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Abstract

We consider a type of form such as u′′′ = − f with three-point nonlinear boundary-value problems (NBVPs). We verified
the existence of solutions of the (NBVPs) when f is distributional Henstock-Kurzweil integral but not Henstock-Kurzweil
integral.We use the distribution derivative and fixed point theorem to deal with the problem. The results obtained gener-
alize the known results. For this reason, it is conducive to the further study of NBVPS.
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1. Introduction

This paper is devoted to study the extended existence of solutions of the specific given third-order differential equation
with the boundary conditions {

u′′′(t) = − f (t, u(t)), t ∈ [0, 1],
u(0) − pu′(0) = 0, u′(ξ) = 0, u(1) = 0, (1)

where u′′′, u′ stand for the distributional derivative of the function u ∈ C2[0, 1], C2[0, 1] denotes the space where the
functions u′′ : [0, 1] → R are continuous, f is a distribution (generalized function), p ∈ R and ξ ∈ [0, 1]. The spaces
C[0, 1] is considered with the uniform norm ∥ · ∥∞, C2[0, 1] is considered with the norm ∥u∥C2 = ∥u∥∞ + ∥u′∥∞ + ∥u′′∥∞.

In 1989, Lee indicates that if F is a continuous function and pointwise differentiable almost everywhere on [a,b], then F is
ACG*(generalized absolutely continuous). A primitive F of the Henstock-Kurzweil-integrable function f is ACG* (see[J.
Kurzweil (1999); Š. Schwabik, & Guoju Ye, (2005); E. Talvila. (1999-2000)]). However,let us consider the function:

F(t) =
∞∑

n=1

sin n2t
n2 , t ∈ R

As we all know, F(t) is continuous but not differentiable almost everywhere.It means F is not ACG*. Nevertheless, F(t)
has distributional derivative. That is to say, there exist a function f satisfy F′ = f (“′” denotes the distributional derivative)
therefore f is distributional Henstock-Kurzweil integrable, but f is not Henstock-Kurzweil integrable.Moreover,T. S.
Chew and F. Flordeliza, in [ T. S. Chew, & F. Flordeliza. (1991)], generalized the classic Carathéodory’s existence
theorem on the Cauchy problem u′ = f (t, u) with u(0) = 0. Since the BVPs has been studied by using ordinary derivative
or approximate derivative in [D. Anderson,T. Anderson, & M. Kleber. (2006); P. Minghe, & S. K. Chang. (2007)], and
from [D. Bugajewska. (1998); P. S. Bullen, & D. N. Sarkhel. (1987); Xueyuan Zhou, & Guoju Ye. (2012); Bing Liang,
& Guoju Ye. (2015, May 1)] we get the motivate to study the third-order nonlinear boundary value problems. we use
the distributional derivatives to discuss (1) in a general form. Naturally, we can obtain the existence of solutions of the
equation(1) under weaker conditions. This makes the integrand of the third-order differential equations more extensive.

The remainder of this paper is organized as follows. In Section 2, we introduce the definitions and the properties of
the distributional Henstock-Kurzweil integral. In section 3, we apply the Schauder′s fixed point theorem to verify the
existence of the NBVP (1). In section 4, An example is provided to illustrate the effectiveness of the proposed theorem
3.1 in this paper.

2. The Distributional Henstock-Kurzweil Integral

In this section, the definition of the distributional Henstock-Kurzweil integral and their main properties needed in this
paper are presented.
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Define the space of test functions

D = {ϕ : R→ R | ϕ has compact support in R and ϕ ∈ C∞},

where the compact support of ϕ denoted by supp(ϕ) = {x ∈ R : ϕ(x) , 0} . A sequence {ϕn} ⊂ D converges to ϕ ∈ D
means that a compact set K such that all ϕn have support in K and for each integer m ≥ 0, the sequence of derivatives ϕ(m)

n
converges to ϕ(m) uniformly. D′ denotes the dual space of D. It indicate that D′ is the set of all functional f : D → R,
denoted f (ϕ) = ⟨ f , ϕ⟩ , ϕ ∈ D.

We define the distributional derivative f ′ of f to be a distribution satisfying ⟨ f ′, ϕ⟩ = −⟨ f , ϕ′⟩, where ϕ ∈ D and ϕ′ is
the ordinary derivative of ϕ. With this definition, it is easy to get that every distribution is infinite differentiability in the
distributional derivative sense.

Let (a, b) be an open interval in R. We define

D((a, b)) = {ϕ : (a, b)→ R | ϕ ∈ C∞c and ϕ has compact support in (a, b)}.

The dual space toD((a, b)) is denoted byD′((a, b)).

Denote C[a, b] the space of continuous functions on [a, b] and let BC = {F ∈ C[a, b] | F(a) = 0}. We can obtain BC is a
Banach space with the uniform norm

∥F∥∞ = max
t∈[a,b]

|F(t)|.

Next, we give an introduction about the definition and properties of the DHK-integral.

Definition 2.1 A distribution f is said to be distributionally Henstock-Kurzweil integrable on [a, b] or briefly DHK-
integrable if f is the distributional derivative of a continuous function F ∈ BC .

For succinctness, we will refer to “(DHK)
∫

” as simply “
∫

”. Denote DHK = { f ∈ D′((a, b)) | f = F′ for some F ∈ BC}. In
this case, if f ∈ DHK , then (DHK)

∫ b
a f = F(b), and for all ϕ ∈ D((a, b))

⟨ f , ϕ⟩ = ⟨F′, ϕ⟩ = −⟨F, ϕ′⟩ = −
∫ b

a
Fϕ′,where F ∈ BC .

Definition 2.2 Let Q = [a, b] × [c, d] in R2,B̃C={H ∈ C(Q):H(a, y) = H(x, c) = 0, for every x ∈ [a, b], y ∈ [c, d]}, we
denote “∂1” and “∂2” the distributional derivatives with respect to x and y respectively. Define

DHK(Q) = { f ∈ D′(Q) : f = ∂F, F ∈ B̃C}.

We can know that if f ∈ DHK(Q), then the corresponding continuous function F (F ∈ B̃C and f = ∂F )is unique.

Definition 2.3 f ∈ DHK(Q), x ∈ [a, b], y ∈ [c, d].We define

∫ x

a
f (ζ, ·)dζ = ∂2F f (x, ·) in D′((c, d))∫ y

c
f (·, η)dη = ∂1F f (·, y) in D′((a, b))

It is clear that ∫ x

a
f (s, ·)ds ∈ DHK((c, d)),

∫ y

c
f (·, t)dt ∈ DHK((a, b)).

Let us introduce some basic properties of the distributional Henstock-Kurzweil integral needed later.

Lemma 2.1 (Fundamental Theorem of Calculus, [E. Talvila. (2008), Theorem 4] ).

(a) Let f ∈ DHK , and define F(t) =
∫ t

a f . Then F ∈ BC and F′ = f .

(b) Let F ∈ C[a, b]. Then
∫ t

a F′ = F(t) − F(a) for all t ∈ [a, b].

We define the Alexiewicz norm with

∥ f ∥ = sup
0≤t≤1

∣∣∣∣∣ ∫ t

0
f (s)ds

∣∣∣∣∣ = ∥F∥∞, f ∈ DHK and F ∈ BC .
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A sequence { fn} ⊂ DHK converges strongly to f ∈ DHK , if ∥ fn − f ∥ → 0 as n → ∞. According to those, the following
result holds.

Lemma 2.2 (Theorem 2, [E. Talvila. (2008)]). DHK is a Banach space with the Alexiewicz norm.

Lemma 2.3 (Definition 6, Integration by parts),[E. Talvila.(2008)]. Let f ∈ DHK , and g is a function of bounded variation.
Define f g = DH, where H(t) = F(t)g(t) −

∫ t
a Fdg. Then f g ∈ DHK and

(DHK)
∫ b

a
f g = F(b)g(b) − (DHK)

∫ b

a
Fdg.

Now we introduce a partial ordering on DHK : for f , g ∈ DHK , we say that f ≽ g (or g ≼ f ) if and only if f − g is a positive
measure on [a, b]. By the definition, if f , g ∈ DHK , then

∫
I f ≥

∫
I g for every I = [c, d] ⊂ [a, b], whenever f ≽ g. See [D.

D. Ang, K. Schmitt, & L. K. Vy. (1997)] for details.

From the above mentioned, It is easy to see that the following result hold.

Lemma 2.4 (Corollary 5 Dominated convergence theorem for the DHK-integral,[D. D. Ang, K. Schmitt, & L. K. Vy.
(1997)]) Let { fn}∞n=0 be a sequence in DHK such that fn → f as n→ ∞ inD′. Suppose there exist f−, f+ ∈ DHK satisfying

f− ≼ fn ≼ f+, for ∀ n ∈ N. Then f ∈ DHK and limn→∞
∫ b

a fn =
∫ b

a f .

Lemma 2.5 (Theorem 4, Fubini theorem, [D. D. Ang, K. Schmitt, & L. K. Vy. (1997)] ) For all f ∈ DHK(Q), we have

∫
Q

f =
∫ b

a
(
∫ d

c
f (·, η)dη) =

∫ d

c
(
∫ b

a
f (ζ, ·)dζ).

The next statement is modified from [E. Talvila. (1999-2000)] and [E. Talvila. (2008)].

Lemma 2.6 Let f ∈ DHK and { fn}∞n=0 be a sequence in DHK such that fn → f as n → ∞ in D′. Define Fn(x) =
∫ x

a fn and

F(x) =
∫ x

a f . If g is a function of bounded variation and Fn → F as n → ∞ uniformly on [a, b], then
∫ b

a fng →
∫ b

a f g as
n→ ∞ .

3. Main Results

In this section, we firstly assume that f satisfies the following assumptions:

(D1 ) f (t, u) is DHK-integrable with respect to t for all u ∈ C2[0, 1];

(D2 ) f (t, u) is continuous with respect to u for all t ∈ [0, 1], i.e. for each t ∈ [0, 1], ∥ f (t, un)− f (t, u)∥ → 0 as ∥un−u∥C2 → 0
for un ∈ C2[0, 1];

(D3 ) There exist f−, f+ ∈ DHK such that f−(·) ≼ f (·, u) ≼ f+(·) for all u ∈ C2[0, 1].

Lemma 3.1 Assume that 1 − 2ξ − 2ξp , 0. then, the NBVP is equivalent to the integral equation

u(t) =c0

{ ∫ 1

0
((s − 1)2(t2 − 2ξt − 2ξp) f (s, u(s))ds

−
∫ ξ

0
(ξ − s)

(
2t2(1 + p) − 2t − 2p

)
f (s, u(s))ds

−
∫ t

0
(1 − 2ξ − 2ξp)(s − t)2 f (s, u(s))ds

}
, t ∈ [0, 1],

(2)

where ξ is a constant with 0 ≤ ξ ≤ 1 and c0=1/2(1 − 2ξ − 2ξp).

Proof. For all t ∈ [0, 1], s ∈ [0, 1], u ∈ C[0, 1], u′′ ∈ C[0, 1], According to the lemma 2.5, we have

u′′(t) − u′′(0) = −
∫ t

0
f (s, u(s))ds,

u′(t) − u′(0) = −
∫ t

0

∫ s

0
f (θ, u(θ))dθds + u′′(0)t

= −
∫ t

0
(t − θ) f (θ, u(θ))dθ + u′′(0)t.
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Then

u(t) − u(0) = −
∫ t

0

∫ s

0
(s − θ) f (θ, u(θ))dθds +

1
2

u′′(0)t2 + u′(0)t

= −
∫ t

0

1
2

(t − s)2 f (s, u(s)ds +
1
2

u′′(0)t2 + u′(0)t.
(3)

According to the boundary conditions, we can get
−
∫ 1

0

1
2

(s − 1)2 f (s, u(s))ds +
1
2

u′′(0) + u′(0) + u(0) = 0,

−
∫ ξ

0
(ξ − s) f (s, u(s))ds + u′′(0)ξ + u′(0) = 0,

− pu′(0) + u(0) = 0.

(4)

From (4) then, we can obtain

u′′(0) =
∫ 1

0

(s − 1)2

1 − 2ξ − 2ξp
f (s, u(s))ds −

∫ ξ
0

2(1 + p)(ξ − s)
1 − 2ξ − 2ξp

f (s, u(s))ds,

u′(0) =
∫ ξ

0

ξ − s
1 − 2ξ − 2ξp

f (s, u(s))ds −
∫ 1

0

ξ(s − 1)2

1 − 2ξ − 2ξp
f (s, u(s))ds,

u(0) =
∫ ξ

0

p(ξ − s)
1 − 2ξ − 2ξp

f (s, u(s))ds −
∫ 1

0

ξp(s − 1)2

1 − 2ξ − 2ξp
f (s, u(s))ds.

(5)

Furthermore from (3)and(4) we conclude that:

u(t) =c0
{ ∫ 1

0
((s − 1)2(t2 − 2ξt − 2ξp) f (s, u(s))ds

−
∫ ξ

0
(ξ − s)

(
2t2(1 + p) − 2t − 2p

)
f (s, u(s))ds

−
∫ t

0
(1 − 2ξ − 2ξp)(s − t)2 f (s, u(s))ds

}
, t ∈ [0, 1].

(6)

It is easy to calculate that NBVP (1) hold by taking the derivative both sides of (6). This completes the proof. �

Lemma 3.2 (Theorem 6.15,[M. Schechter. (2004)]) The compact operatorA : M → M has at least one fixed point. When
M is bounded, closed, convex, nonempty subset of a Bananach space X over R.

With the help of the preceding lemmas, we can now prove the existence of solutions of the NBVP (1).

Theorem 3.1 Under the assumptions (D1)− (D3) and 1− 2ξ − 2ξp , 0, then there exists at least one solution u ∈ C2[0, 1]
of the NBVP (1).

Proof. Let

F−(t) =
∫ t

0
f−(s)ds, F+(t) =

∫ t

0
f+(s)ds, Fu(t) =

∫ t

0
f (s, u(s))ds;

H−(t) =
∫ t

0
F−(s)ds, H+(t) =

∫ t

0
F+(s)ds, Hu(t) =

∫ t

0
Fu(s)ds.

Since f−(s) ≼ f (s, u(s)) ≼ f+(s) for all u ∈ C2[0, 1], we can get

F−(t) ≤ Fu(t) ≤ F+(t), H−(t) ≤ Hu(t) ≤ H+(t),∫ t

0
H−(s)ds ≤

∫ t

0
Hu(s)ds ≤

∫ t

0
H+(s)ds.

Suppose that
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M1 = max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0
f−(s)ds

∣∣∣∣∣∣ + max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0
f+(s)ds

∣∣∣∣∣∣ , M2 = max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0
F−(s)ds

∣∣∣∣∣∣ + max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0
F+(s)ds

∣∣∣∣∣∣
M3 = max

t∈[0,1]

∣∣∣∣∣∣
∫ t

0
H−(s)ds

∣∣∣∣∣∣ + max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0
H+(s)ds

∣∣∣∣∣∣ , M4 = |u(0)| + 2|u′(0)| + 5
2
|u′′(0)|.

Then for each t ∈ [0, 1], and any u ∈ C2[0, 1], we have

|Fu(t)| ≤ max
0≤t≤1
|F−(t)| + max

0≤t≤1
|F+(t)| = M1, |Hu(t)| ≤ max

0≤t≤1
|H−(t)| + max

0≤t≤1
|H+(t)| = M2,∣∣∣∣∣ ∫ t

0
Hu(s)ds

∣∣∣∣∣ ≤ max
0≤t≤1

∣∣∣∣∣ ∫ t

0
H−(s)ds

∣∣∣∣∣ + max
0≤t≤1

∣∣∣∣∣ ∫ t

0
H+(s)ds

∣∣∣∣∣ = M3.
(7)

Let B = {u ∈ C2[0, 1] : ∥u∥C2 ≤ l, l = M1 + M2 + M3 + M4 > 0}. For each u ∈ B, t ∈ [0, 1], define the operator

Au(t) =c0

{ ∫ 1

0
((s − 1)2(t2 − 2ξt − 2ξp) f (s, u(s))ds

−
∫ ξ

0
(ξ − s)

(
2t2(1 + p) − 2t − 2p

)
f (s, u(s))ds

−
∫ t

0
(1 − 2ξ − 2ξp)(s − t)2 f (s, u(s))ds

}
.

(8)

Now we prove this theorem in three steps.

Step 1: A : B→ B.

For all u ∈ B, by (3.7), one has

∥Au∥C2 = ∥u∥∞ + ∥u′∥∞ + ∥u′′∥∞

= max
t∈[0,1]

∣∣∣∣∣u(0) + u′(0)t +
1
2

u′′(0)t2 −
∫ t

0

1
2

(t − s)2 f (s, u(s))ds
∣∣∣∣∣ + max

t∈[0,1]

∣∣∣∣∣u′(0) + u′′(0)t −
∫ t

0
(t − s) f (s, u(s))ds

∣∣∣∣∣
+ max

t∈[0,1]

∣∣∣∣∣u′′(0) −
∫ t

0
f (s, u(s))ds

∣∣∣∣∣
≤(|u(0)| + 2|u′(0)| + 5

2
|u′′(0)|) + max

t∈[0,1]

∣∣∣∣∣ ∫ t

0

1
2

(t − s)2 f (s, u(s))ds
∣∣∣∣∣ + max

t∈[0,1]

∣∣∣∣∣ ∫ t

0
(t − s) f (s, u(s))ds

∣∣∣∣∣ + max
t∈[0,1]

∣∣∣∣∣ ∫ t

0
f (s, u(s))ds

∣∣∣∣∣.
For all t ∈ [0, 1], one has

max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0

1
2

(t − s)2 f (s, u(s))ds

∣∣∣∣∣∣ = max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0

1
2

(t − s)2dFu(s)ds

∣∣∣∣∣∣
= max

t∈[0,1]

∣∣∣∣∣∣12(t − s)2Fu(s)|s=t
s=0 +

∫ t

0
(t − s)Fu(s)ds

∣∣∣∣∣∣ = max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0
(t − s)dHu(s)

∣∣∣∣∣∣
= max

t∈[0,1]

∣∣∣∣∣∣(t − s)Hu(s)|s=t
s=0 −

∫ t

0
Hu(s)ds

∣∣∣∣∣∣ = max
t∈[0,1]

∣∣∣∣∣∣
∫ t

0
Hu(s)ds

∣∣∣∣∣∣
≤M3.

(9)

With the same argument, we have

max
t∈[0,1]

∣∣∣∣∣ ∫ t

0
(t − s) f (s, u(s))ds

∣∣∣∣∣ ≤ M2,

max
t∈[0,1]

∣∣∣∣∣ ∫ t

0
f (s, u(s))ds

∣∣∣∣∣ ≤ M1.

(10)

In view of (9), (10), one has

∥Au∥C2 ≤ M4 + M3 + M2 + M1
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Then ∥Au∥C2 ≤ M4 + M3 + M2 + M1 = l. Hence,A(B) ⊆ B.

Step 2: A(B) is equi-continuous.

Let t1, t2 ∈ [0, 1], u ∈ B

∣∣∣Au(t1) −Au(t2)
∣∣∣ =∣∣∣∣∣u′(0)(t1 − t2) +

1
2

u′′(0)(t2
1 − t2

2) −
∫ t1

0

1
2

(t1 − s)2 f (s, u(s))ds

+

∫ t2

0

1
2

(t2 − s)2 f (s, u(s))ds
∣∣∣∣∣

≤|t1 − t2|(|u′(0)| + |u′′(0)| + 1
2
|t1 − t2|

∣∣∣∣∣ ∫ t1

0
(t1 + t2 − 2s) f (s, u(s))ds

∣∣∣∣∣
+

∣∣∣∣∣ ∫ t2

t1

1
2

(t2 − s)2 f (s, u(s))ds
∣∣∣∣∣;

(11)

∣∣∣Au′(t1) −Au′(t2)
∣∣∣ =∣∣∣∣∣u′′(0)(t1 − t2) −

∫ t1

0
(t1 − s) f (s, u(s))ds +

∫ t2

0
(t1 − s) f (s, u(s))ds

∣∣∣∣∣
≤|t1 − t2|

(
|u′′(0)| +

∣∣∣∣∣ ∫ t1

0
f (s, u(s))ds

∣∣∣∣∣) + ∣∣∣∣∣ ∫ t2

t1
(t2 − s) f (s, u(s))ds

∣∣∣∣∣; (12)

∣∣∣Au′′(t1) −Au′′(t2)
∣∣∣ =∣∣∣∣∣ − ∫ t1

0
f (s, u(s))ds +

∫ t2

0
f (s, u(s))ds

∣∣∣∣∣ ≤ ∣∣∣∣∣ ∫ t2

t1
f (s, u(s))ds

∣∣∣∣∣. (13)

From step 1, we have drew the conclusion that |
∫ t1

0 (t1 + t2 − 2s) f (s, u(s))ds|, |
∫ t1

0 f (s, u(s))ds| are bounded. Moreover,∫ t2
t1

1
2 (t2 − s)2 f (s, u(s))ds ,

∫ t2
t1

(t2 − s) f (s, u(s))ds ,
∫ t2

t1
f (s, u(s))ds are continuous on [0, 1], hence uniformly continuous on

[0, 1].

Then, from (11), (12), (13) we can conclude thatA(B) is equi-continuous on[0, 1] for all u ∈ B.

In view of step 1, step 2 and Ascoli-Arzelà theorem,A(B) is relatively compact.

Step 3: A is a continuous mapping.

Let u ∈ B, {un}n∈N be a sequence in B and un → u as n→ ∞.

By (D2), one has
f (·, un)→ f (·, u) as n→ ∞.

According to the assumption (D3) and Lemma 2.4, we have

lim
n→∞

∫ t

0
f (s, un(s))ds =

∫ t

0
f (s, u(s))ds, t ∈ [0, 1].

It is easy to verify, by Lemma 2.6, that
lim
n→∞
A(un) = A(u).

Hence,A is continuous.

Thus,A satisfies the hypotheses of Lemma 3.2, then there exists a fixed point ofA which is a solution of (2). By Lemma
3.1, the NBVP (1) has at least one solution. �

4. Example

In this section, we give an example for the application of Theorem 3.1.

Consider the boundary value problem 
u′′′(t) = −t cos u − r, t ∈ [0, 1],
u′(ξ) = 0,
u(0) − pu′(0) = 0,
u(1) = 0.

(14)
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where r is the distributional derivative of the Weiertrass function R(t) =
∑∞

n=0 an sin bnt,and 0 < a < 1 < b, ab > 1 in [G.
H. Hardy. (1916)]. It is easy to see that R(t) ∈ C[0, 1] and R(0) = 0, hence r is DHK-integrable. Let f (t, u(t)) = t cos u + r,
then f (t, u(t)) satisfies (D1), (D2). Moreover, let f−(t) = −t + r and f+(t) = t + r, then

f−(·) ≼ f (·, u) ≼ f+(·),

i.e., (D3) holds. Therefore, the initial value problem (14) has a solution.

Remark It is well known that the function R(t) given by Riemann is continuous but pointwise differentiable nowhere on
[0, 1], then the distributional derivative r in (14) is neither HK integrable nor Lebesgue integrable. Hence, this example
is not covered by any result using HK integral or Lebesgue integral. Thus, Theorem 3.1 is more extensive.In this case,
we can study more about the existence of the extended solutions of three-point nonlinear boundary-value problems and
its application.
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