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Abstract

In the iterative solution of n linear algebraic equations Bx = b by using the steepest descent method, i.e., xk+1 = xk −
αkBTrk, it is known that the steplength αk := rT

k Ark/∥Ark∥2 causes a slow convergence, where r = Bx − b is the residual
vector and A = BBT. In this paper we study the residual symmetry of the residual dynamics for a scaled residual vector
y ∈ Sn−1

∥r0∥, which as expressed in the augmented space is a nonlinear Lorentzian dynamical system, and is endowed with a
cone structure in the Minkowski space with the Lorentz group S Oo(n, 1) being the internal symmetry group. Consequently,
we can modify the steplength to αk = yT

k Ayk/∥Ayk∥2 with yk being computed by a Lorentz group algorithm (LGA) based
on S Oo(n, 1), which can significantly improve the convergence speed and enhance the stability. Several linear inverse
problems are used to assess the numerical performance of the LGA.

Keywords: ill-posed linear system, residual dynamics, future cone, internal symmetry, Jordan dynamics, linear inverse
problems, the Lorentz group algorithm

1. Introduction

In this paper we study the internal symmetry of the residual dynamics, abbreviated as residual symmetry, which is defined
in terms of the residual vector:

r(x) = Bx − b, (1)

for a system of linear algebraic equations (LAEs):
Bx = b, (2)

where x ∈ Rn is an unknown vector to be determined from a given coefficient matrix B ∈ Rn×n and the input vector b ∈ Rn.
Equation (2) is in general an ill-posed system if it is derived from the numerical solution of linear inverse problems.

The relaxed steepest descent method (RSDM) used to solve Equation (2) is given by Liu (2011a, 2012a):
(i) Give an initial guess of x0, and then R0 = Cx0 − b1.
(ii) For k = 0, 1, 2 . . ., we repeat the following computations:

xk+1 = xk − (1 − γ) ∥Rk∥2

RT
k CRk

Rk, (3)

Rk+1 = Cxk+1 − b1. (4)

If ∥Rk+1∥ < ε for a prescribed convergence criterion ε then stop; otherwise, go to step (ii). In the above, C = BTB,
b1 = BTb, Rk = BTrk = BTr(xk), 0 ≤ γ < 1 is a relaxed parameter, and

αk :=
∥Rk∥2

RT
k CRk

=
rT

k Ark

∥Ark∥2
(5)

is the steplength for the steepest descent method (SDM), where A = BBT.

To solve the ill-posed linear problems, there are several methods developed after the pioneering work of Tikhonov & Ar-
senin (1977). To account of the sensitivity to noise it is often used a regularization method to solve the ill-posed problem
[Kunisch & Jou (1998); Wang & Xiao (2001); Xie & Jou (2002); Resmerita (2005)], where a suitable regularization pa-
rameter is used to depress the bias in the computed solution by a better balance of approximation error and propagated data
error. Liu (2012b) has developed an optimally scaled vector regularization method, the dynamic Tikhonov regularization
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method [Liu (2013a)], a two-side conditioning method [Liu (2013b)], as well as the Krylov subspace double-optimization
method [Liu (2013c); Liu (2014)] to solve the ill-posed linear problems.

There are many methods that converge significantly faster than the SDM, unlike that of the conjugate gradient method
(CGM), they insist their search directions to be the gradient vector at each iteration [Barzilai & Borwein (1988); Friedlan-
der et al. (1999); Raydan & Svaiter (2002); Dai & Yuan (2003); Dai et al. (2006)]. The SDM performs poorly, yielding
iteration counts that grow linearly with Cond(C) [Akaike (1959); Forsythe (1968); Nocedal et al. (2002)]. Several modifi-
cations to the SDM have been made, and they have stimulated a new interest in the SDM because it is recognized that the
gradient vector itself is not a bad choice of the solution direction, but rather that the steplength in Equation (5) originally
used by the SDM is to blame for the slow convergence behavior.

An interesting problem is that there exists a certain symmetry of the iterative dynamics of the LAEs when we solve them
by the iterative method. What is the underlying space of the residual dynamics and what sort Lie-group is acting on that
space. In this paper we try to answer these problems and propose a theoretical foundation to modify the steplength in
Equation (5) from the Lorentz-group symmetry which is acting on a future cone in the Minkowski space.

The remaining part of this paper is arranged as follows. In Section 2 we start from a future cone in the Minkowski space
to derive a system of nonlinear ordinary differential equations (ODEs) for the numerical solution of Equation (2). Then,
the residual dynamics on the future cone is constructed in Section 3, resulting to a Jordan dynamics and a nonlinear
Lorentzian dynamical system, of which the residual symmetry is developed. Accordingly, the Lorentz-group algorithm
(LGA) used to solve Equation (2) is developed in Section 4. The numerical examples of linear inverse problems are given
in Section 5 to display some advantages of the LGA. Finally, the conclusions are drawn in Section 6.

2. A Future Cone in the Minkowski Space

2.1 Nonlinear ODEs for x

For Equation (1) we can introduce an invariant manifold:

h(x, t) =
1
2

Q(t)∥r(x)∥2 − 1
2
∥r0∥2 = 0, (6)

where we let x be a function of a time-like variable t, with the initial values of x(0) = x0 and r0 = r(x0) being given, and
Q(t) > 0, with Q(0) = 1, is a monotonically increasing function of t. In terms of

X =
 r
∥r0∥

1√
Q(t)

 , (7)

Equation (6) represents a positive cone:

XTgX = 0 (8)

in the Minkowski space Mn+1, which is endowed with an indefinite Minkowski metric tensor:

g =
[

In 0n×1
01×n −1

]
, (9)

where In is the n × n identity matrix. Because the last component 1/
√

Q(t) of X is positive, the cone in Equation (8) is a
future cone [Liu (2001)] as shown in Fig. 1.
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Figure 1. The construction of a future cone in the Minkowski space and the Lorentzian residual dynamics for solving the
ill-posed linear system signifies a conceptual breakthrough.

The cone structure about the residual vector was first pointed out by Liu (2012c). However, the residual dynamics is not
yet clearly developed in that paper. In Section 3 we will derive a nonlinear Lorentzian dynamical system for X.

When Q > 0, the manifold defined by Equation (6) is continuous and differentiable, and by the consistency condition we
have

1
2

Q̇(t)∥r(x)∥2 + Q(t)R · ẋ = 0, (10)

where
R := BTr (11)

is the steepest descent vector. Equation (10) is obtained by taking the differential of Equation (6) with respect to t and
considering x = x(t) and h(x, t) = 0 for all t.

We suppose that the evolution of x is driving by R as like the SDM:

ẋ = λR, (12)

inserting which into Equation (10) we can derive a nonlinear ODEs system for x:

ẋ = −q(t)
∥r∥2
rTAr

BTr, (13)

where

A := BBT, (14)

q(t) :=
Q̇(t)

2Q(t)
> 0. (15)

Hence, if Q(t) can be guaranteed to be a monotonically increasing function of t, we have an absolutely convergent algo-
rithm to solve Equation (2):

∥r(x)∥2 = ∥r0∥2
Q(t)

=:
C

Q(t)
, C := ∥r0∥2 > 0, (16)

wherein we can observe that the path of X gradually moves down to the vertex point along the cone defined by Equation (8)
as schematically shown in Fig. 1. However, it is still a great challenge by developing a suitable numerical integrator to
solve the nonlinear ODEs in Equation (13), such that the orbit of x can really retain on the future cone in the Minkowski
space. This important issue is addressed in the next two sections.

2.2 Discretizing and Keeping x on the Manifold
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From Equation (13) we can observe that it is utmost important to study the residual dynamics of r in order to have a better
understanding of the solution behavior of x. In order to keep x on the manifold (16) we can consider the evolution of
r(t) := r(x(t)) along the path x(t), t ≥ 0 generated from Equation (13) by

ṙ = Bẋ = −q(t)
∥r∥2
rTAr

Ar. (17)

Now we discretize both Equations (13) and (17) into discrete dynamics by applying the forward Euler scheme:

x(t + ∆t) = x(t) − β ∥r∥
2

rTAr
BTr, (18)

r(t + ∆t) = r(t) − β ∥r∥
2

rTAr
Ar, (19)

where
β = q(t)∆t (20)

is a time-varying steplength.

In order to keep x on the invariant manifold (16), we can take the square-norm of both sides of Equation (19) and use
Equation (16) to obtain

C
Q(t + ∆t)

=
C

Q(t)
− 2β

C
Q(t)

+ β2 C
Q(t)

∥r∥2
(rTAr)2 ∥Ar∥2. (21)

Thus, by dividing both sides by C/Q(t) and reminding Q(t) > 0 the following scalar equation can be derived:

a0β2 − 2β + 1 − Q(t)
Q(t + ∆t)

= 0, (22)

where

a0 :=
∥r∥2∥Ar∥2
(rTAr)2 ≥ 1. (23)

Upon letting
Q(t)

Q(t + ∆t)
= 1 − 1 − γ2

a0 , (24)

the solution of β in Equation (22) is found to be

β =
1 − γ

a0 , (25)

where 0 ≤ γ < 1 is a relaxed parameter, and 0 < β ≤ 1.

3. The Residual Dynamics on the Future Cone

In this section we are going to disclose some essential structures of the residual dynamics in terms of a scaled residual
vector.

3.1 A Perpendicular Operator

Let
y = r

√
Q(t) (26)

be a scaled residual vector, and from Equation (16) we know that y ∈ Sn−1
∥r0∥ with a radius ∥r0∥, i.e.,

∥y(t)∥ = ∥r0∥. (27)

This equation is an invariant condition of the residual dynamical system. At the same time, by using Equation (26),
Equations (18) and (23) become

x(t + ∆t) = x(t) − β ∥y∥
2

yTAy
BTr, (28)

a0 :=
∥y∥2∥Ay∥2
(yTAy)2 , (29)

where we do not modify the steepest descent vector, keeping it to be R = BTr, but we modify ∥r∥2/rTAr to ∥y∥2/yTAy.

77



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 4; 2015

Now we derive the governing ODEs for y. From Equations (17) and (26) we can derive

ẏ = q(t)
[
In −

∥y∥2
yTAy

A
]

y, (30)

which is the first form of the residual dynamics. If we define the following operator:

D = In −
∥y∥2
yTAy

A, (31)

we have
ẏ = q(t)Dy, (32)

where D satisfies the following properties:
DT = D, yTDy = 0, (33)

due to AT = A and

yT
[
In −

∥y∥2
yTAy

A
]

y = 0.

Indeed, D is a symmetric perpendicular operator, because it maps y to a new vector Dy which is perpendicular to y itself
in view of the second equation in Equation (33).

3.2 The Jordan Dynamics

Here we give a new aspect of the residual dynamics (30) derived for Equation (2) from the Jordan structure [Iordanescu
(2007)]. There exist three kinds of Jordan structures: algebras, triple systems, and pairs. We will use the Jordan algebra as
developed by Liu (2000) which with the use of triplet vectors was developed for a general purpose of dynamical system,
including a conservative force and a dissipative force on the right-hand side. Since the creation of Jordan algebras by
Pasqual Jordan, an improvement of the mathematical foundation of quantum mechanics was made. In the meantime,
the Jordan structures have been intensively studied by many mathematicians, and a lot of important results have been
obtained. The study of Jordan structures and their applications is at the present time a wide-spreading and interesting field
of mathematical researches [Iordanescu (2009)].

Liu (2000) has derived a system of ODEs based on the Jordan algebra:

ẋ = [w, z,u] = w · zu − u · zw. (34)

The triplet vectors w, z and u are functions of x and t.

In terms of the Jordan dynamics in Equation (34) we can rewrite Equation (30) as

ẏ = q(t)
[

Ay
y · Ay

, y, y
]
, (35)

which is the second form of the residual dynamics.

3.3 The Lorentz Group S Oo(n, 1)

Obviously, by letting

q̇(t) = −q(t)Ay
y · Ay

, (36)

Equation (35) can be rearranged to
ẏ + (q̇ · y)y = ∥y∥2q̇. (37)

By using Equation (27) we can further write

d
dt

(
y
∥r0∥

)
+ (q̇ · y)

y
∥r0∥

= ∥r0∥q̇. (38)

Defining the integrating factor Y0 by

Y0 := exp
[∫ t

0
[q̇(ξ) · y(ξ)]dξ

]
, (39)
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and from Equation (38) we have
d
dt

(
Y0 y
∥r0∥

)
= ∥r0∥Y0q̇. (40)

On the other hand, by taking the time differential of Equation (39) we have

Ẏ0 = Y0q̇ · y. (41)

Equations (40) and (41) can be written together into a matrix form:

Ẏ = CY, (42)

where

Y =
[

Ys

Y0

]
:=

 Y0 y
∥r0∥

Y0

 (43)

is an augmented vector, and the following system coefficient matrix:

C :=
[

0n Cs
0

(Cs
0)T 0

]
=

[
0n ∥r0∥q̇
∥r0∥q̇T 0

]
(44)

belongs to a Lie algebra of the proper orthochronous Lorentz-group S Oo(n, 1), satisfying

CTg + gC = 0, (45)

with g defined by Equation (9). In this sense, Equation (42) is a nonlinear Lorentzian dynamical system [Liu (2002)],
which is the third form of the residual dynamics.

3.4 The Cone Condition

Now we prove that

Y0 =
1
√

Q(t)
, Y = X, (46)

where X is defined by Equation (7).

From Equations (39), (36) and (15) it follows that

Y0 = exp
[∫ t

0
−q(ξ)dξ

]
= exp

[∫ t

0

−Q̇(ξ)
2Q(ξ)

dξ
]
=

1
√

Q(t)
, (47)

where we have used Q(0) = 1. Then inserting it into Equation (43) and by Equations (26) and (7) we can obtain

Y =
 y√

Q(t)∥r0∥
1√
Q(t)

 =  r
∥r0∥

1√
Q(t)

 = X. (48)

Inserting Y into the cone condition (8) we can prove that

YTgY = (Y0)2
[
∥y∥2
∥r0∥2

− 1
]
= 0, (49)

and thus
YTgY = 0⇔ ∥y∥ = ∥r0∥. (50)

It means that the cone condition in the Minkowski space Mn+1 and the invariant condition of ∥y∥ = ∥r0∥ in the Euclidean
space En are equivalent. The above cone condition is further shown in Fig. 1 by the augmented vector Y. Consequently,
we have derived a genuine residual dynamics as expressed by Equations (42) and (48) on the future cone in the Minkowski
space with Y ∈Mn+1.

3.5 The Fixed Point

We can prove that the eigenvector y of the matrix A, i.e.,

Ay = λy, (51)
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is a fixed point of the dynamical system (35). Inserting the above equation into Equation (35) and using Equation (34) we
can derive

ẏ = q(t)
[
λy
λ∥y∥2 , y, y

]
= q(t)

[
y
∥y∥2 , y, y

]
= q(t)

[
y · y
∥y∥2 y − y · y y

∥y∥2

]
= 0. (52)

Thus when the orbit of y tends to the eigenvector, we have ẏ = 0, which means that the eigenvector is a critical point of
the dynamical system (35).

4. The Lorentz-Group Algorithm Based on S Oo(n, 1)

As that done by Liu (2001), we can develop the group-preserving scheme for the nonlinear Lorentzian system (42). The
numerical scheme provides a medium to calculate the value of Y at time t = tk+1 when Y is already known at time t = tk.
The evolution of Y is governed by the dynamical law (42) with the coefficient matrix C given by Equation (44). Unluckily,
due to the presence of q̇ in the coefficient matrix C, which as shown in Equation (36) is a function of t and y = ∥r0∥Ys/Y0,
we need to approximate the solution of the dynamical law (42) by considering Y0 and Ys to be constant in each single
time step with a stepsize ∆t = tk+1 − tk. So the solution of Equation (42) within one-step is known to be

Y(k + 1) = G(k)Y(k), (53)

where

G(k) := exp[∆tC(k)] =

 In +
a(k)−1
∥Cs

0(k)∥2 Cs
0(k)(Cs

0)T(k) b(k)
∥Cs

0(k)∥C
s
0(k)

b(k)
∥Cs

0(k)∥ (C
s
0)T(k) a(k)

 , (54)

in which
a(k) := cosh(∆t∥Cs

0(k)∥), b(k) := sinh(∆t∥Cs
0(k)∥). (55)

A numerical algorithm to solve Equation (42) is called a group-preserving scheme (GPS) if for every time increment the
mapping G(k) from Y(k) to Y(k + 1) can preserve the following group properties [Liu (2001)]:

GTgG = g, det G = 1, G0
0 ≥ 1, (56)

where det is the shorthand of determinant, and G0
0 is the 00-th mixed component of G. In Equation (54), G0

0 = a(k) > 1.

Based on the above results and Equations (28), (29) and (25) we can develop the Lorentz group algorithm (LGA) to solve
Equation (2):
(i) Give 0 ≤ γ < 1 and an initial guess of x0.
(ii) Calculate r0 = Bx0 − b and y0 = r0.
(iii) For k = 1, 2 . . ., we repeat the following computations:

xk = xk−1 − (1 − γ)
yT

k−1Ayk−1

∥Ayk−1∥2
BTrk−1,

a0
k−1 =

∥yk−1∥2∥Ayk−1∥2
(yT

k−1Ayk−1)2
,

βk−1 =
1 − γ
a0

k−1

,

ak−1 = cosh(βk−1

√
a0

k−1),

bk−1 = sinh(βk−1

√
a0

k−1),

yk =
yk−1 + [(ak−1 − 1)(yT

k−1Ayk−1)/∥Ayk−1∥2 − bk−1∥yk−1∥/∥Ayk−1∥]Ayk−1

ak−1 − bk−1/
√

a0
k−1

,

rk = Bxk − b,
Rk = BTrk. (57)
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If xk converges according to a given stopping criterion ∥rk∥ < ε1 (or ∥Rk∥ < ε2) then stop; otherwise, go to step (iii). From
Liu (2011a), βk = q(tk)∆t is found to be

βk =
1 − γ

a0
k

= (1 − γ)
(yT

k Ayk)2

∥yk∥2∥Ayk∥2
, (58)

where 0 ≤ γ < 1 is a relaxed parameter.

When the iterative sequence of yk approaches the eigenvector of A the steplength tends to

yT
k Ayk

∥Ayk∥2
=

1
λ
> 0. (59)

Below we will use two numerical examples to demonstrate this phenomenon, which is quite different from that of the
RSDM about the behavior of adapting steplength.

5. Numerical Examples

In order to assess the performance of the newly developed method of the Lorentz-group algorithm (LGA), let us investigate
the following examples. Especially, we emphasize the numerical solutions of linear inverse problems.

5.1 Example 1

The following example is used to illustrate the fixed point behavior of the LGA:

[
10 0
0 1

] [
x
y

]
=

[
10
1

]
. (60)

The exact solution is (x, y) = (1, 1). Denote the coefficient matrix in Equation (60) by B; hence, Cond(A) =Cond(BBT) =
100 and the eigenvalues of A are λ1 = 100, and λ2 = 1.

In the computation of yk we have discretized it by an iterative sequence as shown in Equation (57), which is a discretized
model of the LGA of the residual dynamics. Instead of we can also integrate it by using a time stepsize ∆t, which is
a continuous model of the residual dynamics; by setting βk−1 = qk−1∆t in Equation (57) we can obtain the continuous
model.

Then we compare the residual errors obtained by the LGA with γ = 0.05 and the continuous model with q = 1 and
∆t = 0.02 in Fig. 2(a). Under the convergence criterion ε2 = 10−10, the LGA is convergence with 227 iterations,
while the continuous model is convergence with 101 iterations. As shown in Fig. 2(b), starting from the same point
(y1, y2) = (−10,−2), the continuous model approaches to the fixed point (y1, y2) = (0,−10), while the LGA does not
exactly converge to the fixed point, and it oscillates near the fixed point. Because the LGA is obtained by a discretization
to a purely iterative algorithm with βk given by Equation (58), it does not fully obey the dynamical law of a continuous
time dynamical system. The above two methods both give very accurate solutions with the maximum errors being smaller
than 10−11.
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Fig. 2. For example 1, (a) comparing the residual errors, and (b) Figure 2. For example 1, (a) comparing the residual errors, and (b) comparing the iterative orbit of y, which tends to a

fixed point for a continuous model, but oscillate near the fixed point for the discretized model.

There have two main drawbacks of the continuous model that one needs to specify the function q(t) and determine the
stepsize ∆t. In the followings, we only use the discretized model of the LGA to solve linear problems.

5.2 Example 2

This example is used to illustrate that the presented LGA is better than the RSDM, where we give a simple example:

[
2 2
6 6.0001

] [
x
y

]
=

[
4

12.0001

]
. (61)

The exact solution is (x, y) = (1, 1). It is interesting to note that the condition number is Cond(A) =Cond(BBT) =
1.5957 × 1011, where B denotes the coefficient matrix in Equation (61). The eigenvalues are λ1 = 80.0012, and λ2 =

5.01352 × 10−10.

Then, we add a random noise with an intensity σ = 0.05 on the data of (4, 12.0001)T. By using the LGA with γ = 0 we
obtain a solution of (x, y) = (0.99981, 0.99945) under a convergence criterion ε2 = 10−7 or with the maximum number
1000 of iterations. In Fig. 3 we display the iterative orbit of (y1, y2) starting from (−4.01326,−11.9907) and ending at
(−11.9958, 3.99819), which is an eigenvector of A corresponding to the eigenvalue λ1. Then we apply the RSDM with
γ = 0.01 to solve this problem, whose solution is found to be (x, y) = (1.0007, 0.9986). It can be seen that the LGA is
more accurate than the RSDM with one order. In Fig. 4(a) we compare the residual errors of RSDM and LGA, while the
steplengths are compared in Fig. 4(b). The two thick solid red lines composed of squares present the iterative steplengths
of which the lower part is just the inverse of the first eigenvalue 1/λ1 = 0.0124998. However, due to the matrix A being
highly ill-conditioned, the calculated steplengths are jumping between two values of 1.53160 and 0.0124998, which are
sensitive to the slight difference of the computed values of (y1, y2). On the other hand, the steplengths of the RSDM as
shown by the blue dashed line are quite regularly varying in a large range, which are drastically different from the ones of
the LGA.

82



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 4; 2015

 

-14 -12 -10 -8 -6 -4

y1

-12

-8

-4

0

4

y
2

end point

starting point

 

Figure 3. For example 2 showing the iterative orbit of y, which tends to a fixed point.
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For example 2: (a) comparing the residual errors of RSDM and Figure 4. For example 2: (a) comparing the residual errors of RSDM and LGA, and (b) showing the steplengths of
RSDM and LGA.

The existence of a fixed point of the residual dynamics for the LGA is very important, which can enhance the long-term
stability of the LGA. For example we increase the maximum number of iterations to 30000. The above RSDM leads to
an incorrect solution of (x, y) = (2.0427,−0.0434); however, the LGA with γ = 0.05 gives a rather accurate solution of
(x, y) = (0.9952, 1.004), with the accuracy being three orders.
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5.3 Example 3

When the backward heat conduction problem (BHCP) is considered in a spatial interval of 0 < x < ℓ by subjecting to the
boundary conditions at two ends of a slab:

ut(x, t) = αuxx(x, t), 0 < t < T, 0 < x < ℓ, (62)
u(0, t) = u0(t), u(k, t) = uℓ(t), (63)

we solve u under a final time condition:

u(x,T ) = uT (x). (64)

The fundamental solution to Equation (62) is given as follows:

K(x, t) =
H(t)

2
√
απt

exp
(
−x2

4αt

)
, (65)

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a broad application in engineering computations. In the MFS the solution
of u at the field point z = (x, t) can be expressed as a linear combination of the fundamental solutions U(z, s j) at different
sources:

u(z) =
n∑

j=1

c jU(z, s j), s j = (η j, τ j) ∈ Ωc, (66)

where n is the number of source points, c j are unknown coefficients, and s j are source points being located in the comple-
ment Ωc of Ω = [0, ℓ] × [0,T ]. For the heat conduction equation we have

U(z, s j) = K(x − η j, t − τ j). (67)

It is known that the distribution of source points in the MFS has a great influence on the accuracy and stability. In a
practical application of MFS to solve the BHCP, the source points are uniformly located on two vertical straight lines
parallel to the t-axis, and one horizontal line over the final time t = T , which was adopted by Hon & Li (2009) and Liu
(2011b), showing a large improvement than the line location of source points below the initial time. After imposing the
boundary conditions and the final time condition on Equation (66) we can obtain a linear equations system (2), where

Bi j = U(zi, s j), x = (c1, · · · , cn)T,

b = (uℓ(ti), i = 1, . . . ,m1; uT (x j), j = 1, . . . ,m2; u0(tk), k = m1, . . . , 1)T, (68)

and n = 2m1 + m2.

Here we compare the numerical solution with an exact solution:

u(x, t) = cos(πx) exp(−π2t). (69)

For the case with T = 1 the value of final time data is in the order of 10−4, which is much small in a comparison with
the value of the initial temperature u(x, 0) = cos(πx) to be retrieved, which is O(1). We solve this problem by the Lorentz
group algorithm (LGA). As shown in Fig. 5(a), the LGA with γ = 0.04 converges very fast with 867 iterations under
the convergence criterion ε2 = 10−4, while the RSDM with γ = 0.05 converges with 1195 iterations. We add a relative
random noise with an intensity σ = 10% on the final time data. The numerical errors are shown in Fig. 5(b), of which the
maximum errors of RSDM and LGA are, respectively, 0.036, 0.029. It can be seen that the performance of LGA is better
than that of the RSDM.
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Figure 5. For example 3, (a) comparing the residual errors of RSDM and LGA, and (b) showing the numerical errors.

5.4 Example 4

We solve the Cauchy problem of the Laplace equation under boundary conditions:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, r < ρ, 0 ≤ θ ≤ 2π,

u(ρ, θ) = h(θ), 0 ≤ θ ≤ π,
un(ρ, θ) = g(θ), 0 ≤ θ ≤ π, (70)

where h(θ) and g(θ) are given functions, and ρ = ρ(θ) is a given contour to describe the boundary shape. The contour in
the polar coordinates is specified by Γ = {(r, θ)|r = ρ(θ), 0 ≤ θ ≤ 2π}, which is the boundary of the problem domain Ω,
and n denotes the normal direction.

In the potential theory, it is well known that the method of fundamental solutions (MFS) can be used to solve the Laplacian
problems when a fundamental solution is known [Kupradze (1964)]. In the MFS the trial solution of u at the field point
z = (r cos θ, r sin θ) can be expressed as a linear combination of the fundamental solutions U(z, s j):

u(z) =
n∑

j=1

c jU(z, s j), s j ∈ Ωc, (71)

where n is the number of source points, c j are the unknown coefficients, s j are the source points, and Ωc is the comple-
mentary set of Ω. For the Laplace equation (70) we have the fundamental solutions:

U(z, s j) = ln r j, r j = ∥z − s j∥. (72)

In the practical application of the MFS, frequently the source points are uniformly located on a circle with a radius R, such
that after imposing the boundary conditions in Equation (70) on Equation (71) we can obtain a linear equations system
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(2), where

zi = (z1
i , z

2
i ) = (ρ(θi) cos θi, ρ(θi) sin θi),

s j = (s1
j , s

2
j ) = (R cos θ j,R sin θ j),

Bi j =


ln ∥zi − s j∥, if i is odd,
η(θi)
∥zi−s j∥2

(
ρ(θi) − s1

j cos θi − s2
j sin θi

− ρ
′(θi)
ρ(θi)

[s1
j sin θi − s2

j cos θi]
)
, if i is even,

x = (c1, . . . , cn)T, b = (h(θ1), g(θ1), . . . , h(θm), g(θm))T, (73)

in which n = 2m, and

η(θ) =
ρ(θ)√

ρ2(θ) + [ρ′(θ)]2
. (74)

We fix n = 38 and employ a circle with a constant radius R = 15 to distribute the source points. Then we apply the LGA
with γ = 0.02 to solve the linear system (2) under a convergence criterion ε2 = 10−3, where a noise with an intensity
σ = 10% is imposed on the given data. The residual error is plotted in Fig. 6(a), which is convergence with 4624 iterations.

Along the lower half contour ρ(θ) =
√

10 − 6 cos(2θ), π ≤ θ < 2π, in Fig. 6(b) we show the numerical error obtained
by the LGA with that given by u = ρ2 cos(2θ), π ≤ θ < 2π. For the purpose of comparison with the regularized MFS
proposed by Wei et al. (2007), we also display its numerical error in Fig. 6(b), whose maximum error is found to be 0.39.
We can observe that the result obtained by the LGA with the maximum error being 0.111 is better than that of the MFS.
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Fig. 6. For example 4, (a) the residual error of LGA, and (b) showing the Figure 6. (a) the residual error of LGA, and (b) showing the numerical errors of LGA and MFS.

5.5 Example 5

When we apply a central difference scheme to the following two-point boundary value problem:

−u′′(x) = f (x), 0 < x < 1,
u(0) = a, u(1) = b, (75)
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we can derive a linear equations system

Bu =



2 −1
−1 2 −1

· · ·
· · ·
· · ·
−1 2




u1
u2
...

un

 =


(∆x)2 f (∆x) + a
(∆x)2 f (2∆x)

...
(∆x)2 f ((n − 1)∆x)
(∆x)2 f (n∆x) + b


, (76)

where ∆x = 1/(n + 1) is the spatial length, and ui = u(i∆x), i = 1, . . . , n, are unknown values of u(x) at the grid points
xi = i∆x. u0 = a and un+1 = b are the given boundary conditions.

In this numerical test we fix n = 30. Let us consider the boundary value problem in Equation (75) with f (x) = sin πx. The
exact solution is

u(x) = a + (b − a)x +
1
π2 sin πx, (77)

where we fix a = 1 and b = 2.

A relative random noise with intensity σ = 0.01 is added into the data on the right-hand side of Equation (76). Under
a moderate convergence criterion with ε2 = 10−8, we find that the RSDM with γ = 0.15 converges with 6111 iterations
as shown in Fig. 7(a) by dashed line, and the maximum error as shown in Fig. 7(b) is 5.3 × 10−5. It can be seen that the
presented LGA with γ = 0.04 converges with 4140 iterations and with the maximum error being 5.04 × 10−5, which is
better than the algorithm RSDM.

 

0 0 0 1 1 1

x

1E-7

1E-6

1E-5

1E-4

N
u
m

e
ri

c
a
l 
e
rr

o
r

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

R
e
si

d
u
a
l 
e
rr

o
r

(a)

(b)

0 1000 2000 3000 4000 5000 6000 7000

Number of steps

LGA

RSDM

LGA

RSDM

 

Fig. 7. For example 5, (a) comparing the residual errors of RSDM and Figure 7. For example 5, (a) comparing the residual errors of RSDM and LGA, and (b) showing the numerical errors.

5.6 Example 6

Let us consider the following inverse problem to recover the external force F(t) for an ODE:

ÿ(t) + ẏ(t) + y(t) = F(t). (78)

In a time interval of t ∈ [0, t f ] the discretized data yi = y(ti) are supposed to be measurable, which are subjected to the
random noise with an intensity σ = 0.01. Usually, it is very difficult to recover the external force F(ti) from Equation (78)
by the direct differentials of the noisy data of the displacements, because the differential is an ill-posed linear operator.
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To approach this inverse problem by the polynomial interpolation, we begin with

pm(x) = c0 +

m∑
k=1

ck xk. (79)

Now, the coefficient ck is projected into two coefficients ak and bk to absorb more interpolation points; in the meanwhile,
cos(kθk) and sin(kθk) are introduced to reduce the condition number of the coefficient matrix [Liu (2011c)]. We suppose
that

ck =
ak cos(kθk)

Rk
2k

+
bk sin(kθk)

Rk
2k+1

, (80)

and

θk =
2kπ
m
, k = 1, . . . ,m. (81)

The considered problem domain is [a, b], and the interpolating points are:

a = x0 < x1 < x2 < . . . < x2m−1 < x2m = b. (82)

Substituting Equation (80) into Equation (79), we can obtain

p(x) = a0 +

m∑
k=1

ak

(
x

R2k

)k

cos(kθk) + bk

(
x

R2k+1

)k

sin(kθk)

 , (83)

where we let c0 = a0, and ak and bk are unknown coefficients. In order to obtain them, we impose the following n
interpolated conditions:

p(xi) = yi, i = 0, . . . , n − 1. (84)

Thus, we obtain a linear equations system to determine ak and bk:

1 x0 cos θ1
R2

x0 sin θ1
R3

. . .
(

x0
R2m

)m
cos mθm

(
x0

R2m+1

)m
sin mθm

1 x1 cos θ1
R2

x1 sin θ1
R3

. . .
(

x1
R2m

)m
cos mθm

(
x1

R2m+1

)m
sin mθm

...
...

...
...

...
...

1 x2m−1 cos θ1
R2

x2m−1 sin θ1
R3

. . .
(

x2m−1
R2m

)m
cos mθm

(
x2m−1
R2m+1

)m
sin mθm

1 x2m cos θ1
R2

x2m sin θ1
R3

. . .
(

x2m
R2m

)m
cos mθm

(
x2m

R2m+1

)m
sin mθm





a0
a1
b1
...

am

bm


=



y0
y1
y2
...

y2m−1
y2m


. (85)

We note that the norm of the first column of the above coefficient matrix is
√

2m + 1. According to the concept of
equilibrated matrix [Liu (2012d)], we can derive the optimal scales for the current interpolation with a half-order technique
as

R2k = β0

 1
2m + 1

2m∑
j=0

x2k
j (cos kθk)2


1/(2k)

, k = 1, 2, . . . ,m, (86)

R2k+1 = β0

 1
2m + 1

2m∑
j=0

x2k
j (sin kθk)2


1/(2k)

, k = 1, 2, . . . ,m, (87)

where β0 is a stability factor. The improved method uses m order polynomial to interpolate n = 2m + 1 data nodes, while
regular method with a full-order can only interpolate m + 1 data points.

Now we fix m = 10 and t f = 5 and consider the exact solution of F(t) = cos t, which is obtained by inserting the exact
y(t) = sin t into Equation (78). The parameters used are β0 = 1.2, γ = 0.025 for the LGA, and β0 = 2.2 and γ = 0.35 for
the RSDM. Under the same convergence criterion ε2 = 10−5, the LGA does not converge over 10000 iterations, while the
RSDM is not convergent over 50000 iterations, as compared the residual errors in Fig. 8(a). We compare the numerical
solutions and the exact solution in Fig. 8(b), where the maximum error for the RSDM is a large value 0.452, and that for
the LGA is 0.067. Obviously, the LGA is much better than the RSDM. The result calculated by the LGA is also better
than that calculated by Liu (2012a).
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Fig. 8. For example 6, (a) comparing the residual errors of RSDM and Figure 8. For example 6, (a) comparing the residual errors of RSDM and LGA, and (b) comparing the numerical results
with exact one.
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Figure 9. For example 7, comparing (a) the residual errors and (b) the steplengths of RSDM and LGA.
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5.7 Example 7

In order to compare the LGA with the RSDM for a well-posed problem, we solve the following Laplace equation:

uxx + uyy = 0, 0 < x < 1, 0 < y < 1,
u(x, y) = sin x cosh y. (88)

The boundary conditions can be derived from the exact solution. A standard five point finite difference is used to discretize
the above equation. Under the discretization with ∆x = ∆y = 1/16, and with γ = 0.05 for both the RSDM and the LGA,
and under the convergence criterion ε1 = 10−8, the RSDM converges with 2961 iterations, but the LGA spends 2038
iterations, as shown in Fig. 9. The above two algorithms obtain very accurate solutions with the maximum numerical
error being 2.73 × 10−5.

6. Conclusions

The present paper in the framework of the future cone in the Minkowski space has explored two essential structures about
the residual dynamics, namely the Jordan dynamics, as well as the Lie-group S Oo(n, 1). It is a residual symmetry group
of the residual dynamics as being expressed by a nonlinear Lorentzian system. We also proved that the eigenvector of
the coefficient matrix is a critical point of the residual dynamics, which is important for a long term computation by
the Lorentz-group algorithm (LGA). We have proposed a theoretical modification of the steplength used in the steepest
descent method by using the LGA, which can significantly accelerate the convergence speed and is more stable in the nu-
merical solution of ill-posed linear problems. Because all formulas required in the new steplength were derived explicitly,
the presented LGA can be implemented easily and used effectively to solve the ill-posed linear inverse problems.
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