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Abstract 

In this paper, we investigate an epidemic model of HIV and Malaria co-infection using fractional order Calculus (FOC). 

The multistep generalized differential transform method (MSGDTM) is employed to obtain an accurate approximate 

solution to the epidemic model of HIV and Malaria co-infection disease in fractional order. A unique positive solution 

for HIV and Malaria co-infection is presented in fractional order form. For the integer case derivatives, the approximate 

solution of MSGDTM and the Runge–Kutta–order four scheme are compared. Numerical results are produced for the 

justification for this method.  

Keywords: Fractional differential equations, Caputo fractional derivative, multi-step generalized differential transform, 

co-infection. 

1. Introduction 

Malaria and human immunodeficiency virus (HIV) are the most deadly and important global health problems of our 

time. Malaria accounts for more than a million deaths each year, of which about 90% occur in tropical Africa, where 

malaria is the leading cause of mortality in children below five years [WHO, 2004]. Sub-Saharan Africa is also home to 

more than 29 million people living with HIV/AIDS. Both Malaria and HIV are considered as diseases of poverty, since 

they hinder sustainable development and contribute to poverty by taking a great toll on the young productive generation 

who would otherwise enter the workforce and contribute to the nation’s economy. The global distribution of Malaria 

and HIV is the same, with the majority of those affected living in sub-Saharan Africa, the Indian subcontinent, and 

Southeast Asia. Owing to the overlap of their geographic distribution and resultant rates of co-infection, interactions 

between the two diseases pose major public health problems. For instance, in 2007, together they accounted for over 3 

million deaths and millions more are adversely affected each year [Hochman and Kim, 2009]. 

HIV is a lenti-virus that brings about Acquired Immuno deficiency Syndrome (AIDS).This is a state in humans in which 

gradual failure of the immune system provides life-threatening opportunistic infections such as Malaria, TB and more to 

thrive [Gendelman et al. 2005].  HIV has become one of the life threatening diseases all over the globe, especially in 

developing countries where incomes are low.  HIV disease was first noticed in 1981 based on a Weekly Morbidity and 

Mortality Report by Centers for Disease Control and Prevention, USA.  

Malaria is caused by the protozoan parasite Plasmodium and is transmitted by Anopheles mosquitoes through biting of 

humans. If left unattended to it infects the liver and carries through the bloodstream creating problems for all the organs 

which will eventually lead to death. It is endemic in most tropical and subtropical regions of the world. Worldwide, 1.2 

billion people are at risk for malaria infection, resulting in 500 million infections and more than 1 million deaths each 

year. It is well- known that the majority of these deaths occur in young children in sub-Saharan Africa, as well as 

pregnant women who are heavily affected with resultant effects on maternal health and birth outcomes. 

A recent study from sub-Saharan Africa has pinpointed malaria as a risk factor of concurrent HIV infection at the 

population level [Cuadros et al. 2011]. Malaria negatively affects the viral load by increasing HIV replication in vitro 

and in vivo. However, this situation may be eradicated with good malaria treatment [Driessche and Watmough, 2002]. 

Studies indicate that malaria-HIV co-infection triggers malaria disease progression, increases the risk of severe malaria 

in adults, increases risk of congenital infection and this dual infection fuels the spread of both diseases especially in 

sub-Saharan Africa [Sanyaolu et al. 2013] 
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Mathematical modeling has been an important tool in understanding the dynamics of disease transmission and also in 

decision-making processes in regard to intervention mechanisms for disease control. Nikolaos et al. [1997] proposed a 

detailed analysis of a dynamical model to describe pathogenesis of HIV infection. A deterministic model for the 

co-infection of tuberculosis and malaria was presented by Mtisi et al. [2009]. Nielan et al. [2010] proposed a 

mathematical model for cholera to incorporate vital components such as hyper-infectious, short-lived bacterial states, 

taking into account separate classes, mild human infections and waning disease immunity using distributes delay. A 

co-infection model for TB-HIV/AIDS was proposed by Sharomi et al. [2008] to determine the basic reproduction 

number with the aim of maximizing the control of the diseases.  Recently, Abu-Raddad et al. [2006] proposed a 

mathematical model to examine the transmission dynamics of HIV and malaria co-infection. In his model, he 

investigated the magnitude of the epidemic synergy that exists between HIV-1 and malaria.  

Mathematical modeling associated with multifaceted biological dynamics is a great concern to many researchers. The 

simple fractional integer order is capable of dealing with such biological processes and dynamics. However, when the 

biological process is complex the integer order falls short owing to properties such as nonlinearity, mathematical 

relation associated with the parameters and multiscale behaviour [Leszczynski, 2011]. To study such complex 

biological systems, fractional derivatives offer the tools to deal with dynamics of such systems. The nonexistence 

differential operator of integer is the key fundamental property of fractional derivatives models. These properties are 

able to provide information about the current as well as the past state. 

The use of fractional derivatives and fractional integrals to model biomaterials and examine the relation between the 

material and stress- strain was first undertaken by Magin et al. [2006].  Ding and Ye applied a fractional-order 

differential equation to model of HIV infection of CD4+ T-cells in humans. Diethelm Ding and Ye [2009] applied 

fractional calculus to model dengue fever disease outbreak. Doungmo et al. [2014] employed a fractional SEIR 

epidemic model for spatial and temporal spread of measles in metapopulations in some cities in South Africa. Carla 

Gendelman et al. [2005] explored computer virus dynamics based on fraction order differential equation. Currently, 

fractional calculus has been intensively been utilised in modelling process [Alawneh et al. 2011, Alawneh 2013 and 

Leszczynski 2011].  

Recently, Mukandavire et al. [2009] developed a deterministic model for the analysis of co-infection of HIV and 

malaria in a certain community.  

To the best of our knowledge, there is no fractional order coinfection model for HIV and malaria coinfection model for 

obtaining analytical approximate solution. By reason of this, we propose multistep generalized differential transform 

method (MSGDTM) which gives accurate solutions over a longer time frame as compared to the standard generalized 

differential transform method (GDTM) to obtain approximate solution of HIV and malaria coinfection model.  

This paper is arranged as follows, In Section 2, we present the HIV and malaria coinfection model. In Section 3, we 

present some vital definitions and notations related to fractional calculus. The non-negativity solution of the model is 

presented in Section 4. The proposed method is described in Section 5. In Section 6, the method is applied to problem 

(2) and numerical simulations graphically shown. Finally, the conclusions are presented in Section 7.  

2. The HIV and Malaria Coinfection Model 

The model sub - divides the total human population, denoted by Nh(t), into sub-populations of susceptible humans (Sh(t)) 

individuals infected with malaria only Ima(t), individuals infected with only HIV Ih(t), individuals dually infected with 

malaria and HIV Imh(t). Therefore, the total human population Nh(t)=Sh(t)+Ima(t)+Ih(t)+Imh(t). The total mosquito 

population (vector), denoted by Nv(t), is also sub-divided into susceptible vector Sv(t) and infected mosquito denoted by 

Iv(t). Thus, Nv(t)= Sv(t)+ Iv(t). The population of size Nv(t), at time t, has inflow, h hN , of susceptible, Sh(t), where   

is the recruitment rate. The natural mortality rate is for all human populations class is denoted by
h . 

Susceptible humans, Sh(t), are infected with malaria through biting of mosquito, at a rate m v hI S   and move to the 

malaria infectious class Ima(t). They can get infected with HIV at a contact rate  h h mh mhI I   and then move to HIV 

infectious class Ih(t). Infected individuals with malaria only, either recover with partial immunity and move to 

susceptible class at a rate
1v  or acquire HIV infection following effective contact with infected humans at a rate 

 h h mh mhI I   where the parameter 0 1  examines the expected decrease in sexual activity (contact) by individuals 

with malaria infection (because of ill health)  and move to the HIV malaria dually-infectious class Imh(t). They pass 

away due to the disease at a rate ma . Infected individuals with HIV only, either acquire infection with malaria 

following effective contact with infected mosquitoes at a rate m vI  , where 1   accounts for the assumed increase 

in susceptibility to malaria infection as a result of HIV infection and move to the HIV malaria dually-infectious class Imh 

or die from HIV at rate h . Dually-infected individuals either recover with partial immunity and move into HIV only 

infectious class at a rate 
2v  or die from the malaria at a rate mar , where 1r  accounts for the increased mortality of 

the ( )mhI t  individuals in comparison with individuals with malaria infection but not infected with HIV or from HIV at 
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a rate Hq , where 1q  accounts for the increased mortality of the ( )mhI t  individuals in comparison with individuals 

with HIV infection but not infected with malaria. 

Susceptible mosquitoes are recruited into the population at a constant rate v vN . They either die at a rate v  or acquire 

malaria infection (following effective contacts with infected humans) at a rate  h m v mhI I   . Each infected mosquito 

becomes infectious and moves to the infectious class ( vI  ) after a time t.  Here h  refers to the effective contact rate 

for HIV infection, the modification parameter accounts for the relative infectiousness of individuals dually-infected 

with HIV and malaria ( )mhI t  in comparison to those with HIV only infection ( )hI t . For malaria,   is the per capita 

biting rate of mosquitoes, m  (resp. v ) is the transmission probability per bite for human (resp. mosquito) infection. 

Whereas, 1v   is a modification parameter accounting for the increased likelihood of infection of vectors from 

humans with dual HIV-malaria infection in relation to acquiring infection from humans with malaria only. The use of 

this force of infection is due to the fact that female mosquitoes only take a fixed number of blood meals per unit of time, 

irrespective of the absolute numbers of mosquitoes and human. 

We present a modified version proposed by Mukandavire et al. [2009].  

1
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              (1) 

with the initial conditions; 

1 2 3 4(0) ,  (0) ,  (0) ,  (0) ,h ma h mhS e I e I e I e     

5 6 (0)  and  (0) . v vS e I e   

The slightly modified model given by system (1) is thus written in fractional order differential equations version as: 
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     (2) 

where tD
 characterizes the fractional derivative in Caputo derivative  version and the order of the fractional 

derivative is represented by the parameter   and 0 1,  with the related initial conditions (2).  

The variation of the parameter that represents the order of fractional derivative leads to different results for different 

values. Clearly, the integer-order differential can be viewed as fractional derivatives when 1  . Mostly, for higher 

order, the dynamics of integer-order and fraction order is the same. 

3. Basic Definitions and Notations 

This part covers some basic definitions and notations of fractional calculus that will assist in the subsequent sections. 

Definition 1: A function ( )p x  having the positive values of x is identified in the space  ( R)B   if it is expressed 

in the form 1( ) ( )qp x x p x and for some q > , where 1( )p x is continuous in  0, , and it is identified to be in the space 
nB  if

( )

,

n

np B n N  .  

Definition 2: The Riemann Liouville integral operator of a given order 0  with 0a  is expressed as  
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For the properties of the operator, we require only the following. For , 0, 0,np B      and  >-1,c R  one obtains  
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where  , 1    characterizes the incomplete beta function stated as 

  1

0

, 1 (1 ) ,B t t dt



 

       

 

0

( )
( ) .

( 1)

k

cx cx

a

k

c c a
J e e x a

k

 








 

  
         (5) 

The Riemann Liouville derivative possesses some set-backs when applied to real life situations with fractional 

differential equations. Thus, at this point we exploit a modified version of fractional differential operator aD
 which 

has been employed in Caputo work on the theory of viscoelasticity. 

Definition 3: The Caputo fractional derivative of ( )p x  order 0   with 0a   is expressed as  
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1 ( )
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m m
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for 
11 ,  ,  ,  ( ) Bmm m m N x a f x       . Many researchers examined the Caputos fractional order derivatives for 

1 ,   ( ) B ,mm m p x     and 1   , one obtains 
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4. Non- negativity Solution 

Assume   6 6
:   X 0) and X(t)= ( ), ( ), ( ), ( ), ( ), ( )h ma h mh v vR X R S t I t I t I t S t I t



    . In order to prove the theorem, first, we 

state the following lemma.  

Lemma 1: Suppose ( ) [ , ]p x B a b and ( ) [ , ]D p x B a b   for  0,1  . Then one gets  

1
( ) ( ) ( )( ) ,

( )
p x p a D p x a 


  


        (8) 

with 0 ,x   for all [ , ]x a b . This is also known as generalized mean value theorem.  

Remarks 5:  Assume ( ) [ , ]p x B a b  and ( ) [ , ]D p x x a b   for 0 x  . It is obvious from Lemma 1 that if

( ) 0 (0, )D p x x b    , then the p behaves as nonincreasing function.  

Theorem 6: Therefore, given the initial value problems (3), a unique solution exists and remains in 6R
. 

Proof: The existence and uniqueness of the solution of (3) in (0, ) can be derived from Magin [2006]. We just require 

to establish that the domain 6R
 is positive invariant. Since 

0 1

0

0 2

0

0

0

( ) 0,

( ) 0,

( ) 0,

( ) 0,

( ) 0,

( ) 0,

h

ma

h

mh

v

v

t h S h ma

t ma I ma v h

t h I h mh mh h mh

t mh I h h ma ma v h

t v S v

t v I v ma v v v mh v

D S t v i

D I t I S

D I t I S v I

D I t I I I I

D S t

D I t I S I S















 

 

  



   













  

 

  

  

 

  

       (9) 
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On every hyperplane bounding the nonnegative orthant, the vector field move towards to 6R
.  

5. Multi-step Generalized Differential Transform Method 

The nonlinear fractional equations can be best dealt with by employing the approach in Alawneh et al. [2011].  

MSGDTM is obtained from GDTM [Leszczynski, 2011, Magin et al. 2006] which provides small step sequentially 

leading to an accurate approximation solution of a given model.  Multistep generalized differential transform method 

(MSGDTM) provides long time solution and generalized differential transform method (GDTM) also associated with 

short term solution. The unique property of MSGDTM also conforms to classical Runge – Kutta numerical solution 

method, having a unity of order of derivative [Leszczynski, 2011]. The solution to such nonlinear fractional equation 

can also be obtained by using an efficient approach [Ding, 2009]. The MSGDTM is a modified form of the GDTM 

[Leszczynski, 2011, Magin et al. 2006], in which it is treated as an algorithm in a sequence of small steps, to obtain the 

accurate approximate solution to the desired models. By using GDTM, the obtained solution is valid for a short interval 

of time while the solution obtained from multistep generalized differential transform method (MSGDTM) is valid for a 

long time. To obtain the solution, using MSGDTM is more accurate and valid for long interval of time and agrees well 

with the classical Runge – Kutta numerical solution method, with the unity order derivative [Magin et al. 2006]. 

We use the multi-step generalized differential transform method to obtain the approximate solution of system (3), which 

leads to an accurate solution over a longer time frame as compared to the standard generalized differential transform 

method. By taking the differential transform of the system (2) with respect to time we have: 
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where 
( ) ( ) ( ) ( ) ( ) ( )( ),  ( ),  ( ),   ( ),   ( ),  ( ),  ( ),  ( ),  ( ),  ( ) ( ),  ( ) and ( ) h ma h mh v h ma v mh v vS k I k I k I k S k k k k k k k k I k       stand for the differential 

transformation of ( ) ( ) ( ) ( ) ( )( ),  ( ),  ( ),   ( ),   ( ),  ( ),  h ma h mh v hS t I t I t I t S t t ( )( ),  ( ),  ( ),  ( ) ( ),  ( ) and ( ) .ma v mh v vt t t t t t I t      The initial 

conditions in terms of differential transform from are represented as 1 2 3 4(0) ,  (0) ,  (0) ,  (0) ,h ma h mhS e I e I e I e   

5 6 (0)  and  (0) . v vS e I e  From differential inverse transform vision, the differential transform series solution for the 

system (2) can be obtained as 
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The series solution for the system (2), based on the MSGDTM is suggested as  
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where ( ) ( ) ( ) ( ) ( ) ( )( ),  ( ),  ( ),   ( ),   ( ) and ( ) hi mai hi mhi vi viS k I k I k I k S k I k for 1,2,3,...,i M  satisfy the following recurrence relations: 
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such that 
( ) 1 ( 1) 1 ( ) 1 ( 1) 1 ( ) 1 ( 1) 1( ) ( ),  ( ) ( ),  ( ) ( )h i i h i i ma i i ma i i h i i h i iS t S t I t I t I t I t           , 

( ) 1 ( 1) 1 ( ) 1 ( 1) 1 ( ) 1 ( 1) 1( ) ( ),  ( ) ( ) and ( ) ( ).mh i i mh i i v i i v i i v i i v i iI t I t S t S t I t I t            Initially, beginning from 

(0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1,  ,  ,  ,   and  ,  h ma h mh v vS e I e I e I e S e I e      by employing (12) 

6. Numerical Methods and Simulation 

We solve analytically the system (2) with transform initial condition by applying the multi-step generalized differential 

transform method (MSGDTM) and employ Runge – Kutta order four method for integer order derivative for numerical 

results. We investigate the system (2) numerically in the interval [0, 30] for the approximate solution of nonlinear 

fractional differential equation. For K=10 and M= 3000, the final output (results) are determined.  By employing 

Mathematica the results were obtained. The initial condition 1 2 360,  20,  10,e e e   4 5 5 30 30 and 10e e e    are 

employed in the computation of the numerical results. The values for the parameters assumed are indicated in Table 1. 

In Figures 1,2,3,4,5 and 6, the approximate solution is obtained by MSGDTM and the classical Runge – Kutta method 

order four scheme for 1  . The approximate solution of MSGDTM matches with the results obtained using the 4
th

 

order Runge – Kutta iteration scheme. Figure 7,8,9,10,11 and 12 represent the approximate solution obtained by 

MSGDTM and classical Runge – Kutta order four scheme considering different values of  . We conclude from the 

two algorithms graphical results that the MSGDTM and classical Runge – Kutta behave similarly. 

 

Figure 1. The plot shows susceptible humans with comparison of rk4 and MSGDTM 
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Figure 2. The plot shows individuals infected with malaria only with comparison of rk4 and MSGDTM 

 
Figure 3. The plot depicts individuals infected with only HIV with comparison of rk4 and MSGDTM 

 

Figure 4. The plot shows individuals infected dually with malaria and HIV with comparison of rk4 and MSGDTM 

 

Figure 5. The plot depicts susceptible vector with comparison of rk4 and MSGDTM 
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Figure 6. The plot shows an infected mosquito with comparison of rk4 and MSGDTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The plot shows susceptible humans with different values of (1.00,0.95,0.90,0.85)   

 

 

 

Figure 8. The plot shows individuals infected with different values of (1.00,0.95,0.90,0.85)   
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Figure 9. The plot depicts individuals infected with different values of (1.00,0.95,0.90,0.85)   

 

 

 

 

 

 

 

Figure 10. The plot shows individuals infected dually with different values of (1.00,0.95,0.90,0.85)  . 

 

 

 

 

 

 

 

Figure 11. The plot depicts susceptible vector with different values of (1.00,0.95,0.90,0.85)   
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Figure 12. The plot shows an infected mosquito with different values of (1.00,0.95,0.90,0.85)  . 

Table 1. Parameters used in the numerical simulations of model (4) 

Parameter Value/Range Sources 

h  0.55 Chiyaka et al., 2007 

v  0.001 Chiyaka et al., 2007 

ma  
0.00041 Chitnis et al., 2008 

h  0.0049139 Chitnis et al., 2008 

  0.57 Chiyaka et al., 2008 

1v  0.02 Abu-Raddad et al., 2006 

2v  1.002 Abu-Raddad et al., 2006 

h  0.015 Chiyaka et al., 2007 

v  0.8 Chiyaka et al., 2007 

m  0.8 Chiyaka et al., 2007 

mh  1.500 Chiyaka et al., 2007 

v  1.500 Chitnis et al., 2008 

  1.00 Chitnis et al., 2008 

q  1.00 Chiyaka et al., 2008 

  1.00 Abu-Raddad et al., 2006 

r  1.00 Chiyaka et al., 2008 

7. Conclusion 

In this paper, a new numerical method to deal with a time- fractional HIV and malaria coinfection is proposed and 

non-negativity solution of the proposed model determined. The method is a modification of standard GDTM. 

Comparison of the results obtained using the MGDTM with that of the one obtained by Runge – Kutta fourth order 

shows that MGDTM matches excellently with the RK4 method.  The numerical solutions obtained using MGDTM 

with different   values were also very good. The MGDTM results are also valid for a larger t . 
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