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Abstract 

This paper focuses on the robust classification procedures in two group discriminant analysis with multivariate binary 

variables. A normal distribution based data set is generated using the R-software statistical analysis system 2.15.3 using 

Barlett‟s approximation to chi-square, the data set was found to be homogenous and was subjected to five linear 

classifiers namely: maximum likelihood discriminant function, fisher‟s linear discriminant function, likelihood ratio 

function, full multinomial function and nearest neighbour function rule. To judge the performance of these procedures, 

the apparent error rates for each procedure are obtained for different sample sizes. The results obtained ranked the 

procedures as follows: fisher‟s linear discriminant function, maximum likelihood, full multinomial, likelihood function 

and nearest neigbour function. 

Keywords: Apparent error rates, fisher‟s linear discriminant, full-multinomial, likelihood function, maximum 

likelihood and nearest neigbour function 

1. Introduction  

Over the years, a considerable body of research has accumulated on classification analysis, with its usefulness 

demonstrated in various fields, including engineering, medical and social sciences, economics, marketing, finance and 

management (Anderson 1972, McLachlan 1992, Joachimsthaler and Stam 1988, 1990, Ragsdale and Stam 1992, 

Huberty 1994, Onyeagu, 2003, Okonkwo 2011, Ekezie 2012, Egbo, Onyeagu and Ekezie 2014). Most of the research in 

classification analysis is based on statistical methods (Dillon and Goldstein 1978, Hand 1981, McLachlan 1992, 

Onyeagu 2003). However, the classification performance of existing parametric and non parametric statistical methods 

has not been fully satisfactory. For instance, it is well documented that parametric statistical methods such as Fisher‟s 

linear discriminant function (LDF) (1936) and Smith‟s quadratic discriminant function (QDF), Smith (1947) may yield 

poor classification results if the assumption of multivariate normally distributed attributes is violated to a significant 

extent (McLachlan 1992, Huberty 1994). 

A number of the statistical classification methods are based on distance measures, some involve probability density 

functions and variance covariance and have a Bayes decision theoretic probabilistic interpretation, while others have a 

geometric interpretation only. An example of a distance-based measure is the Euclidean distance measure, which 

obviously has a geometric interpretation. If the attribute variables are independent, the Euclidean distance measure is 

equivalent to the Mahalanobis distance, with the usual probabilistic interpretation. However, if the variables are 

correlated the Euclidean measure does not have a probabilistic justification, as it does not involve any function of the 

probability density functions. 

In this paper, we focus on two-group classification problems with binary attribute variables. There are numerous 

real-life binary variable classification problems; e.g. in the field of medical disease diagnosis, where the medical 

conditions of patients is evaluated on the basis of the presence or absence of relevant symptoms. It is obvious that the 

multivariate distribution of the binary attributes is non-normal, and it appears promising to analyze such problems using 

some statistical discriminant approaches. The statistical classification methods either minimizes some function of the 

undesirable distances of the training sample observations from the separating surface or minimizes the number of 

misclassified observations directly.  

Estimation of error rates has received considerable attention in the literature. The task of classification is to classify 

unknown objects into predefined classes based on their observed attributes using a classification model learned from a 
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set of training data. Many applications such as characters recognition, decision-making and disease diagnosis, can be 

viewed as extensions of the classification problem (Hen and Kamber 2001). A classification instrument can be modeled 

using different structures such as decision graphs, decision trees, neural networks and rules. Reducing the processing 

time and increasing the classification rate are the two main issues in the classification problem. We consider a classical 

problem of discriminant analysis: an individual is to be allocated to one k distinct classes w1,…wc, whose members are 

described by an r-component vector of binary variables X= (x1,x2…xr). These binary variables can be viewed 

equivalently as a single multinomial variable having S = 2
r
 states. The problem of classification is that of assigning 

item(s) into one of k, k ≥2 known populations assuming that the items actually belong to one of the populations. 

Suppose only two populations are admitted with infinite number of individual objects. Let there be r characteristics of 

interest with corresponding measurement variables X1, X2…Xr, r ≥1. Let the response vector of individual objects in 

1  be X1 = (X11, X12…X1r)
1
 and in 2  be X2 = (X21, X22…X2r)

1
. Suppose we find an object 0 with measurement 

vector X0 = (X01, X02…X0r) outside 1  and 2 . The problem is how to classify 0 into 1  and 2  in an optimum 

fashion. The measurement vector X can be discrete or continuous. It can also be a mixture of discrete and continuous 

variables. In this study, our interest is about X whose arguments are discrete. The problem is to classify 0 with 

measurement vector X0 into 1  and 2 . In this inferential setting, the researcher can commit one of the following 

errors. An object from 1  may be misclassified into 2 . Also an object from 2  may be misclassified into 1 . If 

misclassification occurs, a loss is incurred. Let c(i/j) be the cost of misclassifying an object from j  into i . The 

objective of the study is to find the „Best‟ classification rule. “Best” here means the rule that minimizes the expected 

cost of misclassification (ECM). Such a rule is referred to as the optimal classification rule (OCR) in this study we want 

to find the OCR where X is discrete and to be more precise, Bernoulli. Whereas classification 

rules with optimal properties for discriminant problems with multivariate normally distributed attribute variables are 

well known (Wald 1944, 1949; Smith, 1947; Adebanji, Adeyemi and Iyaniwura, 2008; Oludare, 2011), alternative rules 

be more appropriate if some of the attributes are skewed. Most of the studies that compared non-normal classification 

methods with normality-based methods for various different data conditions have assumed equal misclassification costs 

across groups. Hence, it is not clear to what extent the conclusions in these studies can be generalized to typical 

problems with distributions that are skewed with unequal misclassification costs across groups. The purpose of the 

current study is to establish guidelines for choosing an appropriate classification method if the problem at hand is 

characterized by Bernoulli multivariate data. To achieve this objective, several Monte Carlo simulation experiments are 

conducted to compare the performance of some traditional classification methods designed specifically to handle 

problems with Bernoulli multivariate data. This study is limited to the two-group classification problem. 

2. Classification Procedures 

2.1 Maximum Likelihood Rule (ML, Rule) 

The maximum likelihood discriminant rule for allocating an observation x to one of the population n ...1  is to allocate 

x to the population which gives the largest likelihood to x. that is the maximum likelihood rule says one should allocate x 

to 
j  when 

)(max xLL ii    Anderson (1984) 

Theorem: if 
i  is the ),( ipN   population, gi ...1  and 0 , then the maximum likelihood discriminant rule 

allocate x to 
j  where },...1{ nj  is that value of i  which minimized the Mahalanobis distance 

)()( 11    xx  where 2g  the rule allocate x to 1  if  0)(1   x  and 0)}({ 2

_

1

_

2
11  xxx , 

where )( 21

1     and )( 21    and to 2  or otherwise. 

2.2 The Fisher’s Linear Discriminant Function (FLDF rule) 

The linear discriminant function for discrete variables is given by 

 )()()()(
12122

1
12 kk

kj

jjk

kj

jj
kj

ppsppxsppxL


                   (2.2.1) 

where 
kjs are the elements of the inverse of the pooled sample covariance matrix, 

j
p

1



 and 
j

p
2



 are the elements of the 

sample means in 1  and 2  respectively. The classification rule obtained using this estimation is: classify an item with 

response pattern X into v if 
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and to 2  or otherwise. 

2.3 The Likelihood Function Rule (LF rule) 

Consider the generalized ratio test for the hypothesis H0: X, X11...X1n ~ f1(x) and X21... X2n~f2(x) against H1:   X11...X1n1 

~ f1(x) and X21...X 22n  ~ f2(x). As was proposed by Anderson (1982), Pires & Bronco (2004) and Onyeagu et al (2013) 

found that the likelihood ratio criterion also handles the problem of zero frequency. For multinomial model, they proposed 

a test statistic that is a function of X and is given by:   
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This rule fails to take account of several factors that may be important in practice. These factors are the differential prior- 

probabilities of observing individuals from the two populations and differential cost incurred by misclassification and 

a-prior probabilities and if n1(x) =0 and n2(x) =0, the classification rule becomes: Classify item with response pattern into 

1 if L(x) >1 and into 2  L(x) <1.  For n1 =n2, this rule falls back to the Full Multinomial Rule. The LF Rule also solves 

the zero frequency problem. A new observation X with n1(x) =0 will be classified in 1 if and only if 

Cxn
xn
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1
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       (2.3.2) 

2.4 Full Multinomial Function Rule (FMF rule) 

Suppose we have a d-dimensional random vector ),...( 1

1

dxxx  where each djx j ,...1,   assumes one of the two 

distinct values: 0 or 1. The sample space then has a multinomial distribution consisting of the 2
d
 possible states. Given 

two disjoint populations, 1  and 2  with priori probabilities 
1p  and

2p , the density is  

)()()( 2211 xfpxfpxf           (2.4.1) 

The two group problem attempts to find an optimal classification rule that assigns a new observation x  to 1  if   

1221 /)(/)( ppxfxf           (2.4.2) 

When x  has only two states, it will be a binomial random variable with )(xni
 observation from 

i  and expected 

value .2,1),( ixfnp ii
 Estimates for prior probabilities can be obtained by 

n

n
p i

i




, where 
21 nnn   represents 

the total number of sample observations. The full multinomial model estimates the class-conditional densities by  

n

xn
xf i

i

)(
)(  , .2,1i         (2.4.3) 

where )(xni
 is the number of individuals in a sample of size 

in  from the population having response pattern X . The 

classification rule is: classify an item with response pattern X into 
i  if 
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and to 
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and with probability   
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The full multinomial rule is simple to apply and the computation of apparent error does not require rigorous 

computational formula. However, Pires and Bronco (2004) noted as pointed out by Dillon and Goldstein (1978) that one 

of the undesirable properties of the full multinomial Rule is the way it treats zero frequencies. If 0)(1 xn  and 

0)(2 xn , a new observation with vector X will be allocated to 
2 , irrespective of the sample sizes 

1n  and
2n . 

2.5 Nearest Neighbour Function Rule (NNF rule) 

Hills (1967) introduced perhaps the simplest nearest neighbour estimator for binary data, which classifies a particular 

response vector x based on the number of cells in response vectors y that differ from x. Specifically, let k be the number of 

cells in which x and y differ. Then define })()/({ 1 kyxyxyR jjjj   to be a rule which classifies x if each of its cells 

differs by no more than k components. That is, classify x into
1  if:  
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1 )()(             (2.5.1) 

and into 
2  otherwise.  

For example, with d = 3 and x = (111), the neighbours of order k = 1 are R111 = 110, 101, 011. Note that k = 0 reduces to 

the full multinomial model. In practice, one simply needs to construct the table of frequencies for all possible pattern of x 

and use a counting procedure over the set Rj to form the sample-based likelihood ratio for classification purpose. If the 

cell count for the jth cell is nij, then the nearest neighbour procedure assigns the observation to 
1  if             
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where A is the set of neighbour of state j. Hills comments that the estimate of the likelihood ratio has less sampling 

variability than the simple method using cell frequencies. 

2.6 Testing Adequacy of Discriminant Coefficient 

Consider the discriminant problems between two multinomial populations with mean 
21,  and common matrix  . 

The coefficient of the MLD discriminant function xa1  are given by  1  where 21   . In practice of course 

the parameters are estimated by 2

_

1

_

, xx  and  2211

1 )1()1( snsnmS   , where 221  nnm . 

Letting 2

_

1

_

xxd  , the coefficients of sample MLDF given by dMWa 1  

A test of hypothesis H0: 01   using the sample Mahalanobis distances dWMdDp

112   and 111

1

1

2

1 dWMdD   has been 

proposed by Rao (1965) this test statistics uses the statistic: 
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where 
n

nn
c 212  . Under the null hypothesis (2.6.1) has 1,  pmF kp

 distribution and we reject H0 for large value of this 

statistics. 

2.7 Evaluation of Classification Functions 

One important way of judging the performance of any classification procedure is to calculate the error rates or 

misclassification probabilities (Richard and Dean, 1988). When the forms of parent populations are known completely, 

misclassification probabilities can be calculated with relative ease. Because parent populations are rarely known, we shall 

concentrate on the error rates associated with the sample classification functions. Once this classification function is 

constructed a measure of its performance in future sample is of interest. The total probability of misclassification (TPM) is 

given as: 

 
1 2

2211
R R

dxfPdxfPTPM  
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The smallest value of this quantity by a judicious choice of 1R  and 2R  is called the optimum error rate (OER). 

OER= Minimum TPM 

2.8 Probability of Misclassification 

In constructing a procedure of classification, it is desired to minimize on the average the bad effects of misclassification 

(Onyeagu 2003, Richard and Dean, 1988, Oludare 2011). Suppose we have an item with response pattern x from either 

1 or 2 . We think of an item as a point in a r-dimensional space. We partition the space R into two regions 1R  and 2R  

which are mutually exclusive. If the item falls in 
1R , we classify it as coming from 1  and if it falls in 2R  we classify it 

as coming from 2 . In following a given classification procedure, the researcher can make two kinds of errors in 

classification. If the item is actually from 1 , the researcher can classify it as coming from 2 . Also the researcher can 

classify an item from 2  as coming from 1 . We need to know the relative undesirability of these two kinds of errors in 

classification. Let the priori probability that an observation comes from j  be 1q , and from 2  be 2q . Let the 

probability mass function of 1  be )(1 xf  and that of 2  be )(2 xf . Let the regions of classifying into 1  be 1R  and 

into 2  be 2R . Then the probability of correctly classifying an observation that is actually from 1  into 1  is 


1

)()1/1( 1

R

xfp  

and the probability of misclassifying such an observation into 
2  is  


2

)()1/2( 1

R

xfp          (2.8.1) 

Similarly, the probability of correctly classifying an observation from 
2  into 

2  is 
2

)()2/2( 2

R

xfp  and the 

probability of misclassifying an item from 
1  into 

2  is  

 
1

)()2/1( 2

R

xfp          (2.8.2) 

The total probability of misclassification using the rule is 

 
12

)()()( 2211

RR

xfqxfqRTPMC        (2.8.3) 

In order to determine the performance of a classification rule R in the classification of future items, we compute the total 

probability of misclassification known as the error rate. Lachenbruch (1975) defined the following types of error rates. 

(i). Error rate for the optimum classification rule, Ropt. When the parameters of the distributions are known, the error rate 

is  
12

)()()( 2211

RR

xfqxfqRTPMC  which is optimum for this distribution. 

(ii) Actual error rate: The error rate for the classification rule as it will perform in future samples. 

(iii) Expected actual error rate: The expected error rates for classification rules based on samples of size 1n  from 1  

and 
2n  from 2 . 

(iv) The plug-in estimate of error rate obtained by using the estimated parameters for 1  and 2 . 

(v) The apparent error rate: This is defined as the fraction of items in the initial sample which is misclassified by the 

classification rule. 

 
1  

2   

1  
11n  

12n  1n  

2  
21n  

22n  
n

n11  

The table above is called the confusion matrix and the apparent error rate is given by 

  
n

nn
mcP 2112)(






           (2.8.4) 
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Hills (1967) called the second error rate the actual error rate and the third the expected actual error rate. Hills showed that 

the actual error rate is greater than the optimum error rate and it in turn, is greater than the expectation of the plug-in 

estimate of the error rate. Martin and Bradley (1972) proved a similar inequality. An algebraic expression for the exact 

bias of the apparent error rate of the sample multinomial discriminant rule was obtained by Goldstein and Wolf (1977), 

who tabulated it under various combinations of the sample sizes n1 and n2, the number of multinomial cells and the cell 

probabilities. Their results demonstrated that the bound described above is generally loose.  

3. Simulation Experiments and Results 

The five classification procedures are evaluated at each of the 118 configurations of n, r and d. The 118 configurations of 

n, r and d are all possible combinations of n = 40, 60, 80, 100, 200, 300, 400, 600, 700, 800, 900, 1000, r = 3, 4, 5 and d = 

0.1, 0.2, 0.3, and 0.4. A simulation experiment which generates the data and evaluates the procedures is now described. 

(i)  A training data set of size n is generated via R-program where 21
nn   observations are sampled from 1  which 

has multivariate Bernoulli distribution with input parameter 1p  and 22
nn   observations sampled from 1 , 

which is multivariate Bernoulli with input parameter rjp ...1,2  . These samples are used to construct the rule for 

each procedure and estimate the probability of misclassification for each procedure is obtained by the plug-in rule or 

the confusion matrix in the sense of the full multinomial. 

(ii)  The likelihood ratios are used to define classification rules. The plug-in estimates of error rates are determined for 

each of the classification rules. 

(iii)  Step (i) and (ii) are repeated 1000 times and the mean plug-in error and variances for the 1000 trials are recorded. The 

method of estimation used here is called the resubstitution method. 

The following table contains a display of one of the results obtained 

Table 3.1(a). Effect of input parameters P1 and P2 on classification rules at various values of sample size and 

Replications (mean apparent error rates) 

   P1 = (.3, .3, .3, .3)    P2 = (.4, .4, .4, .4) 

Sample sizes Full M. LIK NN LD ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.319000 

0.343100 

0.366815 

0.378457 

0.387760 

0.397721 

0.400930 

0.406289 

0.407172 

0.408018 

0.408085 

0.409524 

0.321075 

0.343550 

0.367215 

0.378846 

0.388057 

0.397241 

0.401657 

0.405407 

0.407675 

0.408408 

0.408826 

0.409221 

0.489112 

0.478416 

0.461320 

0.454800 

0.446400 

0.438453 

0.435726 

0.432000 

0.429813 

0.429216 

0.428669 

0.428876 

0.381037 

0.391000 

0.398890 

0.404271 

0.407427 

0.409610 

0.411002 

0.411500 

0.411761 

0.411552 

0.411161 

0.411682 

0.374825 

0.387550 

0.397110 

0.402992 

0.406502 

0.409196 

0.410721 

0.411304 

0.411586 

0.411533 

0.411172 

0.411710 

p(mc) = 0.4117 

Table 3.1(b). Effect of input parameters P1 and P2 on classification rules at various values of sample size and 

Replications (actual error rates) 

P1 = (.3, .3, .3, .3)    P2 = (.4, .4, .4, .4)  )()( mcpmcp


  

Sample size Full  M. LIK NN LD ML 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.050941 

0.045663 

0.034565 

0.032885 

0.027185 

0.024630 

0.0203367 

0.017737 

0.016275 

0.015970 

0.014064 

0.013622 

0.050731 

0.045781 

0.035548 

0.032247 

0.027286 

0.023152 

0.020843 

0.017672 

0.017144 

0.015479 

0.014624 

0.014593 

0.080872 

0.067813 

0.055462 

0.047209 

0.038667 

0.029343 

0.023498 

0.018107 

0.016404 

0.015434 

0.014416 

0.014414 

0.044290 

0.038558 

0.030836 

0.027729 

0.022319 

0.018785 

0.0170960 

0.013808 

0.012829 

0.012267 

0.011348 

0.010406 

0.045492 

0.038499 

0.030861 

0.027813 

0.021727 

0.018688 

0.017054 

0.013752 

0.012844 

0.012249 

0.011378 

0.010447 
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Tables 3.1(a) and (b) mean apparent error rates increases with the sample size in all the classification rules except in the 

Nearest neighbour rule where the mean apparent error rates decreases with the increase in sample sizes. The actual error 

rates decreases with the increase in the sample sizes. In terms of performance, Fisher‟s linear discriminant function 

ranked first followed by maximum likelihood function rule, full multinomial function, Nearest Neighbour Rule and 

likelihood ratio function came last. 

Classification Rule     Performance/Rank 

Fisher linear discriminant function rule   1  

Maximum likelihood       2 

Full Multinomial function rule     3 

Nearest Neighbour function rule    4 

Likelihood function rule      5 

4. Conclusion/Recommendation 

We considered eight population pairs for the case of four variables. On the average, fisher‟s linear discriminant function 

rule was the best in terms of estimating the probability of misclassification because it gives values closer to the actual 

probability of misclassification. The next is the maximum likelihood function rule which was better than the full 

multinomial function rule, the fourth is the Nearest Neighbour rule while the likelihood ratio occupied the last position 

and is the worst. This study, in addition to its mean structures characterized by marginal probabilities 1P  and 2P , we 

considered structures determined by the difference 4.0)( 12  ppd . It was observed that as d increases from 0.1 to 0.4 

the accuracy of the procedures also increased. This shows that accuracy increases with increasing d. It is important to 

note that Fisher‟s linear discriminant function (FLDF), maximum likelihood function Rule and Full multinomial 

function Rule performed also very well in situation where 2.0d  in the three variables. It was also observed that the 

more the information or the number of variables, the lower the probability of misclassification. This implies that 

accuracy increases with increasing number of variables. Fisher‟s linear discriminant function outperformed other 

classification rules. From the analysis so far carried out, the procedures can be ranked as follows: Fisher‟s linear 

discriminant function rule, maximum likelihood function rule, Full multinomial function rule, Nearest Neighbour rule 

and likelihood function rule. Secondly, we conclude that it is better to increase the number of variables because 

accuracy increases with increasing number of variables. We recommended that the work be extended to the area of 

multiple group discrimination and classification.    
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