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Abstract

In this work, (2+1)-dimensional Bogoyavlenskii-Schiff equation, which cann’t be converted to a complete form of Hirota’s
bilinear operator, is considered. By using modification of extended homoclinic test approach new kink breather soliton
and kink multi-solitons solutions are obtained and exhibited, respectively.
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1. Introduction

As is well known that searching for exact solutions of nonlinear evolution equations arising in mathematical physics
plays an important role in the study of nonlinear physical phenomena. Recently, the extended homoclinic test approach,
a new method for seeking periodic soliton solutions for nonlinear evolution equation, was proposed by Dai and Wang.
By means of the extended homoclinic test approach one can solve some nonlinear partial differential equations in their
bilinear forms.

When an nonlinear partial differential equation has no a complete form of Hirota’s bilinear operator we can not use this
method. Recently, Darvishi and Najafi (2011) presented a modification of the the extended homoclinic test approach
to solve some nonlinear partial differential equations which cann’t be converted to a complete form of Hirota’s bilinear
operator. In this paper, upon using a modification of the the extended homoclinic test approach, we obtain some new kink
breather soliton and kink multi-solitons solutions for (2+1)-D Bogoyavlenskii-Schiff (BS) equation.

We investigate explicit formulas of solution of the following (2+1)-D BS equation:

@Oyt + Pxxxy + 4‘10):‘10)(\) + 2‘Px)((,0)y =0. (1)

This equation was constructed by Bogoyavlenskii and Schiff in different ways. Namely, Bogoyavlenskii used the modified
Lax formalism, whereas Schiff obtained the same equation by the reduction of the self-dual Yang-Mills equation (Schiff,
1992; Song et al., 1998). To solve Eq. (1), we introduce a new dependent variable ¢ by

¢ = 2(Ing)x, 2)

where g = g(x,y, ) is unknown real function. Substituting Eq. (2) into Eq. (1), we can reduce Eq. (1) into the following
equation

z(lng)xxt + 2(lng)xxxxy + 16(lng)xx(lng)xxy + 8(lng)xy(lng)xxx = 0, (3)
which can be integrated once with resect to x to give
(Ing)xt + (Ing)axy + 6(Ing) (Ing)y + 20, (Ing) 1y (Ing)x — (Ing) 1y (Ing) 1) = 0. “4)

Therefore, Eq. (4) can be written as

(D:D: + DiD))g - g + 2879, (Dx(Ing)(Ing)) = 0, &)

92



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 4; 2015

where the Hirota bilinear operator D is defined by (m, n > 0)

DD f(x, 1) - 8(x, 1) = (£ = 32)"(% = )" [f (6, 08, )y o (6)

Eq.(5) is a non-completed form of Hirota’s bilinear operator equation. In this case we propose a new method, i.e. a
modification of extended homoclinic test approach. We suppose

(DD, +D3Dy)g-g=0 ™
a;l(Dx(lng)xy(lng)xx) =0.

2. Kink Breather Soliton Solutions

Now we choose extended homoclinic test funtion
g =e¥ + 01 cos() + 6ref, (8)

where & = L1x + w1y + vit,n = Apx + wy + vot, and A;, w;, vi, 0;(i = 1,2), are some constants to be determined later.
Substituting Eq. (8) into Egs. (7), and equating all the coefficients of different powers of e, e~¢, sin(7), cos(1) and constant
term to zero, we can obtain a set of algebraic equations for A;, y;, v;, 6;(i = 1,2).

8102412V + 01624342 + 6162411 v1 — 3616241 Atz + 3616247 Aapty — 616231 = 0
—3616,A1 opty — 616242V + 61623141 + 610041v1 — 3616241 A3y + 6162512 = 0
1662/1?/11 + 462/11V1 - 6%/121/2 + 461/13/12 =0

361/1]/1%/12 - 51/1‘?/12 + 61/1§b1 - 51#2\/] - 351/1%/12/.11 - 5]/1]1/1 =0

5]/1?,111 - 35]/1%/12/12 - 351/1]/1%,[11 + 61/1]1/1 + 51/1%/12 - 51,1121/2 =0

—4626, 21 + 467625 Aoty — 40262 51 + 4626, ptr = 0

165162/1‘]1/.12 — 16(5152/1?/12/11 + 165152/1%/1%/12 - 166152/11/13111 =0

46%/1%/1%/11 - 45%/1?/’.2/12 - 46%/11/1%/12 + 4(5%/1‘2‘/11 =0.

(€))

Solving the system of Egs. (9) with the aid of Maple, we get the following results:
Case(I):
518

pi= AR v = WGE - A, v = L -3, 6= -3

R (10)

where A, A, by, 61 are some free real constants. Substituting Eq. (10) into Eq. (8) and taking 6, < 0, we have
g1 = —2V=6; sinh(£ + 3 In(=6,)) + 6} cos(), (11)
212
where & = dx + 22y 4+ (343 = ANt = dpx + oy + (A3 = 3N, 6 = —% Substituting Eq. (11) into Eq. (2) yields
the kink periodic soliton solutions for BS equation as follows:

_ 224 V-6, cosh(§+% In(—=62))+226, sin(n)) (12)
Pl = T35, sinh(E+ L In(—62))-01 cos(n)
Case(II):
A =idy vi= 4i/lg, vy = 4/13, (13)

where u,01, 0, are some free real constants, A, u are free constants. Substituting Eq. (13) into Eq. (8), we have
& = ef + 8, cos(n) + 8¢t (14)

where & = idyx + iy + 4i31, 1 = Apx + poy + 4431, If taking A, = iAs, o = iB, in Eq. (14) , then we have

g =2 \/Ecosh(f + % In(6,)) + 6; cosh(n), (15)

where A,, B; are real number, 6, > 0,& = —Axx + b1y + 4Agt, n=Axx+ Byy — 4Agt. Substituting Eq. (15) into Eq. (2)
yields the kink breather soliton solutions of BS equation as follows:

_ 2Ay(=2 V& sinh(€ + } In(62)) + 6 sinh(y))

= 16
v2 25, cosh(¢ + L In(62)) + 6 cosh() (16)
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3. Kink multi-soliton solutions

If we choose extended homoclinic test funtion as
g = e~¥ + 01 cos(n) + &, sinh(y) + d3¢%, (17)

where & = Ajx + iy + vit,n = x + oy + vot,y = Azx + uzy + vat and A, w;,vi, 0;(i = 1,2,3) are some con-
stants to be determined later. Substituting Eq. (18) into Egs. (8), and equating all the coefficients of different pow-
ers of e, e~¢, sin(y), cos(x), sinh(y), cosh(y) and constant term to zero, we can obtain a set of algebraic equations for
ﬂl’,/J[, Vi, (5,(1 = 1, 2, 3)

§163(=34 pz + B + pyva + 38 opty + vipty — 2,111) =

§163(Apz — pova — 343 Aapty + py vy — 3/11/12/11 + ) =

6203(13v3 + gy + Gz + 3,50 + 343 A3p3 + Vlﬂl) =

6203(Bpy + pivs + 3303 + 33431 + /1?#3 +u3vy) = 0

5152(/1‘3#2 — Bz + 38503 + vz — 38340 + ,U3V2) =0

8§102( 33 — 3/12/13 = 3834303 + Bty + p3v3 — fav) =

—52/121/2 + 452 ﬂz + 1663/1?/11 + 463[111/1 + 462/13/12 + 52/131/3 =0

51(/12,111 1/12 —H1V2 —/12V1 3834, + 3/11/12#2) =

51(/1 2+/11#| 2V2—3/1 /12#2 + vy = 34,43 #1)_

52(].131/3 + 3/11)%/11 +uvy + /13/13 + /12/13/13 + /llﬂl) =
6xﬁu1+un3+upq+3ﬁﬂwl+l@3+3hﬁuﬁ—

—4515253(/11/12/13#1 + A Azuz — 5500 + B Aspz — A /12#2 + /11/12111 2551) =
4616253(/11/12/13 + 2/11/12/1%/13 - /12/13/11 + 2}.%/12/13/11 /l /lz/J3 -3 ﬂ.g/dz - 2}.1/1 /13/12 - /ll/l 3M2 + 22 /13/11) =
4810,83(2 5 + B3 = MidapAipta = i syt /13/13#3 + /13/12,112 - wim) =
4616,03(=A1 A3 Aapy + 21%13;13 - Alﬁgpl + B8 — 3 /lz,uz - B4+ L) =

46263(= 2 5y + L s + A3 Ao — Apy) + 46563 (— /12 Gy — /11/13#3 + /13/13/13 + B) =
45152( /13#2 - B5u; + /13/13,u3 + L A3u3) + 46163(— /1 1oy + /12/12#2 + ﬂlﬂz - L) =
46162330 — Az + L) + 452(53(/1 Aspy — /11113 - By + B A5p3) =
45152(2/12/13/12 - /13/13,113 - /12/12/13/13 +A43 /12111 LB — 4 b5 + /12/@#2) =0
45152(/1 /13[12 + /12/13/.11 2/11/12/1#13 + 2/11/1 /13,112 + A1 A + 33,112 + /13/12/.13 - 2/12/12/13/11 /ll/lz,ug = /l /13/.11) =0
45162@2 L - B dopty = 28501 + A3 3 + 2 5 ap3 + /h/b/lgﬂz ) =

4662(1 25 /13,111 + /12/1 33+ /12/12/13H2 — L3y — 53 + /11/13,111 2/12/12#3) =

ST (N Bz + A7 A5 — /l’/lzuz + 1) + 65 (A A5 + Ay s — sz — ) =

(18)

Solving the system of Eqgs. (18) with the aid of Maple, we get the following results:
Case(III):
A=Az, =iz, p =0, vi=—44}, v, = —4id}, vs=—44, (19)

where A3, i3, 81, 92, 03 are some free real constants, y, is a free constants. Substituting Eq. (19) into Eq. (17) and taking
Mo = iBz,(53 > 0, we have

g3 =2 \/_cosh(cf + = 1n(63)) + 01 cosh(n) + &, sinh(y), (20)

where B, is a real number, & = A3x — 4431, = A3x + Bgy — 4431,y = A3x + 3y — 4A31. Substituting Eq. (20) into Eq. (2)
yields the kink three-solitary solutions of BS equation as follows:

 23(2 V35 sinh(&+ 1 1n(63))+; sinh()—35 cosh(z))

3 T T35 cosh(é+ L In(63))+01 cosh(y)+6; sinh(y) 2D
Case(IV):
/11 = i/lz, /13 = i/lz, V1 = l4/l;, Vo = —14/12 V3 = 14-/13 (22)

where u1, u3, 01, 92, 03 are some free real constants, A, , are some free constants. Substituting Eq. (22) into Eq. (17) and
taking Ay = iAy, up = iB;,03 > 0, we have

1
g4 = 2+/55 cosh(€ + 5 In(63)) + 6 cosh(y) + 8 sinh(y), (23)
where A,, B are real number, & = —Ayx + 1y + 4A§t, n=Ax+ Byy-— 4Agt, Yy =—Apx+uszy+ 4Agt. Substituting Eq. (23)
into Eq. (2) yields the cross-kink three-solitary solutions of BS equation as follows:

_ 2A-(2 \/Esinh(§+% In(83))—0 sinh(7)+8, cosh(y))
¥4 = 255 cosh(#+ 1 1n(53))+81 cosh()+3, sinh(y)

(24)
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4. Conclusion

By means of modification of extended homoclinic test approach, we discuss the (2+1)-D Bogoyavlenskii-Schiff equation
and find some new kink breather soliton and kink multi-solitons solutions. A modification of extended homoclinic test
approach may provide us with a straightforward and effective mathematical tool for seeking soliton solutions of higher
dimensional nonlinear evolution equations which cann’t be converted to a complete form of Hirota’s bilinear operator, so
that it can be applied to other nonlinear partial differential equations.
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Fig(a). The figure of ¢ as ; = 1,0, = 1,up = 5, Fig(b). The figure of ¢, as A> = .41 = 2, B, = 2,
or=1,r=1. 01=1,6,=3,t=1.
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Fig(c).The figure of @3 as A3 = 3, B, = 1, Fig(d).The figure of ¢4 as A, = 3, B, = 1,1y = 1,
U3 = %,61 =1,00=1,63=3,t=1. M3 = 02,6,=1,60b=1,63=1,t=1.
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