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Abstract

If positive weights are assigned to the edges of a graph G, then degree of a vertex is the sum of the weights of edges that
are incident to the vertex. A graph with weighted edges is said to be irregular if the degrees of the vertices are distinct. The
irregularity strength of a graph is the smallest s such that the edges can be weighted with {1,2,3,--- , s} and be irregular.
This notion was defined by Chartrand et al. (G Chartrand, M. S. Jacobson, J. Lehel, O. R. Ollerman, S. Ruiz & Saba.
1988). In this paper, we discuss the irregularity strength of corona product of a graph with star graph K, ,. We obtain a
sufficient condition on the minimum degree of a graph H which determines the irregularity strength of a graph H having
p vertices with the star graph K ,.

Keywords: Irregularity strength, irregular weighting, Corona product of graphs.
1. Introduction

Let G = (V,E) be a graph with at most one isolated vertex and without K, components. A function f : E — Z*
is called a weighting of G, and for an edge e € E, f(e) is called weight of e. The strength s(f) of f is defined as
s(f) = max.g f(e). The weighted degree of a vertex x € V is the sum of weights of its incident edges: dy(x) =
Z f(e). We will call it degree of x and is denoted by w(x). The irregularity strength s(G) of G is defined as s(G) =

esx

min{s(f), f is an irregular weighting of G}. The study of s(G) was initiated by Chartrand et al. (G. Chartrand,
M. S. Jacobson, J. Lehel, O. R. Ollerman, S. Ruiz & Saba. 1988) and have proved finding irregularity strength is difficult
in general. There are not many graphs for which the irregularity strength is known. For an overview of the subject the
reader is referred to the paper by G Chartrand et al. (G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Ollerman, S. Ruiz and
Saba. 1988).

G. Chartrand et al. (G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Ollerman, S. Ruiz & Saba. 1988) have proved following
propositions

Proposition 1.1 (G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Ollerman, S. Ruiz & Saba. 1988) Let G be connected

graph of order at least 3 containing p; vertices of degree i, for some positive integer i, then s(G) > pffl +1

Proposition 1.2 (G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Ollerman, S. Ruiz & Saba. 1988) For each positive integer
n > 2, there exists a complete network G of order n and strength 2 with degree set {n,n+1,n+2,--- ,2n—2} and containing
two vertices of degree |_3”2‘ Z.

Proposition 1.3 (G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Ollerman, S. Ruiz & Saba. 1988) For each n > 3,
s(K,) = 3.

M Jacobson and Lehel (M Jacobson & J Lehel. 1998) obtained following proposition.
Proposition 1.4 (M Jacobson & J Lehel. 1998) If G is a graph with p vertices, then s(G) > [A(G)], where A(G) =

max { (Zlizi nk) +i—1

na; }, where ny, is the number of vertices of degree k in G.

<) J

R J Faudree et al (R J Faudree, M S Jacobson, L Kinch & J Lehel. 1991) have proved following proposition.
Proposition 1.5 (R J Faudree, M S Jacobson, L Kinch & J Lehel. 1991) The irregularity strength of K3 is given by
142 if 1= 3(mod4)

[3’—;1] +1 otherwise

s(tK3)= {

Theorem 1.6 (M I Jinnah & Santhosh Kumar K R, 2012) If G = H © K5, where H is a graph with p > 3 vertices such that
O(H) = 2,then s(G) = p + 1.
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Definition 1.7 The corona G © H of G and H is the graph obtained by taking one copy of G(which has p;vertices) and p;
copies of H, and then joining the i vertex of G to every vertex of i copy of H.

2 Main Results

In this section, we consider the class of graphs G = H® K ,, where H is an arbitrary graph with p vertices. G has (n+2)p
vertices and has np vertices of degree 2. By proposition 1.1, s(G) > ["p;]. Forn=1,G=HOo0K;; = HOoK,. By
theorem 1.6, s(H © K») = p + 1, if 5(H) > 2.

2.1 Cases whenp =1andp =2
In this section, we consider p = 1 and p = 2.

Theorem 2.1 s(K; © K| ,) = I'%"l ifn>1

Proof. G = K| © K, , has n + 2 vertices and has n vertices of degree 2. Thus s(G) > I'%'I.

Let xy, xp, x3, - - - , x, be the pendant vertices of star, u# be the center of star and v be the vertex of K. Edges are ux;, vx; for
i=1,2,3,--- ,nand uv.
Define £ EG) = 20y fum =[], fovm) = {—" . W and  fa) = "2 1}
w(x;) = [é-‘ + [%] =i + 1, the weights vary of x; vary as 2,3, ,n+1.
_ Ll o )
w() = (;[2-‘)+[2-‘
3 %(n2+4n+4) if niseven
L0 +4n+3) if nisodd
wy) = S il + [ﬂ-‘
i=1 2 ?
3 %(n2+6n+4) if niseven
B A]—‘(n2+6n+l) if nisodd
As n > 1, all these weights are distinct. Thus s(G) < I'%'I. Therefore s(G) = [%1 ]

Remark 2.2If n = 1, G = K| © K, = K3, then s(G) = 3.
Now suppose p = 2, then H is either K5 or K.
Theorem 2.3 s(K, © K1 ,,) =n+ lifn > 2.

Proof. G = K, 0 K\ » has 2n + 4 vertices and has 2n vertices of degree 2. Then s(G) > n + 1.

Let x;,y; fori =1,2,--- ,n be the pendant vertices of stars, x, y be the centers of stars and u, v be the vertices of H. Edges
are xx;, yy;, ux;,vy; fori = 1,2,--- ,n, xu and yv.

Define f : E(G) — Z* by fOx) =1, flux) =i+ 1, for i=12,---,n

For n even fOoy) = i ifiisodd

i+1 ifiiseven
i+2 ifiisodd

= i+1 ifiiseven
i for i=13,---,n-2

Sy

For n odd JOyi) . '
= i+1 for i=2,4,---,n-3
f(yYn—l) = n-1 and f()’)’n) =n+1
Jy) = i+2 for i=13,---,n-2
= i+1 for i=2,4,---,n-3
SfWy-)) = fly) =n+1
Sxu) = fov)=n+l

Using this assignment, the weights of vertices are calculated as follows.
w(x;) = f(xix) + f(xju) =i+i+1=2i+ 1. These weights vary as 3,5,---,2n + 1.
If n is even, w@i) = fOy)+ fvy)=2i+2
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Ifnisodd, wiy;) = 2i+2fori = 1,2,--- ,n—2, w(y,—1) = 2n and w(y,) = 2n + 2. Thus weights of y; vary as
4,6,---,2n+ 2.

(n2 +3n+ 2) and

N =

Also w(x) = Zf(xxi) + flu) =
P

(n2 +5n+ 2)

DI —

wiw) = )" flux) + fxu) =
i=1

If n is even w(y) = Zf(yy,-)+f(yv) = Zi+ Z(i+ Dt+n+1= %(n2+4n+2) and w(v) = ;f(vyi) + fOv) =

i=1 iodd ieven
. . L/,
Z(Hz)fZ(H D+n+1= E(n +6n+2)
iodd ieven
. L . . 1/,
If  is odd, w(y) = Zf(yyi)+f(yv) = Z i+ Z G+ +n+l+n—l+n+1= z(n +4n+1) and
i=1 iodd upto n—2 i even upto n—3
z 1
wo) = D foy)+fom = D (+D+ Y G+ DEntlentlentl= z(nz+6n+3)
i=1 iodd upto n—2 i even upto n—3
Hence if n is even, the weights of vertices are 3,4,5,6,--- ,2n + 1,2n + 2, ”2+‘;”+2, ”z“é’”z, ”2+§”+2, ”2+g”+2. Asn > 2,
2n+2 < ”ZHT””, so that all weights are distinct. If n is odd, the weights of vertices are 3,4,5,6,--- ,2n+1,2n+2, ’MT"”,
”z*g’”l, ”2+§’”2, "2+g”*3. Asn>22n+2< ”Z*ST’”Z, all these weights are distinct.
Thus f is an irregular weighting of G, so that s(G) < n + 1. Hence s(G) =n+ 1l ifn > 2. O

Remark 24 Whenn=1,G =K, 0 K, = 2K3. Then s(G) = 5 by proposition 1.5, Whenn = 2, H = K, G=K 0 K.
A=3,0=2.Ifs=3,3A -6+ 1 =8 = Number of vertices. So all weights from 2 to 9 are to be included in degree set.
G is the disjoint union of two copies of K4 — e. The weights 2 and 3 will be in one copy of K4 — e and the weights 8 and 9
will be in the second copy. Then weights 4 and 5 will be in the second copy. Hence weights 6 and 7 should be in the first
copy, which is not possible. Thus s(G) > 3.

The figure 1 gives an irregular weighting of G so that s(G) = 4

Figure 1. An Irregular assignment of G = fz 0K,

Theorem 2.5 s(K; 0 K ,) =n+1ifn>2

Proof. G = K, © K, , contains one more edge than that of K0 K\ », the edge of K,. Assign the edges of K, 0 K, as
same as in theorem 2.3. Assign the edge of K, with n + 1. The weights of x;, y;, x, y will be same as that in theorem 2.3.

2 2
Also w(u) = B8m2 4 5y 4 | = 23T g

2 2
W) "ZJ“ST”” if neven
w(y) =
w8 f podd
As n > 2, all these weights are distinct. Thus s(G) = n + 1 forn > 2. m]

Remark 2.6 For n = 1, G = K, © K;. An irregular weighting of G is given in figure 2.
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® ! ® © 2 ®

Figure 2. An Irregular assignment of G = K, © K,

Forn =2,G = K; © K; 7. An irregular weighting of G is given in figure 3.

©) ® ® ©®

Figure 3. An Irregular assignment of G = K> © K »

2.2 Case when p > 2

In this section, we consider the case when p > 2. First we consider a special case which needs to be treated separately.
Take n = 2.

Theorem 2.7 Let H be any graph having p vertices such that 5(H) > 2, then s(H©® K;2) = p + 1.

Proof. Let x;,y; be the pendant vertices and z; be the center of i star fori = 1,2,3,--- ,p- Letuy,uo,u3,- -+ ,u, be the
vertices of H and d; < d < --- < d, be the degree sequence of H such that deg(u;) = d;. Assume that i” copy of star is
joined to the vertex u; of H.

G = H O K, ,. Edges are x;z;, yizi, xiu;, yiu;, w;z; fori = 1,2,--- | p and edges of H. There will be 2p vertices of degree 2.
Hence s(G) > p + 1.

Define f : E(G) — Z* by f(xiz;) =1, f(vizi) = p, fqu) = 1, fau) =i+1, f(uiz;) = p+1,and f(e) = p+1 foralle €
E(H)

w(x;) = f(xizi) + f(xiu;) = i + 1. These weights vary as 2,3,--- ,p + 1.
w() = fOiz;) + f(yiu;) = p+ i+ 1. These weights varyas p+2,p+3,--- ,2p + 1.
w(z)) = f(xizp)) + fOizi) + fzu)) =i+ p+p+1=2p+i+ 1. These weights vary as2p +2,2p +3,--- ,3p + 1.

w(u) = fOgu)+ fQiu)+ f(Zu)+di(p+1) = 1+i+ 1+ p+1+di(p+1) = p+3+di(p+1)+i. Since d; < dp < --- < d,, the
weights of u; are distinct and are in increasing order. minw(u;) = w(u;). Also, since d; > 1, w(u;) = p+3+di(p+1)+1 >
3p +6>3p+ 1. Thus all these weights are distinct. So s(G) < p + 1. Hence s(G) = p + 1 if 6(H) > 2. ]

Remark 2.8 The condition 6(H) > 2 in theorem 2.8 is not necessary. There exist graphs H with 6(H) = 1 and s(HOK| 2) =
p + 1 as shown in following example.

Example 2.9 Consider H = Pz and G = P3; © K} 5. p = 3. The figure 4 gives an irregular weighting of G so that s(G) = 4.
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Figure 4. Irregular assignment of G = P3 © K »

Now we consider the case when both n, p > 3. For the computation of weights, we use following two formulae.

Remark 2.10
n . > 1
0 T, = Z [J + (12 )p}

=1
— ;1(j+l) + n(n;l)p

if peven, jodd
if peven, jeven
(n—1 1 . .
o +%+Z if n,p,jodd
M+M—}1 if n,podd, jeven

if neven, podd

2 nn-1)
)
n2j+h

n(2§+1) + n(né—tl)p
4 4

@ M=) {—ﬂ 1 +2(i_ 1),1
i=1

_ gD +w if peven, jodd

_n(y+2) n(n—1)p . .

: —n(22j+3)+ —n(;}_l)p l]:pe.ven, Jj e.ven

= —r—+-7—3 if n,p,jodd
n(2j+3)

= A +%+% ifn,podd, jeven
%+M if neven, podd

Theorem 2.11 Let H be any graph without isolated vertices and having p > 3 vertices, then s(H © K;,) = ["p;l] for
n>3.

Proof. Let H be a graph without isolated vertices and having p > 3 vertices. Let d; < d, < .-+ < d, be the degree
sequence of H. Let uy,up,us3,--- ,u, be the vertices of H with deg(u;) = d;. Let F, F», F3,--- , F, be the copies of star
Ki,,. Assume F; is joined to the vertex u; for j = 1,2,3,-- -, p. Take the pendant vertices of Fj as uj; fori =1,2,3,--- ,n
and w; be center of the star F;.

G = HO K ,. Edges of G are wju;, ujuj,ujw; for j = 1,2,3,--- ,pandi = 1,2,3,--- ,n and edges of H. G has np
vertices of degree 2, so that s(G) > ["" +l] Take k = [%ﬂ]

5 |-
Define f : E(G) — Z* by

j+ (-1
fovu) = {—’ sk )ﬂ
Py = "j+l+(i—1)p}
J7I - 2
fujw)) = k if pisodd

k—1 if piseven,jeven
k piseven,jodd
f(e) = k foralle<c E(H)

Using this assignment the weights of vertices are calculated as follows.

w(uj) = fwjuj) + f(uju;;) = j+ (i —1)p + 1. These weights vary as 2,3,4,--- ,np + 1.

+ f(wjuj)

n . . l
R [
i=1
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W(MJ) = Z ’VM“ +f(Mjo) + djk
i=1

Casel: piseven

M7=y {ww then

i=1

G+ | n=Dp o
T: = n,JZ + =t if jodd
/ 3+ —"("Zl)p if jeven
Here T; will be same as T, for odd j.
n(j+1) | n(n-lp P
ww;) ni n:;:—l) Pk U.C ].Odd
T+ L +k—1 if jeven
These weights are distinct and minw(w;) = w(w;). As pis even k = % w(w,) = W +n. Asn > 3, W > np.
Then wiwy) = n + W >n+np>np+1=maxw(uj).
n . .
_ j+1l+@G@-1Dp
If M; = Z { 5 , then
i=1
G+1) | n=Dp . .
M - —'”22 +—"”41” if jodd
! —"(J; ) 4+ —"("; 2 if  jeven
Here M; will be same as M, for even j.
n(j+1) n(n—1)p ) . .
W) n(]%,z) + —n(nil)p +k+dik if .J odé
==+ =g +k-—1+djk if jeven
Since d; < d, < d3 < --- < d,,, the weights of u; are distinct and are in increasing order. minw(u;) = w(u;). Also
maxw(w;) = w(w,_1) as p is even.
wwp_1) = W+%+%+l

W +np+1
Also minw(u;) = w(u) 2 wwp—1) + n+1 > w(w,_1) = maxw(w;). All weights are distinct. Hence s(G) < k. Thus
s(G) = k.
Case2: nisevenand pisodd. k = % +1
T;= @ + @. All these are distinct.
w(wj)=@+@+%+l.
minw(w;) = w(wy) = %(np +p+3)+1>np+1,asn>3even, n >4 Thus wiw) > maxw(u;;).

M; =

j @ + M) - A] these are distinct and are in increasing order.

4
w(uﬁz@+@+%+l+dj(%+l).
Since d; < d> < --- < d,, the weights of u; are distinct and are in increasing order.

Also maxw(wj) = wiw,) = Hnp+p+1D+"L+1and minw(u;) = "2 430 122 4 14 d (L +1) > wwp) +n+1 > w(wy).
Hence all these weights are distinct. Thus s(G) = k.

Case3: Bothnand p are odd. k = %.

. B n(né—tl)p + n(zi‘*'l) + % lfJOdd
Jj n(n;l)p + ﬂ@i*” — 41_1 lfjeven
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ww;) =T, + "P2+1. All these are distinct and are in increasing order. minw(w;) = w(w;) > np +3 asn > 3. Hence

minw(w;) > np + 1.

+1 +1
M;+ "= + d (%)

1 2j+3 1 1 Lofi
{n(n4)p+"(£+)_z+d1(np+)+k+np+ if jodd

wi(ut;)

2 2

n(n—1)p n(2j+1) 1 np+1 np+1 cpo
Tt Tty rdi() k5= if jeven

2 2

Asn>2andd; <d, <--- <d,, all these weights w(u;) are distinct and are in increasing order. maxw(w;) = w(w,) =

2o Dp g mCprD) 1y 2L ipy(ug) = 202 4 S Ly Ly g (225D S yw(w,) as d > 1. All these weights are distinct.
Thus we have s(G) = k. m]

Remark 2.12 The condition 6(H) > 0 in theorem 2.11 is not necessary. There exist graphs H with 6(H) = 0 and
S(H O Ky,) =[5,

Example 2.13 Consider H = K UK, and G = (K1 UK»)©K3.n=3,p =3, [%] = 5. The figure 5 gives an irregular
weighting of G so that s(G) = 5.

Figure 5. Irregular assignment of G = (K} U K») © K 3
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