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Abstract

In the paper an estimation of the minimal number of elements of Markov partition for generalized pseudo-Anosov home-
omorphism of closed non necessary orientable surface is given. It is formulated in terms of characteristic of invariant
foliation of generalized pseudo-Anosov homeomorphism.
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1. Introduction

Pseudo-Anosov homeomorphisms of orientable surfaces were introduced by W. Thurston (1988) in his research on
J. Nielsen classification of surface homeomorphisms up to isotopy. Markov partitions are very useful tools for investi-
gation of geometrical and dynamical properties of such homeomorphisms. The number of theirs elements is essential in
particulary for combinatoric description of these partitions and for calculating the number of periodic points of homeo-
morphism and of entropy. It is well known that in particular case of hyperbolic homeomorphism of 2-torus there Markov
partition onto two elements exists and of course there is no Markov partition with one element. We will consider the
common case.

We begin with definitions.

We will mind rectangle [0, 1] × [0, 1] ⊂ R2 with its partition onto intervals of horizontal lines under non-singular co-
ordinate neighborhood with nonsingular foliation. Also, the singular coordinate neighborhood with d-pronged (d ∈ N,
d , 2) singularity will be the neighborhood of origin in R2 fibered onto subsets of two types: 1) intervals of d rays issuing
out of origin (singular leaves); 2) arcs of convex curves lying in sectors between these rays and asymptotic to them (in the
case d = 1 these are arcs of parabolas with singular leaf as the mirror symmetry axis). We will say that d is the valency of
singularity.

Definition 1 Let M be a closed surface, S ⊂ M its finite subset. Singular foliation of M with singularities in S is the
family of linear connected subsets of M called leaves such that

(1) M is the union of all leaves;

(2) intersection of any two leaves either is empty, or is contained in S ;

(3) for each x ∈ M \ S (correspondingly x ∈ S ) neighborhood U and its homeomorphism onto nonsingular (corre-
spondingly singular of some valency d) coordinate neighborhood in R2 which maps x to origin and any linear connected
component of intersection with U of any leaf onto leaf of corresponding coordinate foliation exists.

Definition 2 The homeomorphism f : M → M is said to generalized pseudo-Anosov (GPA) if it preserves two transversal
foliationsWu, Ws with common singularities expanding leaves ofWu with the factor λ > 1 and contacting leaves of
Ws with the factor λ−1. The number λ is called the dilatation of f .

Remarks.

1) Because there is no need in the smooth structure of surface and of its foliations we understand transversality in the
following sense. Two arcs γ1, γ2 are transversal if their intersection points are isolated and for each intersection point x
exists neighborhood U ∋ x and its homeomorphism φ to R2 which maps x to origin end parts of curves lying in U onto
intervals of horizontal and vertical axis correspondingly.

2) Expanding and contracting in this definition are understood usually with respect to transversal invariant measures µs,
µu. The transversal measure µs is the family of Borel measures defined on the arcs of leaves ofWu so that if two arcs are
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fiber homotopic (with respect toWu), then their measures are equal. The transversal measure µu is defined by swapping
symbols s and u. So the property of foliations in the definition 1 means µs(γ) = λµs(γ) and µu(γ) = λ−1µu(γ) for γ arc of
leaf ofWu (ofWs correspondingly).

Definition 3 Let f : M → M be a generalized pseudo-Anosov homeomorphism. The rectangle is a closed set Π ⊂ M that
is the image of the map φ : [0, 1] × [0, 1]→ M so that it is one-to-one on the interior of square and maps each horizontal
(vertical) interval onto arc of contracting (expanding) leaf. Let us denote by Π◦ image of interior of square. The images
of horizontal (vertical) sides of this square are called contracting (expanding) sides of rectangle Π.

Definition 4 Markov partition for the generalized pseudo-Anosov homeomorphism f : M → M is finite family of
rectangles P = {Π1, . . . ,Πn} such that Π◦i ∩ Π◦j = ∅ (for i , j), ∪n

i=1Πi = M and f (∂sP) ⊂ ∂sP, f (∂uP) ⊃ ∂uP. Here ∂sP
and ∂uP are unions of contracting (expanding) sides of all rectangles of P.

It is well known that for Anosov diffeomorphism of 2-torus (which essentially is the same as GPA-homeomorphism
with no singularities) there exist Markov partition consisting of two rectangles. It is easy to see that there are no
Markov partitions with one element for it. It is natural question on the minimal number of rectangles for arbitrary
GPA-homeomorphism. In this paper we will establish en estimation from above for this number. We need two additional
definitions to formulate the final result.

Definition 5 The singular type of generalized pseudo-Anosov homeomorphism f is the sequence of S = S( f ) := {sd :
d ∈ N} element sd of which is the number of d-pronged singularities of invariant foliations of f .

Evidently, only finite number of elements of the sequence S( f ) are non-zero.

Definition 6 Let us say that the family W = W of leaves of f -invariant foliation (eitherWs orWu) is invariant if W ∈W
implies f (W) ∈W. The leaf W is periodic of period m if f k(W) = W and f i(W) , W for 0 < i < k.

Theorem Let f is the generalized pseudo-Anosov homeomorphism of the closed surface. Let S = {sd : d ∈ N} is
its singular type and m —the minimal period of periodic leaves of its contracting foliations. Then minimal number of
elements of Markov partitions for f is

nmin ≤ m +
1
2

∑
d

dsd. (1)

To be sure that this estimate is valid for the Anosov diffeomorphism, it is natural to assume that the latter has a unique
singularity of valence 2 in its arbitrary fixed point. Note that there are other reasons for such point of view on invariant
foliations of Anosov diffeomorphisms.

Let us note also that because f maps singular leaves onto singular leaves and singular points to singular points of the same
valency, the minimal number of periodic leaves may be estimated by

m ≤ min
sd,0
{dsd}.

Consequently, the minimal number of the elements of Markov partitions may be estimated be means of the singular type
of GPA-homeomorphism.

The proof of the theorem consists of the explicit constructing of Markov partition with the number of elements equal to
the value in right side of (1).

2. The Proof of the Theorem

In what follows is assumed that f : M → M is GPA-homeomorphism, Ws, Wu are its contracting and expanding
foliations and S = {sd} its singular type.

To prove the theorem we consider two cases:

1) The periodic contracting leaf with minimal period M is singular;

2) The periodic contracting leaf with minimal period M is nonsingular.

In the proof we will use well known properties of invariant foliations of GPA-homeomorphisms whose proves can be
found in (Fathi, 1979). These properties are valid for both foliationsWs andWu.

1. There are no closed leaves and no leaves joining singular points.

2. Each singular leaf is dense in the surface. The same is true for the both linear connected components of every non-
singular leaf onto which arbitrary point divide it.
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3. Each periodic leaf contain periodic point.

Let us begin with the proof in the first case

Lemma 1. Let W be a periodic singular leaf of period m of the contracting foliation of f and Wk := f k(W) (0 ≤ k < m).
Then there exist arcs wk ⊂ Wk with the following properties:
1) f (wk) ⊂ wk+1, f (wm) ⊂ w0;
2) one endpoint of wk is singular point and another one belongs to expanding leaf beginning from some singular point;
3) for any singular point p whose arc of expanding leaf connects p with endpoint of some wk this arc do not intersect none
of arcs wl (0 ≤ l < m) in their interior points.

Proof. Let pk be a singular periodic point belonging to the leaf Wk. Note that some of these points may coincide (in the
case that corresponding leaves coming out of the same singularity). Let x0 , p0 be an arbitrary point of the leaf W0.
Define points xk := f k(x0) (0 < k < m) each belongs to the leaf Wk. Denote by (pk, xk)s an open arc of Wk joining points
pk and xk. Let p be some singular point (possibly one of pk or not) and arbitrary expanding leaf coming out of this point.
Denote by y0 the point of first intersection of this leaf with some of arcs (pk, xk)s i.e. y0 ∈ (pl, xl)s for some l and the
arc (p, y0)u of this leaf (joining p and y0) do not intersect other arcs (pk, xk)s. Such point y0 exists because each leaf of
expanding and contracting foliation is dense in the surface.

Let us suppose that the point y0 belongs to the arc (p0, x0)s. In other case we can to renumber leaves Wk and, correspond-
ingly, points pk and xk so that f (Pk, xk)s ⊂ (pk+1, xk+1)s for k < m−1, f (pm−1, xm−1)s ⊂ (p0, x0)s and (pk, xk)s∩(p, y0)u = ∅
for all k , 0.

Now we define points yk := f K(y0) for 1 ≤ k ≤ m − 1. Then yk ∈ (pk, xk)s so that f (pk, yk)s = (pk+1, yk+1)s for k < m − 1
and f (pm−1, ym−1)s ⊂ (p0, y0)s. Consequently, the family arcs (pk, yk)s satisfy conditions 1,2 of the Lemma 1 but possibly
do not satisfy to the condition 3.

We change this family to obtain the family satisfying this condition too. For each k consider the set Yk which is the
intersection with (pk, yk]s (it is semi-open arc) all arcs ( f i p, yi]u (0 ≤ i ≤ m− 1). Let qk be such point of the set Yk that the
arc (pk, qk)s does not contain other points of this set. Let wk := (pk, qk)s. Then family of arcs wk satisfy to the conditions
2 and 3 and we need to prove that the condition 1 remains to be true.

To do this consider the sets Yk. First let us note that because (p, y0)u ∩ (pk, yk)s = ∅ for all k ≤ m − 1, then for each i ≤ k
we have

(pk, yk)s ∩ ( f i p, yi)u = f i((pk−i, yk−i)s ∩ (p, y0)u
)
= ∅. (2)

Hence

Yk \ {yk} =
m−1∪
i=k

(pk, yk)s ∩ ( f i p, yi)u.

It follows that Ym \ {ym} = ∅ i.e. qm = ym. For k > 1 we have

f −1(Yk \ {yk}) =
m−1∪

i=k−1

(pk−1, yk−1)s ∩ ( f i−1 p, yi−1)u =

m−2∪
i=k−2

(pk−1, yk−1)s ∩ ( f i p, yi)u ⊂ Yk−1 \ {yk−1}.

This means that f −1(qk) < (pk−1, qk−1)s that is f
(
(pk−1, qk−1)s

) ⊂ (pk, qk)s.

It remains to prove that f
(
(pm−1, qm−1)s

) ⊂ (p0, q0)s. If q0 = y0 then

f
(
(pm−1, qm−1)s

)
= f
(
(pm−1, ym−1)s

)
= f m((p0, q0)s

) ⊂ (p0, q0)s.

In other case q0 ∈ ( f i p, yi)u for some i, 0 < i ≤ m − 1. Then f −1(q0) ∈ ( f −1 p, y−1)u. According to (2) the arc ( f −1 p, yi−1)u

do not intersect the arc (pm−1, ym−1)s. Hence the inclusion

(pm−1, f −1(q0))s ⊂ (pm−1, ym−1)s = pm−1, qm−1 s

is false. Consequently f
(
(pm−1, qm−1)s

) ⊂ (pm−1, ym−1)s = (pm−1, qm−1)s as required. 2

Lemma 2 If there exist the family of arcs w0, . . . ,wm−1 enabling the properties 1-3 of lemma 1 then
1) there exists Markov partition P with ∂sP = ∪m

k=1 wk;
2) the number of elements of P is m + 1

2
∑

d dsd.

Proof. Let us denote by Γs :=
∪m−2

k=0 wk. The property 1 of Lemma 2 implies that f (Γs) ⊂ Γs. Let pk be the singular
endpoint of wk. Let qk be another endpoint and of wk and p′k be the singular point arc [p′k, qk]u of the expanding leaf that
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joins p′k and qk. What is more, the arc (p′k, qk]u does not intersect wk excepting point qk and does not intersect other arcs
w′k. Let us remind that the points pk, p′k are not necessary distinct, possibly all of them coincide (for example, in the case
when f has only one singular point). Let us continue each arc (p′k, qk]u to the first intersection with interior of one of the
arcs wl (0 ≤ l ≤ m − 1). Denote Γu

1 the union of all these arcs. Now consider each expanding singular leaf Wu which does
not contain any arc in Γu

1 (if such leaf exists). Let it begins in the singular point p (again it may be that this is one of the
points pk, p′k). Let x be such point of Wu that x belongs to the interior of one of arcs wk and (p, x)u does not intersect any
of wk. Let Γu

2 be the union of all such arcs and Γu := Γu
1 ∪ Γu

2. It is easy to see that image of each of arcs of which the set
Γu is constructed contains one of these arcs. So f (Γu) ⊃ Γu.

Consider the set P◦ of connected components of the set M \Γs∪Γu. Evidently it consists of the finite number of elements.
We denote them Π◦1, . . . ,Π

◦
n. Also denote their closures Πi, define the family of subsets P := {Πi : 1 ≤ i ≤ n} of M and

show that it is Markov partition.

Let us begin with the checking that each Πi is a rectangle. Because Π◦i does not contain singular point, each point
x ∈ Π◦i enables of neighborhood U and homeomorphism φ of some rectangle in R2 mapping it onto U in such a way
that horizontal and vertical intervals are mapped onto arcs of contracting and expanding foliations. Beginning with some
point x ∈ Π◦i we can extend this neighborhood to the set Uε (0 < ε < 1) in such a way that the boundary of Uε is close
enough to the boundary of Π◦i and corresponding homeomorphism φε maps onto it the rectangle [ε, 1 − ε] × [ε, 1 − ε]
mapping horizontal (vertical) intervals onto arcs of contracting (expanding) leaves. Then the closure of

∪
εUε is Πi and

continuation of φε onto Πi satisfy the properties of the definition of rectangle.

Now it is easy to see that the constructed family of rectanglesP is Markov partition. It follows from the fact that ∂sP = Γs,
∂uP = Γu and f (Γs) ⊂ Γs, f (Γu) ⊃ Γu.

Now let us calculate the number n of the elements of P. The contracting boundary of each rectangle Πi ∈ P is the union
of two arcs ui,1, ui,2 of contracting leaves (possibly of the same leaf). Each of these arcs is contained in some arc wk

(0 ≤ k ≤ m − 1). It is possible that both of them are contained in the same wk. In this case they may be intersected but
can not coincide because otherwise it would be exist closed curve consisting of expanding arcs. Consider the setU being
the set of all such contracting arcs ui, j. It consists of 2n elements. Each endpoint of each arc wk is the common point of
two arcs inU. Then in

∪m−1
k=0 wk there are 2n − 2m endpoints of arcs ofU which are the interior points of corresponding

arcs wk. The construction implies that each of such points belongs to some singular expanding leaves and each of such
leaves contains such point. Because the number of all singular expanding leaves is

∑
d dsd it follows

2n − 2m =
∑

d

dsd. (3)

This proves the lemma. 2

All that is lacking is to prove the theorem for the second case.

Lemma 3 Let there exists a non-singular contracting leaf of the period m then there exists Markov partition with m +
1
2
∑

d dsd elements.

Proof. Let W be a non-singular leaf of contracting foliation with period m. Because each non-singular leaf is periodic
there exists Markov partition P′ = {Π′1, . . . ,Π′m′ } constructed in the proof of the lemma 2 (here m′ is the period of some
singular contracting leaf). Let us denote all objects in the construction of P′ by the same symbols but with an accent. In
particulary, those arcs which union is ∂sP′ we denote as w′0, . . . ,w

′
m′−1. Let p0 ∈ W be a periodic point. It follows from

the construction of the partition P′ that the set ∂sP′ ∪ ∂uP′ does not contain non-singular periodic points. So there exists
element Π′ of P′ containing p0. Let w0 be an arc of W, containing Π′, contained in Π′ and having its endpoints on the
contracting boundary of Π′. Then each arc wk = f k(w0) (1 ≤ k ≤ m − 1) lying in rectangles of Π′ and has endpoints on
contracting boundary of the corresponding rectangle. Denote Γs :=

∪
k wk. Evidently f (Γs) ⊂ Γs.

Now consider each singular leaf Wu beginning in some singular point p and define the first point of its intersection x1
with the arcs wk. If x1 is an endpoint of sum arc of Γs let us continue the arc [p, x1]u up to the the second intersection
with these arcs and do so until we get an arc [p, x]u with x in interior of some wk. Denote union of all these arcs as Γu.
Evidently f (Γu) ⊃ Γu.

Just the same way as in the proof of Lemma 2 we see that the closure of each connected component of the set M \ (Γs∪Γu)
is an rectangle, the set of all of them is Markov partition and the number n of its elements satisfy the equality (3). This
finish the proof of the lemma. 2

Thus, the statement of the theorem is proved in both cases above.
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