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Abstract

Performing the shape derivative (Sokolowski and Zolesio, 1992) and using the maximum principle, we show that the
so-called Quadrature Surfaces free boundary problem

QS ( f , k)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ΔuΩ = f in Ω
uΩ = 0 on ∂Ω
|∇uΩ| = k (constant) on ∂Ω.

has a solution which contains strictly the support of f if and only if∫
C

f (x)dx > k

∫
∂C

dσ.

Where C is the convex hull of the support of f . We also give a necessary and sufficient condition of existence for the
problem QS ( f , k) where the term source f is a uniform density supported by a segment.
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1. Introduction

Assuming throughout that: D ⊂ RN (N ≥ 2) is a bounded ball which contains all the domains we use. If ω is an open
subset of D, let ν be the outward normal to ∂ω and let |∂ω| (respectively |ω|) be the perimeter (respectively the volume) of
ω.

Let k > 0 and let f be a positive function belonging to L2(RN) and having a compact support K with nonempty interior.
Denote by C the convex hull of K and consider the following free boundary problem. Find an open set Ω ⊂ D which
contains strictly C and such that the following problem has a solution:

QS ( f , k)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ΔuΩ = f in Ω

uΩ = 0 on ∂Ω
|∇uΩ| = k on ∂Ω.

Notice that since uΩ = 0 on ∂Ω then |∇uΩ| = −∂uΩ
∂ν

, where ν is the outward normal vector to ∂Ω.

Imposing boundary conditions for both uΩ and |∇uΩ| on ∂Ω makes problem QS ( f , k) overdetermined, so that in general
without any assumptions on data this problem has no solution.

The problem QS ( f , k) is called the quadrature surfaces free boundary problem and arises in many areas of physics (free
streamlines, jets, Hele-show flows, electromagnetic shaping, gravitational problems etc.) It has been intensively studied
from different points of view, by several authors. For more details about the methods used for solving this problem see
the (Gustafsson and Shahgholian, Introduction, 1996). Using the maximum principle together with the compatibility
condition of the Neumann problem, the authors gave sufficient condition of existence for problem QS ( f , k) (Barkatou and
al., 2005).

Thegoal of this paper is to prove the following

Theorem 1.1 The problem QS ( f , k) has a solution if and only if

(NS )
∫

C

f (x)dx > k|∂C|.

This theorem says that the inequality (NS ) is a necessary and sufficient condition of existence for the quadrature surfaces
free boundary problem.
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To see that (NS ) is a necessary condition of existence, let us suppose that Ω is a smooth solution of QS ( f , k). Integrating
the equation (1) over Ω and using the fact that uΩ vanishes on ∂Ω, the Green formula gives:∫

Ω

f (x)dx =

∫
∂Ω

−∂uΩ
∂ν

(s)dσ = k|∂Ω|.

Now, since the convex C is strictly contained in Ω, we obtain (NS ).

To prove that (NS ) is sufficient to get a solution of QS ( f , k), we proceed as follows.

By using the shape derivative (Sokolowski and Zolesio, 1992), the problem QS ( f , k) seems to be the Euler equation of the
following optimization problem. Put

Oε,C = {int(C) ⊂ ω ⊂ D; ω ∈ Oε},
where Oε is the class of the domains which satisfy the ε-cone property (Chenais, 1975).

Find Ω ∈ Oε,C such that
J(Ω) = Min{J(ω), ω ∈ Oε,C},

and
J(ω) =

∫
ω

(|∇uω(x)|2 − 2 f (x)uω(x) + k2)dx.

uω is the solution of the following Dirichlet problem.

P( f , ω)
{ −Δuω = f in ω

uω = 0 on ∂ω.

We begin by proving the following propositions.

Proposition 1.2

1. There exists Ω ∈ Oε,C such that
J(Ω) = Min{J(ω), ω ∈ Oε,C}.

2. If Ω is of class C2, then

(I)
{ |∇uΩ| ≤ k on ∂Ω ∩ ∂C
|∇uΩ| = k on ∂Ω \ ∂C.

Now, put

MC =
1
|∂C|

∫
C

f (x)dx,

F(ω) =
∫
ω

(|∇uω(x)|2 − 2 f (x)uω(x) + M2
C)dx, and

OΩ = {ω ⊂ Ω, ω ∈ Oε,C},

uω being the solution of the problem P( f , ω). We prove

Proposition 1.3

1. There exists Ω∗ ∈ OΩ such that
F(Ω) = Min{F(ω), ω ∈ OΩ}.

2. If Ω∗ is of class C2, then

(II)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|∇uΩ∗ | ≤ MC on ∂Ω∗ ∩ ∂C
|∇uΩ∗ | ≥ MC on ∂Ω∗ ∩ ∂Ω

|∇uΩ∗ | = MC on ∂Ω∗ \ (∂C ∪ ∂Ω).

Next, we prove by contradiction that (NS ) is sufficient to solve QS ( f , k). The contradiction is obtained according to (I),
(II) and by applying the maximum principle to Ω and Ω∗.

The paper is ended by two sections. Section 5 is concerned by the special case of the uniform density supported by a
segment for which we obtain a necessary and sufficient condition of existence. Section 6 contains some remarks.
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2. Preliminaries

2.1 Definitions and lemmas

Definition 2.1

Let K1 and K2 be two compact subsets of D. We call a Hausdorff distance of K1 and K2 (or briefly dH(K1,K2)), the
following positive number:

dH(K1,K2) = max
[
ρ(K1,K2), ρ(K2,K1)

]
,

where ρ(Ki,Kj) = maxx∈Ki
d(x,Kj), i, j = 1, 2 , and d(x,Kj) = miny∈K j

|x − y|.
Definition 2.2

Let ωn be a sequence of open subsets of D and let ω be an open subset of D. Let Kn and K be their complements in D̄.

We say that the sequence ωn converges in the Hausdorff sense, to ω (or briefly ωn

H−→ ω) if

lim
n→+∞dH(Kn,K) = 0.

Definition 2.3

Let {ωn, ω} be a sequence of open subsets of D. We say that the sequence ωn converges in the compact sense, to ω (or

briefly ωn

K−→ ω) if

• every compact subset of ω is included in ωn, for n large enough, and

• every compact subset of ω̄c is included in ωc
n, for n large enough.

Definition 2.4

Let {ωn, ω} be a sequence of open subsets of D. We say that the sequence ωn converges in the sense of characteristic

functions, to ω (or briefly ωn

L−→ ω) if χωn
converges to χω in L

p

loc(RN), p � ∞ , (χω is the characteristic function of ω).

Definition 2.5 (Chenais, 1975)

We say that a domain ω satisfies the ε-cone property if for all x ∈ ∂ω there exist a direction vector ξ ∈ RN such that the
cone C(y, ξ, ε) ⊂ ω for all y ∈ B(x, ε) ∩ ω . ε denotes both the angle and the hight of the cone.

Denoting by Oε the class of domains which have the ε-cone property, we can have this lemma.

Lemma 2.6 (Chenais, 1975)

If ωn ∈ Oε , then there exist an open subset ω ⊂ D and a subsequence (again denoted by ωn) such that (i) ωn

H−→ ω , (ii)

ω̄n

H−→ ω̄ , (iii) ∂ωn

H−→ ∂ω , (iv) χωn
converges to χω in L1(D) , (v) ω ∈ Oε and (vi) uωn

converges strongly in H1
0(D) to

uω (uω is the solution of P(ω)).

Lemma 2.7 (Pironneau, 1984)

Let ωn be a sequence of open and bounded subsets of D. There exist a subsequence (again denoted by ωn) and some open
subset ω of D such that

1. ωn converges to ω in the Hausdorff sense, and

2. |∂ω| ≤ lim inf
n→+∞ |∂ωn|.

2.2 Shape derivative

In this subsection, we use the standard tool of the domain derivative to write down the optimality conditions. Before doing
this, recall the definition of the domain derivative (Sokolowski and Zolesio, 1992). Suppose that ω is of class C2. Consider
a deformation field V ∈ C2

(
RN ; RN

)
and set ωt = {x + tV(x) : x ∈ ω}, t > 0. The application Id+ tV (a perturbation of the

identity) is a Lipschitz diffeomorphism for t small enough and by definition, the derivative of J at ω in the direction V is

dJ(ω,V) = lim
t→0

J(ωt) − J(ω)
t

.

As the functional J depends on the domain ω through the solution of some Dirichlet problem, we need to define also the
domain derivative u′ω of uω:

u′ω = lim
t→0

uωt
− uω

t
.
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Furthermore, u′ω is the solution of the following problem (Sokolowski and Zolesio, 1992):⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δu′ω = 0 in ω ,

u′ω = −
∂uω
∂ν

V · ν on ∂ω.
(1)

Now to compute the derivative of the functionals we consider in the sequel, recall the following (Sokolowski and Zolesio,
1992).

1. The shape derivative of the volume is ∫
∂ω

V · ν dσ. (2)

2. If G(ω) =
∫
ω

|∇uω|2dx, by the Hadamard formula we get

dG(ω,V) =
∫
∂ω

|∇uω|2V · νdσ. (3)

Since the domain ω satisfies ε-cone property, the deformation domain ωt satisfies the same property (for t sufficiently
small).

3. Proofs of Propositions 1.2 and 1.3

Let uD and uω respectively denote the solution of P( f ,D) and P( f , ω). The maximum principle implies:

0 ≤ uω ≤ uD.

By using the variational formulation of P( f , ω),∫
ω

|∇uω(x)|2dx =

∫
ω

f (x)uω(x)dx.

Then,

J(ω) =
∫
ω

(k2 − f (x)uω(x))dx, and F(ω) =
∫
ω

(M2
C − f (x)uω(x))dx.

Therefore,

J(ω) ≥ −
∫

D

f (x)uD(x)dx, and F(ω) ≥ −
∫

D

f (x)uD(x)dx.

Hence, inf J and inf F exist.

Proposition 1.2

The first item is obtained by using item 1 of Lemma 2.7, and (iv) and (v) of Lemma 2.6. The continuity w.r.t. the domains
for the Dirichlet problem P( f , ω) is obtained by (vi) of Lemma 2.6. For the item 2, using the same notations as in the
subsection 2.2, to get int(C) in (Ω)t (for t small enough) the admissible directions V must satisfy

V · ν ≥ 0 on ∂Ω ∩ ∂C.
Notice that for ∂Ω \ ∂C, each V is admissible. Now since uΩ vanishes on ∂Ω, (2) and (3) imply

dJ(Ω,V) =
∫
∂Ω

(k2 − |∇uΩ|2)V · νdσ.

And since dJ(Ω,V) ≥ 0 for each admissible direction V , according to what precedes we obtain (I).

Proposition 1.3

By replacing k by MC , item 1 is obtained in the same way as in the previous proof. For the second item, on ∂Ω∗\(∂Ω∪∂C),
any direction V is admissible whereas V must satisfy

V · ν ≥ 0 on ∂Ω∗ ∩ ∂C,
and

V · ν ≤ 0 on ∂Ω ∩ ∂Ω∗.
Then arguing as above, (2) and (3) imply (II).
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4. Proof of Theorem 1.1

We would like to say that the minimum obtained in Proposition 1.2 is solution to the problem QS ( f , k). It is not so simple.
In general, without any assumptions on f and k, QS ( f , k) does not have a solution : as we saw in the introduction, if Ω is
a smooth solution of QS ( f , k) then ∫

Ω

f (x)dx = k|∂Ω|,

which shows that if f has a too small total mass or if k is too large, the perimeter of Ω will not be large enough so that Ω
contains C. In such a case, the minimum that we found comes to intersect the convex C, i.e. ∂Ω and ∂C have a common
part and so

|∇uΩ| ≤ k on ∂Ω ∩ ∂C.
The condition (NS ) will allow us to get

∂Ω ∩ ∂C = ∅,
and then obtain

|∇uΩ| = k on ∂Ω.

Suppose by contradiction that ∂Ω ∩ ∂C � ∅. Since int(C) ⊂ Ω∗ ⊂ Ω, one of the following situations occurs.

1. ∂Ω ≡ ∂C
2. ∂Ω � ∂C and ∂Ω∗ ≡ ∂C
3. ∂Ω � ∂C and ∂Ω∗ � ∂C

4. ∂Ω � ∂C and ∂Ω ≡ ∂Ω∗

5. ∂Ω � ∂C and ∂Ω � ∂Ω∗

The aim of the sequel is to prove that each of the five cases above contradicts the condition (NS ).

Case 1. ∂Ω ≡ ∂C
∂Ω ≡ ∂C together with int(C) ⊂ Ω∗ ⊂ Ω implies that int(C) ≡ Ω ≡ Ω∗. Then by (I) and (II)

MC = |∇uΩ∗ | = |∇uΩ| ≤ k, on ∂Ω.

Case 2. ∂Ω � ∂C and ∂Ω∗ ≡ ∂C
∂Ω∗ ≡ ∂C together with int(C) ⊂ Ω∗ implies that int(C) ≡ Ω∗. Then by (I), (II) and the the maximum principle applied
to Ω and Ω∗ (Ω∗ ⊂ Ω and ∂Ω∗ � ∂Ω)

MC = |∇uΩ∗ | < |∇uΩ| ≤ k, on ∂Ω ∩ ∂Ω∗.

Case 3. ∂Ω � ∂C and ∂Ω∗ � ∂C
Applying the maximum principle to Ω and Ω∗, (I) and (II) give

MC ≤ |∇uΩ∗ | < |∇uΩ| ≤ k, on ∂C ∩ ∂Ω ∩ ∂Ω∗.

Case 4. ∂Ω � ∂C and ∂Ω ≡ ∂Ω∗
∂Ω∗ ≡ ∂Ω together with Ω∗ ⊂ Ω implies that Ω ≡ Ω∗. Then (I), and (II) imply

MC ≤ |∇uΩ∗ | = |∇uΩ| ≤ k, on ∂Ω ∩ ∂C.

Case 5. ∂Ω � ∂C and ∂Ω � ∂Ω∗
(I), (II) and the the maximum principle applied to Ω and Ω∗

MC ≤ |∇uΩ∗ | < |∇uΩ| ≤ k, on ∂C ∩ ∂Ω ∩ ∂Ω∗.
Remark 4.1

Barkatou and al. (2005) obtained, in the radial case, the following necessary and sufficient condition of existence for
QS ( f , k). ∫

B(0,R)
f (x)dx > NkV

1/N
N
|B(0,R)| N−1

N ,
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where VN is the volume of the unit ball in RN . Notice that this condition is exactly the condition (NS ) obtained by
Theorem 1.1.

5. The uniform density supported by a segment

Let a > 0 and put C = [−1, 1] × {0} ⊂ R2. Consider the following free boundary problem. Find an open and bounded set
Ω ⊂ R2 which contains strictly C and such that the following free boundary problem has a solution:

QS (a, k)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ΔuΩ = aδC in Ω

uΩ = 0 on ∂Ω
− ∂uΩ
∂ν
= k on ∂Ω

Physically, this means that if the line segment in the complex plane is provided with a uniform density above a certain
level, then there will exist a domain containing compactly the line segment such that the given measure on the line is
equigravitational to the arc-length measure of the domain.

Theorem 5.1

The problem QS (a, k) has a solution if and only if a > 2k.

We prove the theorem above in two propositions.

Proposition 5.2

Let (Ωa, uΩa
) be the solution of the problem QS (a, k). If Ωa is lipschitz and uΩa

∈ H2(Ωa \C) then a > 2k.

Proof

Let ε ∈ [0, 1], put Vε = [−1 − ε, 1 + ε] × [−ε, ε] and Ωε = Ωa \ Vε. uΩa
is harmonic on Ωε thus

0 =
∫
Ωε

ΔuΩa
=

∫
∂Ωa

∂uΩa

∂ν
+

∫
∂Vε

−∂uΩa

∂ν
.

Writing uΩa
= h − a

2
|y| (where h is a harmonic function on Ωa) and tending ε to 0, we obtain:

lim
ε→0

∫
∂Vε

∂uΩa

∂ν
= −2a.

But −∂uΩa

∂ν
= k on ∂Ωa, so

k|∂Ωa| = 2a.

C is strictly contained in Ωa thus |∂Ωa| > 4 and consequently a > 2k.

Proposition 5.3

If a > 2k, then the problem QS (a, k) has a solution.

Proof

Let B be the unit ball of R2. Put
Oε,B = {B ⊂ ω ⊂ D, ω ∈ Oε}, and

Ja(ω) =
∫
ω

(|∇uω(x)|2 − 2auω(x) + k2)dx.

uω is the solution of the Dirichlet problem P(aδC , ω). Arguing as in Section 3, we prove the existence of Ωa ∈ Oε,B which
minimizes the functional Ja on Oε,B. Then, supposing Ωa of class C2, we obtain the following optimality conditions:

(Ia)
{ |∇uΩa

| ≤ k on ∂Ωa ∩ ∂C
|∇uΩa

| = k on ∂Ωa \ ∂C.
Now, put

OΩa
= {ω ⊂ Ωa, ω ∈ Oε,B}, and

Fa(ω) =
∫
ω

(|∇uω(x)|2 − 2auω(x) + (
a

2
)2)dx.

As above, there exists Ω∗a ∈ OΩa
which minimizes the functional Fa on OΩa

. If Ω∗a is of class C2, then:

(IIa)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|∇uΩ∗a | ≤ a

2 on ∂Ω∗a ∩ ∂C
|∇uΩ∗a | ≥ a

2 on ∂Ω∗a ∩ ∂Ωa

|∇uΩ∗a | = a
2 on ∂Ω∗a \ (∂C ∪ ∂Ωa).
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Suppose by contradiction that ∂Ωa ∩ ∂B � ∅. Replacing respectively in the proof of Theorem 1.1, C, Ω, Ω∗, and MC by
B, Ωa, Ω∗a and a

2 , we obtain the desired contradiction.

Remark 5.4

Barkatou and Khatmi (2008) proved that if a > 3.92k then QS (a, k) has a solution while Shahgholian and Gustafsson
(1996) showed that if a ≥ 24πk, then the problem QS (a, k) admits a solution.

6. Final remarks

Remark 6.1

For the p-Laplacian, the continuity with respect to the domain is a consequence of the γp-convergence (Bucur and
Trebeschi, 1998). So using Hopf’s comparison principle and considering, for p > 1, and p � 2, the functional

Jp(ω) =
∫
ω

(|∇uω(x)|p − p f (x)uω(x) + kp)dx,

one obtains the same necessary and sufficient condition of existence as in Theorem 1.1.

Remark 6.1

Gustafsson and Shahgholian (1996) showed the existence of a minimizer u to the functional

J(v) =
∫

RN

(|∇v|2 − 2 f v + k2χ{v > 0})dx,

over all 0 ≤ v ∈ H1(RN). They prove that (Ωu, u) (Ωu = {u > 0}) is a solution to QS ( f , k) but the overdetermined condition
is given in a weak sense:

lim
ε↘0

(|∇u|2 − k2)η · vdHN−1 = 0,

for every η ∈ C∞
0 (RN ; RN). Then, they relate their minimization problem to quadrature domain QD( f , k) and show that

Supp f ⊂ Ωu ⇔ Ωu ∈ QD( f , k).

They conclude their paper by giving (Gustafsson and Shahgholian, 1996, Theorem 4.7) the following sufficient condition:
If Supp f ⊂ BR and if

∫
BR

f (x)dx > ( 6N N
3R
|BR|)k, then Ωu ∈ QD( f , k) with B3R ⊂ Ωu (BR being some ball of radius R).
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