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Abstract

Quasi-arithmetic means are defined for continuous, strictly monotone functions. In the case that functions are twice
differentiable, we obtained criteria for inequalities between finite number of quasi-arithmetic means in additional and
multiplicative case. Applications for Holder and Minkowski type inequalities are given.

1. Introduction

The quasi-arithmetic mean in discrete instance is defined for a continuous and monotone function ¢ : J, C R — R, real
sentence X = (x,...,x,) € J, and a probability weight sentence of non-negative real numbers a = (ay,...,a,), with
n

Z ax = 1 by the formula:
k=1

M,(x:2) = ¢! (Z akso(m) : )
k=1

If ¢ is a differentiable function, then we call it differentiable quasi-arithmetic mean in this article. Here the twice differ-
entiability is considered.

For continuous and monotone functions ¢ : J, — R and y : J,, — R that are defined on intervals J,, J,, € R, sentence
y=01,...,y2) € Jyand f: J, X J, — J,, the inequality

f(My(x;a), My(y; ) > M, (f(x,y); a) 2

was investigated by E. Beck in 1970 for additive case where f(x,y) = x+y and multiplicative case with f(x,y) = xy =
(X1Y1, - - - » X, ¥y). Criteria were obtained for ¢, and y being twice differentiable.

Enlargement with differentiable, continuous and monotone function p : J, — R, where J, C R and sentence z =
(215...,2n) € Jy, for afunction f : J, X J, X J, — J,,, was given in (Ivankovi¢, 2015). The conditions for inequality

£ (My(x; 2), My (y; 2), M, (2; 2)) > M, (E(x,y,2); 2) (3)

were proven in additive and multiplicative cases.

The inequality (3) is equivalent with inequality

n n n n

H Zaisi,zaiti,zairi ZzaiH(Siatiari), “4)

i=1 i=1 i=1 i=1

where H(s,t,7) = xf (t,o‘l(s),z//‘l(t), p‘l(r)), s = ¢(x),t = Y(y) and r = p(z). Direction in (4) depends on convexity of
H(s, t,r) and tendency of y.

In this article, conditions for m quasi-arithmetic means inequality are given in additive and multiplicative case.
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2. Fundamental Condition

The inequality (3) is enlarged for m continuous, strictly monotone functions ¢; : J; — R generating m quasi-arithmetic

means:
n

M, (x;a) = tpi_l [Z aj- gai(xij)], i=1,...,m.
j=1
The means are calculating for real sequences x; = (x;1,...,Xi), i = 1,...,m, belonging to J; € R. For given n-
tuples, the function values f : J; X Jo X --- X J,, — R are constituting new n-tuple by calculating: f(x1,X;...,Xy) =

(f(xlh X2lsenns xml), f(x12’ X225 vs me), cee sf(xln’ Xy enes xmn))

Iff:JixJyx---xJ, — J,, then the quasi-arithmetic mean is defined properly:

M)((f(xl’ ceny Xm); a) = X71 [Z a; -)(f(xlj, X2jyen- ,f(xmj))] . (5)

j=1
For just defined terms the next proposition is declared.
Proposition 2.1. With respect to the terms defined above, for strictly increasing function y the inequality
f(Mw (x;a),.. .,M(pm(xm;a)) > M,(f(xg,....,xn);a) (6)

states if and only if the function

H(stj s sm) = XF (&7 510000 () 51 = i), j=1,...,m (7)
is concave and y increases or if (7) is convex and y decreases.
The inequality (6) is opposite if the function H defined by (7) is convex and y increases or if H(s1j,..., Smj) is concave

and y decreases. Function (7) is defined as well.

Proof. For the benefit of better understanding, the proof with increasing y is following. Suppose (7) is a concave function.
Then for every collection of n-tuples given bellow

Si = (@i(x) = (@ilxi1), 9i(xi2), . . ., @i(Xin)) = (Si1s Si2s - -s Sin)y E=1,...,m ®)

and every choice of probability weights a, the well-known Jensen-McShane inequality (Pecari¢, et al., 1992, p.48-49)
holds for m-tuples:

n n
H(Z aj(slj, 825 - ..,Smj)] > Z(le(S]j, §2js - ~7smj)~ ©)

=1 J=1
Linear combination calculating obtains the following

n n n n
H Z a;Sij, Z AjS2jsn-s Z ajsmj) > Z ajH(S]j, §2jseees Smj).
J=1 J=1 J=1 J=1

According the definiton’s relations (8), if s;; = ¢i(xij), j = 1,...,n, then ¢;'(s;j) = x;;. From functon’s definition
H =Xf(¢f1, <oy it follows:

n n n
H Zajslj, Zajszj, .. 7Zajsmj =xf

j=1 j=1 j=1

o (Z aj- S”] s (Z ajs2j] ot [Z ajsmj]].

j=1 Jj=1 Jj=1

Consequently H(s1, 82j,.-.,Smj) = Xxf (cpl‘l(slj), cpgl(szj), ... ,cp,_nl(smj)) . Now, the (9) states as

o7 (Z ajslj] o {Z ajSZj] e (Z ajsmj]] > Z axf (‘PII(SL,‘), @ (52))s -+ ¢;11(Sznj)) .

J=1 J=1 j=1 j=1

xf

The consequence of y being increasing is that y~! increase itself:

f(tpfl [Z aj‘ﬁl(xlj)] N [Z ajpr(2) |5 [Z ajsﬂm(xmj)J >y Z apx f(xij X245« ooy Xmj) |-
J=1 J=1 J=1 Jj=1
The inequality above is in fact the inequality (6). So the reverse proof is end. m}
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For twice differentiable m-variables function’s convexity and concavity the criteria exist. Noting the second partial deriva-

. 0*H . . .
tives by H;; = PR i,j=1,...,m,there is a Theorem from general mathematical analysis given here as Remark.
§i0S
Remark 2.1. Function H(sy, s2, ..., Sy) is convex if and only if the next m inequalities are satisfied:
He H Hyy Hip His Hy - Hin
Hy; >0, 1 12 >0, Hy Hy Hy |[>0,..., . : > 0. (10)
H>y Hy o He H ‘ :
31 32 33 Hml e Hmm
In opposite, function H(sy, 2, ..., Sy) is concave if and only if the next m inequalities are satisfied:
He H Hyy Hp Hp Hy - Hin
Hy <0, | 71 212050, | Hy Hp Hy [<0, ..., (D" @ - © o[>0 1)
Hy Hyxy : : :
Hy Hy» Hi H, - Hp,

Inequalities (10) and (11) will be of crucial interest in what is followning.
3. Additive Case
The additive case appears when function from (6) is an addition: f(xy,...,X,) = x; + -+ + X,,. The criteria for inequality

(6) are proven through the next Theorem.

Theorem 3.1. Suppose that ¢4, ..., e, and x are twice differentiable strictly monotone functions with second derivations
differ from zero on their domains J,...,J,, and J,,. Suppose that each n-tuple x; is assembled by values from J;, i =

m
1,...,m and suppose that sum Z x;j belongs to J,, for every j = 1,...,n. Then there exist functions:

i=1

Fi=2 i-1,...om and F=X, (12)

’7° 1’7
i

m

n m m m
Take a = (ay,...,a,), a; = 0 and Z a; = 1. Connote n-tuple: in = [Z Xil, Z Xidyenns xi,,]. The inequality
i=1 =1

i i=1 i=1 i=1 i

m

ZM%(xi;a) > M, (ixi;a]’ (13)
i=1 i=1

holds if and only if any of the following conditions is fulfilled:
(i) all F,Fy,...,F, are positiveand F > F| + Fy + -+ + F,.
(ii) F is negative and all F,...,F,, are positive

The inequality in (13) is opposite if and only if any of the following is fulfilled:
(i) all F,Fy,...,F, are negativeand F < F1 + Fy +---+ F,,.

(ii) F is positive and all F1, ..., F,, are negative

Proof. Since the Proposition 2.1 is proven, it is enough to prove concavity for the function H(syj, $2j, ..., 8mj) =

_ _ . . . . H C (g
p% (1,01 Msip)+...+ <pm'(smj)) , respecting Remark 2.1. Elements in (10) and (11) are given with H;; = Fri (:f—)z (’)((— - "T) =
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82H ’” 71
- = )f - = ),( —— for i # j. The condition on the k-th determinant in (11) is:
dsids; @i @i F

%(% - FL,) andHij =

X ( 1 1 ) ¥ 1 ¥ 1 ¥ 1
@)*\F  Fi 1y F o5 F P F
¥ 1 X ( 1 1 ) ¥ 1 ¥ 1
@re) F (@)*\F F> o F e F
(-1 X 1 X1 X_’(l_i) X Lo s
o) F oy F @*\F  F3 oo F
X X X X ( 11 )
08 05 Ons (@)*\F  Fi
’ av/i
From every, k-th row, the fraction % could be extracted. Their product is — +1(X ) —. After that,
‘pl ...(‘pk) ...SD”n (‘p])m ...((pm)m
each k-th column contains factor ¢ -« - @x_1 * @r+1 - - @, that could be extracted. Their product is (ga'l)’”‘l -~(<p;n)’"‘l.
\m
Multiplying the product together, we have new condition with factor %
Elementary determinant transformations and some algebra entail the following conditions:
F F F F
o) - L e ——— |20, k=1,....,m. (14)
FF,---F, FF,---F, FF,---F; FF,-- F;
The proof of the convex case is analogue and we obtain conditions:
F F F
(—x ) - L : e 130, k=1,...,m. (15)
FF,---F, FF,---F, FF,---F, FF,---F,

Conditions for inequality in (13) were obtained after discussion when y” > 0 in (14) or when ¥’ < 0 in (15).

Conditions for the opposite inequality in (13) followed after discussion when y” < 0 in (14) or when y’ > 0 in (15). |

4. Multiplicative Case

In the multiplicative case the function from (6) is a multiplication: f(xy,...,X,) = X| --- X,. The criteria for inequality
(6) are proven through the next Theorem.

Theorem 4.1. Suppose that ¢i,...,¢, and y are twice differentiable strictly monotone functions on their domains
Jiy.oos I and J,,. Suppose that each n-tuple (x;) = (xi1,...,Xiy) IS positive and consists values from J;, i = 1,...,m
m

such that product l—l x;j belongs to J,, for every j = 1,...,n. Presume functions

i=1

1 1
Di(x))= ———,i=1,...,m and D(u) = ——;7— (16)
@y (x:) X' (u)
1+x—— I +u=—
@i(x) X (u)
are definable for u = x; - - - x,,. Take a = (ay,...,a,), a; > 0 with a; = 1 and connote n-tuple

i=1
m m
=1

m m

l_[x,- = 1_[ Xil, l_[ Xidyenns xin) . Then the inequality

i=1 i=1 i=1 i
m m
nMwi(xi;a) >M, [r[x,-;a], 17
i=1 i=1

holds if and only if any of the following conditions is fulfilled:
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(i) all D, Dy,.

(ii) D is negative and all D, . .

.., Dy, are positive and D > D1 + Dy + - - - + D,,.

., Dy, are positive

The inequality in (17) is opposite if and only if any of the following is fulfilled:

(i) all D, Dy, ..

(ii) D is positive and all Dy, . .

Proof. In the case that y increases, the inequality in (17) is based on the concavity of the function H(syj, 52/, . .

.» Dy are negative and D < Dy + Dy + -+ - + D,,.

., Dy, are negative

-’Smj) =

p% (90]1 (s1) .%—nl (Sm j)) and opposite inequality is based on its convexity. When y decreases, inequalities are vice versa.

Here we give the proof for (17) according Remark 2.1. From H(sy}, 52j, . -

1 1
(— — —) and H,‘j =
D D,

D"

O*H X1 Xy 1

! A
x,-xjgo[tpj

xl-'-xm)(’(l 1)

2p? \D D

X1 _me’ 1
xox15¢) D

X1 Xy’ 1
meI(P,/nSO’l D

xl oo _me' 1
x1x¢ ¢, D

D D,

xl"'xm)(’(l 1

x3(@h)?

XXy 1
.me2(,0,,n§0/2 D

Elementary determinant transformations and simple algebra entails

)" (x ~~xm)’”(

Discussing

D

D,

|

DD, ---D,,

" DD, ---

Xy xm)(’ l
xlxméﬂ'l‘ﬁfn D

xl .. me’ 1
XXy D

., Smj) it follows that H;; =

O*H X XY
TP

= —. The conditions (11) is explored on the k-th determinant:

> 0.
Xy xx’ [ 1 1
x2(¢,)> \D Dy,
Dy,
e o 0 18
DDI 'Dm) ” ( )

To prove the opposite inequality in (17) it is enough to divide the left hand side of the previous condition (18) by (—1)"

and here it is:

(=)™ (xp - x)™ (

Since all Dy, ..

D

D,

D m

DD, ---D,,

DD, ---D,,

DDy -

-D, m

DDy -+

0.
Dm) >

19)

., Dy, and y” are negative, the sign of common denominator DD - - - D,, is (=1"*!. In cumulative, it

is (=1)>"*! = —1 and the inequality in (18) would be opposite. It is equivalent with conditions that has to be proven.

Exploring any smaller determinant in the Remark 2.1 gives the analogue.

5. Minkowski and Holder Inequality Types

]

Minkowsky and Holder inequality are originally given in (Pecarié, et al., 1992). Defining a power mean generalization

Mn,a(x)p =

i=1

generalization of the Hold

(2%

n

1
er inequality in (Pdles, 1983).

1
xf ] , author obtained a generalization of the Minkowski inequality in (Pédles, 1982) and a

Well-known Minkowski inequality for non-negative n-tuples of real numbers is here enlarged for the case of several
different potential means:

1
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n tm
m A
‘~+[ (ljxj;tnj] Z[Zai(x1j+-~+xmj) .

=1

1
a

(20)
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According the (12), for y;, A # 0, there m + 1 auxiliary functions are appearing:

Xi Xy 44X
L i=1,...mand F(x; + - +x,) = ——~°m

Fi(xj)) = ——
) = -1

Proposition 5.1. The inequality (20) holds if A < 1l and all u; > 1, i = 1,...,m. If all u;, A > 1, the (20) holds if for every

j=1,...,n
xlj+"'+xmj X1j Xmj

> +oe .
-1 =1 M =1

2L

The inequality (21) holds if one of the two following conditions is fulfilled:

o whenu; > A>1foreveryi=1,...,m

o when the sequential queue puy > py > -+ > (g > A > lge1 > -+ > Wy > 1 is interrupted by A as shown and for
every j=1,...,n:
1 —A4 Ho— A Hi— A A — Mk M — A

2
X1+ Xoj 4o+ Xk Xal)j + 0 F X
T R P R =177 gy — 1 P — 17"

The inequality in (20) is opposite if A > 1 and y; < 1 foralli = 1,...,m. If all u;, A < 1, the opposite inequality in (20)
holds if

X1 + e + xm . X1 m
& o Uy (22)
-1 M1~ 1 Hm — 1
The inequality (22) holds if one of the two followings is fulfilled:
o when u; < Aforeveryi=1,...,m
o when the sequential queue ) < pp < ---<A<u<k+1<---<u, <1isinterrupted as shown and:
-1 -1 -1 - m— A
ad X1j+ﬂ2 X2j+"'+ﬂk Xij < uk+1)C(k+1)j+"'+’u—ij.
-1 2 — 1 =1 M1 — 1 M — 1
Proof. Apply Theorem 3.1 for the potential functions ¢;(x;) = x’; '. The statement follows immediately. O

Generalized Holder inequality is presented in the article as the inequality:

[Z a_;x’i}Jm o (Z ajxf;’;]m 2 [Z aj(xij-- xm»”]/l : (23)

J=1 J=1 J=1

1 1
The suitable auxiliary functions are constants with given exponets as their values: D;(x;) = — and D(x; - - - x;,) = 1
Hi

Proposition 5.2. The inequality (23) holds if A < 0 and y; > O fori=1,...,m. If all yu;, A > 0, then the (23) holds if

The inequality in (23) is opposite when A > 0 and u; < 0 fori=1,...,m. If all u;, A < 0 and

1 1 1
— S J— + “e + —_—,
A M1 Mm
the inequality in (23) is opposite too.
Proof. According the Theorem 4.1, statement of Proposition slides immediately. O
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