[5,5]for 𝜎 = 1, 𝛼 = 0.6941230861and 

 𝛽 = −0.7694165843.𝑓23[4,4]for 𝜎 = 10, 𝛼 = 0.4476712316 and  𝛽 = −1.4985484075. 

 

Figure 3. Variations of θ(𝜂𝜂) and θ22[6,6] for 𝜎 = 0.1, 𝛼 = 0.9242158493 and  𝛽 = −0.3499273453. θ22[5,5] for 
𝜎 = 1, 𝛼 = 0.6932195158 and  𝛽 − 0.7698955992.θ22[4,4] for 𝜎 = 10, 𝛼 = 0.4476712316 and  𝛽 =

−1.4985484075. 

4. Conclusion 
The residual-power-series method was employed to solve nonlinear boundary-value problems. The RPS combined with 
Padé approximants are also shown to be a promising tool in solving two-point boundary value problems consisting of 
systems of nonlinear differential equations. The RPS method provides a single unified treatment for the linear and 
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nonlinear termsin the equations. The accuracy and efficiency of the RPS method isdemonstrated for both a single and a 
system of two coupled boundary-layerequations on an unbounded domain. 
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