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Abstract 

Complete homogeneous symmetric polynomial has connections with binomial coefficient, composition, elementary 

symmetric polynomial, exponential function, falling factorial, generating series, odd prime and Stirling numbers of the 

second kind by different summations. Surprisingly the relations in the context are comparable in pairs.  
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1. Introduction    

For each nonnegative integer n, complete homogeneous symmetric polynomial  ℎ𝑛(𝑥1, … , 𝑥𝑘 )  or in brief ℎ𝑛{𝑥𝑘} is 

the sum of all distinct monomials of degree n in the variables: 𝑥1, … , 𝑥𝑘  . Formally  

ℎ𝑛{𝑥𝑘}    =   ∑ 𝑥𝑖1

1 ≤ 𝑖1 ≤ …  ≤ 𝑖𝑛 ≤ 𝑘

𝑥𝑖2 
… 𝑥𝑖𝑛 

. 

Some special values of ℎ𝑛{𝑥𝑘} are: ℎ0 {𝑥𝑘} = 1;  ℎ𝑛 {0} = 0;  ℎ1 {𝑥𝑘} = 𝑥1  +  … +  𝑥𝑘  and ℎ𝑛{𝑥1} = 𝑥1
𝑛 . 

The monomials again belong to the distinct symmetric polynomials. More precisely, ℎ𝑛{𝑥𝑘} is the sum of all distinct 

monomial symmetric polynomials of degree n in k variables: 𝑥1, … ,  𝑥𝑘 .  

Example: ℎ4{𝑥3} = 𝑚(4){𝑥3}  + 𝑚(3,1){𝑥3}  +  𝑚(2,2){𝑥3}  +  𝑚(2,1,1){𝑥3} . 

[𝑚(𝑎,𝑏,𝑐,   … )(𝑥1, … ,  𝑥𝑘 ), or in brief, 𝑚(𝑎,𝑏,𝑐,   … ){𝑥𝑘}  = Distinct monomial symmetric polynomial of k variables: 

𝑥1, … ,  𝑥𝑘 in degree n such that n = a + b + c + …] 

= (𝑥1
4  +  𝑥2

4  +  𝑥3
4 )  + (𝑥1

3𝑥2  + 𝑥1 𝑥2
3  +  𝑥1

3𝑥3 +  𝑥1 𝑥3
3  +  𝑥2

3𝑥3  +  𝑥2 𝑥3
3 ) 

     + ( 𝑥1
2𝑥2

2   + 𝑥1
2 𝑥3

2  +  𝑥2
2𝑥3

2 )  +  (𝑥1
2𝑥2 𝑥3  +  𝑥1 𝑥2

2𝑥3  +  𝑥1 𝑥2 𝑥3
2 ). 

ℎ𝑛{𝑥𝑘} involves with the recurrences of many patterns. From its formal definition, it is easy to find a fundamental 

identity or a recurrence relation which yields further the recurrence relations of two kinds. Some combinatorial 

relationships are the consequences of a pair of characterization formulas for the polynomial. A recurrence function for 

the polynomial, which is analogous with a function for falling factorial, helps to find the relation of the polynomial with 

elementary symmetric polynomial. The relation between the polynomials of two kinds is useful to establish divisibility 

of the polynomial-summations by an odd prime. It is a curious fact that many relations involving ℎ𝑛{𝑥𝑘} are 

comparable in pairs, and we show the pairs in all topics of the paper. 

2. Recurrence Relations of Two Kinds for 𝒉𝒏{𝒙𝒌}   

Letting that 𝑥𝑚 is a definite variable in the set: 𝑥1, … , 𝑥𝑘 + 1, we denote other k variables by 𝑦1, … , 𝑦𝑘 . From the 

formal definition of ℎ𝑛{𝑥𝑘}, it then follows that a term of ℎ𝑛 + 1{𝑦𝑘} is also a term of ℎ𝑛 + 1{𝑥𝑘 + 1}, which does not 

contain 𝑥𝑚   as a factor; and if 𝑥𝑚  is multiplied with a term of  ℎ𝑛{𝑥𝑘 + 1}  then the product is a term of 

ℎ𝑛 + 1{𝑥𝑘 + 1} , which contains 𝑥𝑚 as a factor. This implies that ℎ𝑛 + 1{𝑦𝑘} is the sum of some terms of ℎ𝑛 + 1{𝑥𝑘 + 1} 

where none of these terms has a factor 𝑥𝑚; and 𝑥𝑚  ℎ𝑛{𝑥𝑘 + 1} is the sum of some other terms of ℎ𝑛 + 1{𝑥𝑘 + 1} where 

𝑥𝑚 is a common factor of these terms. We know that the number of terms of ℎ𝑛{𝑥𝑘} is(𝑘 + 𝑛 − 1 
𝑛 

). Hence ℎ𝑛 + 1{𝑦𝑘} is 

the sum of (𝑘 + 𝑛 
𝑛 + 1

) among (𝑘 + 𝑛 + 1 
𝑛 + 1

) terms of ℎ𝑛 + 1{𝑥𝑘 + 1} and 𝑥𝑚 ℎ𝑛{𝑥𝑘 + 1} is the sum of remaining (𝑘 + 𝑛 
𝑛 

)
 

terms 

of ℎ𝑛 + 1{𝑥𝑘 + 1}. Clearly ℎ𝑛 + 1{𝑥𝑘 + 1} is the sum of these two parts. That is, we have the following fundamental 

identity or recurrence relation for the polynomial. 
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ℎ𝑛 + 1{𝑥𝑘 + 1}  =  ℎ𝑛 + 1{𝑦𝑘}  + 𝑥𝑚 ℎ𝑛{𝑥𝑘 + 1} .            (1) 

When 𝑥𝑚 = 𝑥𝑘 + 1 then other k variables are: 𝑥1, … , 𝑥𝑘  for which evidently we can write {𝑥𝑘} instead of
 
{𝑦𝑘} in (1). 

Hence from (1), we have: 

ℎ𝑛 + 1{𝑥𝑘 + 1}  =  ℎ𝑛 + 1{𝑥𝑘}  + 𝑥𝑘 + 1 ℎ𝑛{𝑥𝑘 + 1}.                          (1.1) 

(1.1) can yield the recurrence relations of two kinds. We show other applications of (1.1) also in the subsequent topics.  

2.1 Kind 1 with a Series of k Terms 

From (1.1),   

                                  ∑[ ℎ𝑛  + 1{𝑥𝑖 + 1}  −  ℎ𝑛 +  1{𝑥𝑖} ]

𝑘 

𝑖 = 1

 =  ∑ 𝑥𝑖 + 1

𝑘 

𝑖 = 1

ℎ𝑛 {𝑥𝑖 + 1} . 

                                    ℎ𝑛 + 1{𝑥𝑘 + 1}  =  ∑ 𝑥𝑖 ℎ𝑛 {𝑥𝑖}

𝑘 + 1 

𝑖 = 1

 .                                   

                                   ℎ𝑛{𝑥𝑘}  =  ∑ 𝑥𝑖 

𝑘 

𝑖 = 1

ℎ𝑛 − 1 {𝑥𝑖} .                                                                          (2)  

(2) is the recurrence relation of kind 1 whose applications are shown in Topic 3.3 and Topic 4. The modified form of (2) 

is (2.1) below. We can write: 

ℎ1{𝑥𝑘}   =  ∑ 𝑥𝑖1

𝑘

𝑖1 = 1
 . 

Then from (2), 

                               ℎ2{𝑥𝑘}   =  ∑ 𝑥𝑖 

𝑘 

𝑖 = 1

ℎ1 {𝑥𝑖}   =  ∑ 𝑥𝑖2

𝑘

𝑖2 = 1

∑ 𝑥𝑖1 

𝑖2

𝑖1 = 1

. 

In this way ℎ𝑛{𝑥𝑘} is a recurrence such that 

                        ℎ𝑛{𝑥𝑘}   =  ∑ 𝑥𝑖 𝑛

𝑘

𝑖𝑛 = 1

 …  ∑ 𝑥𝑖3

𝑖4

𝑖3 = 1

∑ 𝑥𝑖2

𝑖3

𝑖2 = 1

∑ 𝑥𝑖1

𝑖2

𝑖1 = 1

 .                                          (2.1) 

(2.1) has specialty to generate all (𝑘 + 𝑛 − 1 
𝑛 

) terms of ℎ𝑛{𝑥𝑘} that involve with (𝑘 + 𝑛 − 1 
𝑛 

) ordered integers. Let (2.1) 

be decomposed for k = 3 and n ∈ (1, 2, 3) in succession. 

                ℎ1{𝑥3}  =  𝑥3 + 𝑥2 + 𝑥1.  

                ℎ2{𝑥3}  =  𝑥3 (𝑥3 + 𝑥2 + 𝑥1)  + 𝑥2 (𝑥2 + 𝑥1)  + 𝑥1 . 𝑥1   

                       =  𝑥3 . 𝑥3  +  𝑥3 . 𝑥2  +  𝑥3 . 𝑥1  +  𝑥2 . 𝑥2  +  𝑥2 . 𝑥1  +  𝑥1 . 𝑥1 . 

                ℎ3{𝑥3}  =  𝑥3 (𝑥3 . 𝑥3  +  𝑥3 . 𝑥2  +  𝑥3 . 𝑥1  +  𝑥2 . 𝑥2  +  𝑥2 . 𝑥1  +  𝑥1 . 𝑥1)  

                         +  𝑥2 (𝑥2 . 𝑥2  +  𝑥2 . 𝑥1  +  𝑥1 . 𝑥1) +  𝑥1 . 𝑥1 . 𝑥1 

                       = 𝑥3 . 𝑥3 . 𝑥3 + 𝑥3 . 𝑥3 . 𝑥2 + 𝑥3 . 𝑥3 . 𝑥1 + 𝑥3 . 𝑥2 . 𝑥2  +  𝑥3 . 𝑥2 . 𝑥1 + 𝑥3 . 𝑥1 . 𝑥1 

                         + 𝑥2 . 𝑥2 . 𝑥2  + 𝑥2 . 𝑥2 . 𝑥1 + 𝑥2 . 𝑥1 . 𝑥1 + 𝑥1 . 𝑥1 . 𝑥1. 

We can find the integer-sequences with respect to the bottom indices of 𝑥3, 𝑥2 and 𝑥1 in the decompositions of ℎ𝑛{𝑥3} 

for n = 1, 2 and 3. The sequence for ℎ1{𝑥3} is: 3 > 2 > 1. Omitting the multiplication dots (∙), the sequence for ℎ2{𝑥3} 

is: 33 > 32 > 31 > 22 > 21 > 11; and for ℎ3{𝑥3} is: 333 > 332 > 331 > 322 > 321 > 311 > 222 > 221 > 211 > 111 

respectively. Each sequence is the immediate consequence of the previous one. Thus the sequence for ℎ4{𝑥3} is: 3333 > 

3332 > 3331 > 3322 > 3321 > 3311 > 3222 > 3221 > 3211 > 3111 > 2222 > 2221 > 2211 > 2111 > 1111; and so on. 

We further notice that the number of terms of ℎ1{𝑥𝑘} is k; this of ℎ2{𝑥𝑘} is: ∑ 𝑖𝑘
𝑖 = 1  or (𝑘 +  1

2 
); this of ℎ3{𝑥𝑘 } is: 

∑ (𝑖 +  1
2 

)𝑘 
𝑖 = 1 or (𝑘 +  2

3
); and so on. In other way the number of terms of ℎ1{𝑥𝑘} is ∑ (𝑖1

0 
)𝑘 

𝑖1 = 1 ; then this of ℎ2{𝑥𝑘} is: 

∑ ∑ (𝑖1
0 

)
𝑖2 
𝑖1 = 1

𝑘
𝑖2 = 1 ; and so on. Thus (𝑘 +  𝑛 − 1

𝑛 
) or the number of terms of ℎ𝑛{𝑥𝑘} is a recurrence, similar to (2.1) such 

that  
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                                   (
𝑘 + 𝑛 − 1

𝑛
)  =  ∑

𝑘

𝑖𝑛 = 1

…  ∑

𝑖4

𝑖3 = 1

∑

𝑖3

𝑖2 = 1

 ∑ (
𝑖1

0
)

𝑖2

𝑖1 = 1

.                             (2.2)  

2.2. Kind 2 with a Series of n + 1 Terms 

Again from (1.1),   

                       ∑ 𝑥𝑘 + 1
𝑛 − 𝑗

𝑛 

𝑗 = 1

 [ ℎ𝑗 + 1 {𝑥𝑘 + 1}  − 𝑥𝑘 + 1 ℎ𝑗{𝑥𝑘 + 1} ]   =   ∑ 𝑥𝑘 + 1
𝑛 − 𝑗

𝑛 

𝑗 = 1

 ℎ𝑗 + 1{𝑥𝑘} . 

                           ℎ𝑛 + 1 {𝑥𝑘 + 1}  =  𝑥𝑘 + 1
𝑛 + 1   +  ∑ 𝑥𝑘 + 1

𝑛 – 𝑗 + 1

𝑛 + 1 

𝑗 = 1

 ℎ𝑗{𝑥𝑘} .  

[ ℎ1{𝑥𝑘 + 1}  =  𝑥𝑘 + 1  +  ℎ1{𝑥𝑘} .] 

                          ℎ𝑛{𝑥𝑘 + 1}  = 𝑥𝑘 + 1
𝑛 + ∑ 𝑥𝑘 + 1

𝑛 – 𝑗 

𝑛 

𝑗 = 1

 ℎ𝑗{𝑥𝑘} . 

                          ℎ𝑛{𝑥𝑘 + 1}  = ∑ 𝑥𝑘 + 1
𝑛 – 𝑗 

𝑛 

𝑗 = 0

 ℎ𝑗{𝑥𝑘} .                                                                                                                          (3) 

(3) is the recurrence relation of kind 2. Substituting 1, … , k + 1 for 𝑥1  , … , 𝑥𝑘 + 1 , (3) is reduced to  

                                          ℎ𝑛{𝑘 + 1}   =  ∑ (𝑘 + 1)𝑛 − 𝑗  ℎ𝑗{𝑘} .

𝑛

𝑗  = 0

                                                         (3.1) 

A consequence of (3.1) is: 

                                            ℎ𝑛{𝑘}  = ∑  (−1)i

𝑘 − 1

𝑖 = 0

  
(𝑘 − 𝑖)𝑛  +  𝑘 − 1

𝑖!  (𝑘 – 1 − 𝑖)!
 .                                                     (3.2) 

in a process of recursive substitution as shown. 

             ℎ𝑛{1} = 1 =  
1

0! 0!
 ; then from (3.1): 

                             ℎ𝑛{2}  = ∑ 2𝑛 − 𝑗 ℎ𝑗 {1}

𝑛

𝑗  = 0

 

                                         =   
2𝑛 + 1  − 1

2 − 1
 

1

0!  0!
  =   

2𝑛 + 1 

0!  1!
  –

  

1 

1!  0!
 , which is (3.2) for 𝑘 = 2. 

                            ℎ𝑛{3}  =  3𝑛  +  ∑ 3𝑛 − 𝑗  ℎ𝑗{2}

𝑛

𝑗  = 1

    

                                        =   3𝑛  +  ∑ 3𝑛 − 𝑗

𝑛

𝑗  = 1

 (
2𝑗 + 1 

0!  1!
  –    

1 

1!  0!
) 

 

 

                                        =   3𝑛  +   
22 

0!  1!
∑ 3𝑛 – 𝑗  2𝑗 – 1

𝑛

𝑗  = 1

  –   
1 

1!  0!
∑ 3𝑛 – 𝑗  

𝑛

𝑗  = 1
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                                       =  3𝑛 +  
22 (3𝑛 − 2𝑛 ) 

0!  1! (3 − 2)
 − 

3𝑛 − 1 

1!  0!  (3 − 1)
  

                                      =  3𝑛  (1 + 
22 

1!  1!
  –  

1 

2!  0!
 )  –  

2𝑛 + 2 

1!  1!
  +   

1 

2!  0!
      

                                       =   
3𝑛 + 2 

0!  2!
 – 

2𝑛 + 2 

1!  1!
 +  

1 

2!  0!
 , which is (3.2) for 𝑘 = 3. 

                               …   … 

To find the successive results from (3.1), we use the identity: 

                                
(𝑘 + 1) 𝑘

0!  𝑘!
 −  

𝑘𝑘 

1! (𝑘 –  1 )!
 +  …  + (−1)𝑘  

1

 𝑘!  0! 
 = 1.                                              (3.3) 

Its derivation is shown in the next topic.  

In general the above process of recursion runs in the following way.   

    ℎ𝑛{𝑘 + 1}  =  (𝑘 + 1)𝑛  +  (𝑘 + 1)𝑛 − 1 ℎ1{𝑘}  +  (𝑘 + 1)𝑛 −2 ℎ2{𝑘}  +  … +  ℎ𝑛{𝑘} 

                              =  (𝑘 + 1)𝑛  +  (𝑘 + 1)𝑛  − 1 ∑ (−1) 𝑖

𝑘 − 1

𝑖  =  0

 
(𝑘 −  𝑖)𝑘 

𝑖!  (𝑘 –  1 − 𝑖)!
  

                                     + (𝑘 + 1)𝑛 − 2 ∑ (−1) 𝑖

𝑘 − 1

𝑖  =  0

(𝑘 − 𝑖)𝑘 +  1 

𝑖!  (𝑘 –  1 − 𝑖)!
 +  . . .  + ∑ (−1) 𝑖

𝑘 − 1

𝑖  =  0

 
(𝑘 –  𝑖)𝑘 + 𝑛 − 1 

𝑖!  (𝑘 – 1 –  𝑖)!
 .  

                              = (𝑘 + 1)𝑛 +  
𝑘𝑘 

0! (𝑘 –  1 )!
  [(𝑘 + 1)𝑛 − 1  +  (𝑘 + 1)𝑛 − 2 𝑘 +  … +  𝑘𝑛 − 1 ]   

                                       –  
(𝑘– 1)𝑘 

1! (𝑘 –  2 )!
  [(𝑘 + 1)𝑛 − 1 + (𝑘 + 1)𝑛 − 2 (𝑘 − 1) +  … + (𝑘 − 1)𝑛 − 1 ]  +  …  

                                       +  (−1)𝑘 − 1  
1

(𝑘 − 1)!  0! 
 [(𝑘 + 1)𝑛 − 1  +  (𝑘 + 1)𝑛 − 2  +  … +  1] . 

                               = (𝑘 + 1)𝑛 +  
𝑘𝑘 

0! (𝑘 – 1)!
  

 (𝑘 + 1)𝑛 – 𝑘𝑛  

(𝑘 + 1)– 𝑘
 – 

(𝑘 – 1)𝑘 

1! (𝑘 – 2 )!
  

(𝑘 + 1)𝑛 – (𝑘– 1)𝑛  

(𝑘 + 1 ) – (𝑘– 1)
 +  …   

                                       + (−1)𝑘 − 1  
1

(k−1)! 0! 
  

(𝑘+1)𝑛 −1 

(𝑘+1 )−1
 . 

                               =  (𝑘 + 1)𝑛  [1 + 
𝑘𝑘 

1! (𝑘 –  1)!
  −  

(𝑘 – 1)𝑘 

2! (𝑘 – 2 )!
 + … + (−1)𝑘 − 1

1

 𝑘!  0! 
 ] 

                                        − 
𝑘𝑛 + 𝑘

1! (𝑘 –  1)!
  +  

(𝑘 − 1)𝑛  +  𝑘 

2! (𝑘 –  2 )!
  – …  + (−1)𝑘 

1

 𝑘!  0! 
          

=   
(𝑘 + 1)𝑛 + 𝑘

0!  𝑘!
 −  

𝑘𝑛 + 𝑘

1! (𝑘 –  1 )!
  +  

(𝑘 − 1)𝑛  +  𝑘 

2! (𝑘 –  2 )!
  –  …  +  (−1)𝑘 

1

 𝑘!  0! 
 .     

[By (3.3)] 

                               =  ∑(−1)i

𝑘 

𝑖 = 0

  
(𝑘 + 1 − 𝑖)𝑛  +  𝑘 

𝑖!  (𝑘 − 𝑖)!
 . 

2.3 Relation between ℎ𝑛{𝑘} & Exponential Function 

A pair of expansions of (e
t
 – 1)

k
 helps to find the relation of the function with ℎ𝑛{𝑘}. Pairing in the relation is 

remarkable. 

(a) Expansion 1: By the Binomial Theorem, 
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         (𝑒𝑡 − 1)𝑘 = 𝑒𝑡𝑘 − (
𝑘

1
) 𝑒𝑡 (𝑘 − 1) +  … +  (−1)𝑘 − 1  (

𝑘

𝑘 − 1
) 𝑒𝑡  +  (−1)𝑘  

                           = (
𝑘

0
) [1 + 𝑡𝑘 +

𝑡2𝑘2

2! 
 + … ] −  (

𝑘

1
) [1 +  𝑡(𝑘 − 1) +  

𝑡2( 𝑘 − 1)2

2! 
 + … ] + …  

                + (−1)𝑘 − 1 (
𝑘

𝑘 − 1
) [1 +  𝑡 +  

𝑡2

2! 
 +  …  ]   +   (−1)𝑘 (

𝑘

𝑘
) .                                  

             (𝑒𝑡 − 1)𝑘   =   ∑ (−1)𝑛

𝑘

𝑛  = 0

 (
𝑘
𝑛

) ∑ (𝑘 − 𝑛)𝑚

∞

𝑚 = 0

  
𝑡𝑚

 𝑚! 
     [00 = 1].                                                        (4.1) 

(b) Expansion 2: Again, 

              (𝑒𝑡 − 1)𝑘  =  (𝑡 +  
𝑡2 

2! 
 +  

𝑡2 

3! 
 +  … )𝑘   

                              =  𝑡𝑘 +  
𝑘 

2 
 𝑡𝑘 + 1  +  the terms containing the higher powers of t.       (4.2)  

Equating the coefficients of 𝑡𝑚 for 0 ≤ m ≤ k, from (4.1) and (4.2),  

                     
1

𝑚!
∑(−1)𝑛

𝑘 

𝑛= 0

(
𝑘

𝑛
) (𝑘 − 𝑛)𝑚   =   {

0, if 𝑚 { 0, 1, … , (𝑘 − 1)}.                               (5. 1)

1, if 𝑚 = 𝑘.                                                             (5.2 )
 

(5.2) is (3.3) with a minor variation. 

Excluding the terms for 0 ≤ m ≤ k – 1 whose values are all 0, (4.1) can be written: 

                                   (𝑒𝑡 − 1)𝑘   =  ∑ (−1)𝑛

𝑘

𝑛  = 0

 (
𝑘
𝑛

) ∑ (𝑘 − 𝑛)𝑚

∞

𝑚 = 𝑘

  
𝑡𝑚

 𝑚! 
 .                                           (6.1) 

From (3.2) and (6.1),  

                                         (𝑒𝑡 − 1)𝑘  =  𝑘! ∑
ℎ𝑛{𝑘} 𝑡𝑘 + 𝑛

 (𝑘 + 𝑛)! 

∞

 𝑛 = 0

 .                                                                   (6.2) 

It is interesting that the expression under ∑ on the right of (6.2) contains three pairs of n & k.    

The Stirling number of the second kind: 𝑆(𝑛, 𝑘) is the number of ways of partitioning a set of n elements into exactly k 

nonempty subsets. A relation between e and  𝑆(𝑛, 𝑘) is given by:  

                                               (𝑒𝑡 − 1)𝑘  =  𝑘! ∑
𝑆(𝑛, 𝑘) 𝑡𝑛  

𝑛! 

∞

 𝑛 = 0

 .                                                                  (6.3) 

ℎ𝑛{𝑘} and S(n, k) are comparable. From the definition of ℎ𝑛{𝑥𝑘} in the introduction, it follows that ℎ𝑛{𝑘} or 

ℎ𝑛(1, 2, … , 𝑘) are the positive integers for n ⋛ k. The special case is: ℎ0{𝑘} = 1. On the other hand S(n, k) are the 

positive integers for n ≥ k. S(n, k) = 0 for n < k. Then excluding the terms whose values are all 0, the modified form of 

(6.3) is:  

                                       (𝑒𝑡 − 1)𝑘  =  𝑘! ∑
𝑆(𝑛 + 𝑘, 𝑘) 𝑡𝑛 + 𝑘   

(𝑛 + 𝑘)! 

∞

 𝑛 = 0

 .                                                      (6.4) 

From (6.2) and (6.4), we get the relation:  

ℎ𝑛{𝑘}  =  𝑆(𝑛 + 𝑘, 𝑘) .                                    (7) 

The familiar counting formula for S(n, k) is: 

                                            𝑆(𝑛, 𝑘)  =   
1

𝑘!
∑(−1)𝑖

𝑘

𝑖 = 0

(
𝑘

𝑖
) (𝑘 − 𝑖)𝑛.                                                          (8) 
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(7) is the consequence (3.2) and (8) also. 

2.4 Link between the Recurrences for ℎ𝑛{𝑥𝑘} When x1, … , xk  =  1, …, k 

When x1, x2, …  =  1, 2,…  then from (3.2) and (2), we get:  

∑ (−1)i

𝑘 − 1 

𝑖 = 0

  
(𝑘 − 𝑖)𝑛  +  𝑘 − 1 

𝑖!  (𝑘 − 1 − 𝑖)!
  =  𝑘 ∑ (−1)i

𝑘 − 1 

𝑖 = 0

  
(𝑘 − 𝑖)𝑛  +  𝑘 − 2 

𝑖!  (𝑘 − 1 − 𝑖)!
   

+  (𝑘 − 1) ∑ (−1)i

𝑘 − 2 

𝑖 = 0

  
(𝑘 − 1 − 𝑖)𝑛  +  𝑘 − 3 

𝑖! (𝑘 − 2 − 𝑖)!
 +  … + 2 ∑(−1)i

1 

𝑖 = 0

  
(2 − 𝑖) 𝑛 

𝑖!  (1 − 𝑖)!
 +  1.                    (9.1) 

The left hand side of (9.1) is a finite series of k terms and the right a finite series of (k + … + 1) or ½ k (k + 1) terms. We 

can write both the series in the order of 𝑘𝑛, … , 1𝑛. Then the modified form of (9.1) is:   

𝑐1 𝑘
𝑛 + 𝑐2 (𝑘 − 1)𝑛 + ⋯ + 𝑐𝑘 1

𝑛 =   𝑑1 𝑘
𝑛 +  𝑑2 (𝑘 − 1)𝑛 + ⋯ +  𝑑𝑘 1

𝑛 .
             

(9.2) 

where  𝑑1𝑘𝑛,  𝑑2 (𝑘 − 1)𝑛, … ,  𝑑𝑘 1
𝑛 are in succession one, the sum of two, … , the sum of k terms among ½ k (k + 

1) terms of the series on the right of (9.2). Equating the coefficients of like powers, we get: 𝑑1 = 𝑐1 ;  𝑑2 = 𝑐2; … ; 

𝑑𝑘 = 𝑐𝑘. The general form of these equalities is the following identity.                              

                                ∑(−1)i

𝑚 

𝑖 = 0

 
( 𝑘 +  𝑖 ) 𝑘 𝑖 − 1

𝑖!
    =     (−1)𝑚  

  𝑘 𝑚

𝑚!
 .                                              (10) 

(10) is the link between the recurrences of two kinds for ℎ𝑛{𝑘} and can be established further by induction on m easily. 

3. Comparable Pair of Characterization Formulas for 𝒉𝒏{𝒙𝒌} and Pairs of Summations  

We can characterize ℎ𝑛 {𝑥𝑘} by a similar pair of generating series with a difference of same and alternating signs in the 

summations as shown.     

                                      ∑ ℎ𝑖{𝑥𝑛 + 1 − 𝑖}

 𝑛 − 1

   𝑖  =  0

∏(𝑥 −

𝑛 − 𝑖

𝑗 = 1

𝑥𝑗)  + 𝑥1
𝑛 =  𝑥𝑛 .                                                      (11.1) 

                                ∑ (−1)𝑖

𝑛 − 1

 𝑖  =  0

ℎ𝑖{𝑥𝑛 + 1 − 𝑖} ∏(𝑥 +

𝑛 − 𝑖

𝑗 = 1

𝑥𝑗)  + (−1)𝑛 𝑥1
𝑛  =  𝑥𝑛 .                               (11.2) 

Sameness in the proposed series is owing to the same sequence of equal number of variables in equal numbers of terms 

of the summations both of which are equal to 𝑥𝑛. Applying (1.1), we can prove both (11.1) and (11.2) in the same 

process of induction on n. Here we give the proof of (11.1).
 

Proof of (11.1): The proposition is trivial for n = 1. Consider the proposition holds for any given n. Then we deduce that     

     ∑ ℎ𝑖{𝑥𝑛 + 2 − 𝑖}

𝑛 

𝑖  =  0

∏ (𝑥 −

𝑛 + 1 −  𝑖

𝑗 = 1

𝑥𝑗)  + 𝑥1
𝑛 + 1  

=  ∏ (𝑥 −

 𝑛 + 1

𝑗 = 1

𝑥𝑗)  +  ℎ1 {𝑥𝑛 + 1} ∏(𝑥 −

 𝑛 

𝑗 = 1

𝑥𝑗)  +  ℎ2 {𝑥𝑛} ∏ (𝑥 −

 𝑛 − 1 

𝑗 = 1

𝑥𝑗)  +  … 

      +  ℎ𝑛 − 1 {𝑥3 } ∏ (𝑥 − 2 
𝑗 = 1 𝑥𝑗)  +  ℎ𝑛 {𝑥2 } ∏ (𝑥 −  1 

𝑗 = 1 𝑥𝑗)   + 𝑥1
𝑛 + 1 . 

 =  ∏ (𝑥 −

 𝑛 + 1

𝑗 = 1

𝑥𝑗)  + [ 𝑥𝑛 + 1 + ℎ1 {𝑥𝑛} ] ∏(𝑥 −

 𝑛 

𝑗 = 1

𝑥𝑗)  +  [𝑥𝑛 ℎ1 {𝑥𝑛} + ℎ2 {𝑥𝑛 − 1} ] ∏ (𝑥 −

 𝑛 – 1 

𝑗 = 1

𝑥𝑗)  
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                        + …  +  [ 𝑥2 ℎ𝑛 − 1 {𝑥2}  + ℎ𝑛 {𝑥1} ] ∏(𝑥 −

  1 

𝑗 = 1

𝑥𝑗)   + 𝑥1
𝑛 + 1 . 

[By (1.1)] 

=  [ ∏ (𝑥 −

 𝑛 + 1

𝑗 = 1

𝑥𝑗)  + 𝑥𝑛 + 1 ∏(𝑥 −

 𝑛 

𝑗 = 1

𝑥𝑗)]    +   ℎ1 {𝑥𝑛} [∏(𝑥 −

 𝑛 

𝑗 = 1

𝑥𝑗)  +  𝑥𝑛 ∏ (𝑥 −

 𝑛 − 1 

𝑗 = 1

𝑥𝑗)]  +  … 

                       +  ℎ𝑛 − 1{𝑥2}  [∏(𝑥 −

 2

𝑗 = 1

𝑥𝑗)  + 𝑥2 ∏(𝑥 −

 1 

𝑗 = 1

𝑥𝑗)]    +    [ ℎ𝑛 {𝑥1} ∏(𝑥 −

 1 

𝑗 = 1

𝑥𝑗)  +  𝑥1
𝑛 + 1 ] . 

                       =  𝑥 ∏(𝑥 −

 𝑛 

𝑗 = 1

𝑥𝑗)   +  𝑥 ℎ1 {𝑥𝑛} ∏ (𝑥 −

 𝑛 – 1 

𝑗 = 1

𝑥𝑗)  +   …   +   𝑥 ℎ𝑛 − 1{𝑥2} ∏(𝑥 −

  1 

𝑗 = 1

𝑥𝑗)  + 𝑥 𝑥1
𝑛  . 

                      =  𝑥. 𝑥𝑛  =  𝑥𝑛 + 1 . 

The proposition follows.▮       

3.1 Pair of Expressions for ∑ (𝑥 + 𝑚 − 𝑖
𝑚

)𝑖𝑛 𝑥
𝑖 = 1 from (11.1) and (11.2)                                                                  

Letting the power series: 1𝑛 + 2𝑛 + ⋯ + 𝑥𝑛 as the initial condition or zero order recurrence series: 𝑆0(𝑥𝑛), we define 

the m
th

 order recurrence series: 𝑆𝑚(𝑥𝑛) by the recurrence relation: 𝑆𝑚(𝑥𝑛) =  ∑ 𝑆𝑚 − 1(𝑗𝑛)𝑥
𝑗 = 1 . 

The initial condition is:                                     

                                 𝑆0(𝑥𝑛)  =  ∑ 𝑗𝑛

𝑥

𝑗 = 1

= 1𝑛 + 2𝑛 + … + 𝑥𝑛 . 

Then 

                                𝑆1(𝑥𝑛)  =  ∑ 𝑆0(𝑗𝑛)

𝑥

𝑗 = 1

 =  1𝑛  +  (1𝑛 + 2𝑛) + …  + (1𝑛 + 2𝑛 + ⋯ + 𝑥𝑛) 

                                               = ∑(𝑥 + 1 − 𝑖) 𝑖𝑛

𝑥

𝑖 = 1

 ; 

                                𝑆2(𝑥𝑛)  =  ∑ 𝑆1(𝑗𝑛)

𝑥

𝑗 = 1

 =  ∑

𝑥

𝑖 = 1

∑ (𝑗 +  1 − 𝑖) 𝑖𝑛

𝑥

𝑗 = 1

 

                                               =  ∑ (
𝑥 + 2 − 𝑖

2
) 𝑖𝑛 .

𝑥

𝑖 = 1

 

In general, 

                              𝑆𝑚(𝑥𝑛 ) =  ∑ (
𝑥 + 𝑚 − 𝑖

𝑚
) 𝑖𝑛 .

𝑥

𝑖 = 1

                                                                                                                       (12) 

We can derive a pair of combinatorial formulas for 𝑆𝑚(𝑥𝑛) from (11.1) and (11.2). 

(𝒂) 𝑺𝒎(𝒙𝒏) from (11.1) 

Substituting 1, ... , n  for  𝑥1, … , 𝑥𝑛  in (11.1),   
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                               𝑥𝑛  =  ∑  ℎ𝑖{𝑛 + 1 − 𝑖} (𝑥 − 1)𝑛 − 𝑖

𝑛

𝑖 = 0

 .                                                                 (13) 

[Falling factorial: (𝑥)𝑛  =  x (x – 1) (x – 2) … (x – n +1).] 

                                 𝑥𝑛  =  ∑  ℎ𝑛 − 𝑖  {𝑖 + 1}(𝑥 − 1)𝑖

𝑛

𝑖 = 0

.                                                              (13.1) 

When x – 1 < n then the values of the last n – x + 1 terms on the right are all 0 owing to the law: aPb or (𝑎)𝑏 = 0 for a 

< b; and in this case, 𝑥𝑛 is equal to the sum of the first x terms. By the usual notation of combination, the modified 

form of (13.1) is:   

                                                  𝑥𝑛  =  ∑  𝑖! ℎ𝑛 − 𝑖  {𝑖 + 1} (
𝑥 − 1

𝑖
) .

𝑛

𝑖 = 0

                                                     (13.2) 

Then 

                                         𝑆0(𝑥𝑛)   =  ∑ 𝑗𝑛

𝑥

𝑗 = 1

  =   ∑ 𝑖! ℎ𝑛 − 𝑖  {𝑖 + 1}

𝑛

𝑖 = 0

∑ (
𝑗 − 1

𝑖
) .

𝑥

𝑗 = 1

 

                                        𝑆0(𝑥𝑛)  = ∑  𝑖! ℎ𝑛 − 𝑖  {𝑖 + 1} (
𝑥

𝑖 + 1
) .

𝑛

𝑖 = 0

                                                    (14) 

Consequently,     

                                       𝑆𝑚 (𝑥𝑛)  = ∑  𝑖! ℎ𝑛 − 𝑖 {𝑖 + 1} (
𝑥 + 𝑚

𝑚 + 𝑖 + 1
)

𝑛

𝑖 = 0

.                                        (15) 

(b) 𝑺𝒎(𝒙𝒏) from (11.2)   

Substituting 1, ... , n  for 𝑥1, … , 𝑥𝑛  in (11.2),   

                                     𝑥𝑛   =  ∑ (−1)𝑖  ℎ𝑖{𝑛 + 1 − 𝑖} (𝑥 + 𝑛 − 𝑖)𝑛 − 𝑖

𝑛

𝑖  =  0

.                                         (16.1) 

                                      𝑥𝑛   =  ∑ (−1)𝑖  (𝑛 − 𝑖)!  ℎ𝑖{𝑛 + 1 − 𝑖} (
𝑥 + 𝑛 − 𝑖

𝑛 − 𝑖
) .

𝑛

𝑖  =  0

                           (16.2) 

Then    

𝑆0(𝑥𝑛) = ∑ 𝑗𝑛 

𝑥

𝑗 = 1

 = ∑(−1)𝑖

𝑛

𝑖 = 0

(𝑛 − 𝑖)! ℎ𝑖{𝑛 + 1 − 𝑖} ∑ (
𝑗 + 𝑛 − 𝑖

𝑛 − 𝑖
)

𝑥

𝑗 = 1

 .  

           𝑆0(𝑥𝑛)  =  ∑(−1)𝑖

𝑛

𝑖 = 0

(𝑛 − 𝑖)! ℎ𝑖{𝑛 + 1 − 𝑖} (
𝑥 + 𝑛 + 1 − 𝑖

𝑥
).                                     (17)  

Consequently,       

             𝑆𝑚(𝑥𝑛)  =  ∑ (−1)𝑖𝑛
𝑖 = 0  (𝑛 − 𝑖)! ℎ𝑖{𝑛 + 1 − 𝑖} (

𝑥 + 𝑚 + 𝑛 + 1 − 𝑖
𝑥

).                         (18)  

3.2 Expressions for ∑ 𝑗𝑛(𝑗 + 𝑟)𝑟 𝑥
𝑗 =1  and  ∑ 𝑗𝑛(𝑗 − 1)𝑟 −1

𝑥
𝑗 =1  from (13.1) and (16.1) 

(a) ∑ 𝒋𝒏(𝒋 + 𝒓)𝒓 𝒙
𝒋 =𝟏 from (13.1) 
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Multiplying (13.1) throughout by 𝑥 (𝑥 + 𝑟)𝑟 and then substituting n – 1 for n, 

                 𝑥𝑛(𝑥 + 𝑟)𝑟   =  ∑  ℎ𝑛 − 𝑖{𝑖} (𝑥 + 𝑟)𝑟 + 𝑖

𝑛

𝑖 = 1

 . 

                  ∑  𝑗𝑛 (𝑗 + 𝑟)𝑟

𝑥

𝑗 = 1

  =  ∑  ℎ𝑛 − 𝑖{𝑖}

𝑛

𝑖 = 1

∑ (𝑗 + 𝑟)𝑟 + 𝑖

𝑥

𝑗 = 1

 

=  ∑ ℎ𝑛 − 𝑖{𝑖}𝑛
𝑖 = 1  

1

𝑟+𝑖+1
  (𝑥 + 𝑟 + 1)𝑟 + 𝑖 + 1 .  

                 ∑  𝑗𝑛 (𝑗 + 𝑟)𝑟

𝑥

𝑗 = 1

  =  (𝑥 + 𝑟 + 1)𝑟 +  2  ∑  ℎ𝑛 − 𝑖{𝑖}

𝑛

𝑖 = 1

 
1

𝑟 + 𝑖 + 1
 (𝑥 − 1)𝑖 − 1.                  (19) 

(b) ∑ 𝒋𝒏(𝒋 − 𝟏)𝒓 −𝟏 𝒙
𝒋 =𝟏 from (16.1)  

Multiplying (16.1) throughout by 𝑥 (𝑥 − 1)𝑟 − 1 and then substituting n – 1 for n,  

         𝑥𝑛(𝑥 − 1)𝑟 − 1   =   ∑ (−1)𝑖  ℎ𝑖{𝑛 − 𝑖}(𝑥 + 𝑛 − 1 − 𝑖)𝑟 + 𝑛 – 1 − 𝑖

𝑛 − 1

𝑖 = 0

 . 

          ∑  𝑗𝑛 (𝑗 − 1)𝑟 − 1

𝑥

𝑗 = 1

  =   ∑ (−1)𝑖  ℎ𝑖{𝑛 − 𝑖}

𝑛 − 1

𝑖 = 0

 ∑  (𝑗 + 𝑛 − 1 − 𝑖)𝑟 + 𝑛 – 1 − 𝑖

𝑥

𝑗 = 1

 

                   =   ∑ (−1)𝑖  ℎ𝑖{𝑛 − 𝑖}

𝑛 − 1

𝑖 = 0

 
1

𝑟 + 𝑛 − 𝑖
 (𝑥 + 𝑛 − 𝑖)𝑟 + 𝑛 − 𝑖 . 

  ∑ 𝑗𝑛  (𝑗 − 1)𝑟 − 1

𝑥

𝑗 = 1

= (𝑥 + 1)𝑟 + 1 ∑ (−1)𝑖
1

𝑟 + 𝑛 − 𝑖
 ℎ𝑖{𝑛 − 𝑖}

𝑛 − 1

𝑖 =  0

(𝑥 + 𝑛 − 𝑖)𝑛 – 1 −  𝑖 .               (20) 

3.3 Applications of (19) and (20) 

(a) Application of (19) to find 𝒉𝟏{𝒌}, 𝒉𝟐{𝒌}, …   

We can apply (2) and (19) to count ℎ𝑛{𝑘} for n = 1, 2,… Substituting 1, …, k for 𝑥1, … , 𝑥𝑘  in (2), we get: ℎ𝑛{𝑘}  =
 ∑ 𝑖𝑘 

𝑖 = 1 ℎ𝑛 − 1 {𝑖}. Simply we write: ℎ𝑛{𝑘} = ∑𝑘 ℎ𝑛 – 1 {𝑘} or the summation series whose k
th 

term is 𝑘 ℎ𝑛 − 1 {𝑘}; and 

then obtain the counting formulas for ℎ1{𝑘}, ℎ2{𝑘}, … as shown. 

ℎ1{𝑘}  =  ∑𝑘 =  
1

2
 𝑘 (𝑘 +  1) . 

Applying (2) and (19), 

                         ℎ2{𝑘}  =  ∑𝑘 ℎ1{𝑘}                                                 

                                   =  
1

2

 

∑ 𝑘2 (𝑘 + 1)1 

                                   =  
1

2
 (𝑘 + 2)3 [ 

1

3

 

+  
1

4

 

(𝑘 − 1)1 ]   

                                   =  
1

4
 (𝑘 + 2

3
)(3𝑘 + 1) ; 

                        ℎ3{𝑘} =  ∑ 𝑘 ℎ2{𝑘}  

                                  =  
1

4

 

∑  (𝑘 + 2
3

) (3𝑘2 + 𝑘 )   
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                                  =
1

24
 ∑ (𝑘 + 2)2 (3𝑘3 + 𝑘2) 

                                      =  
1

24
(𝑘 + 3)4  [ 

1

4
(3 + 1) + 

1

5
(𝑘 − 1)1(3ℎ1{2} + 1) +  

1

6
(𝑘 − 1)2 ∙ 3 ]  

                                  =
1

24
(𝑘 + 3)4  [1 + 2 (𝑘 –  1)  +  

1

2
(𝑘 –  1)(𝑘 –  2) ] 

                                  = (𝑘 + 3
4

) (𝑘 +  1
2

) . 

In this way, 

                        ℎ4{𝑘}  =  
1

48
 (𝑘  +  4

5
) (15𝑘3 + 30𝑘2 + 5𝑘 − 2) ;    

                        ℎ5{𝑘} =  
1

8
 (𝑘 +  5

6
) (𝑘 +  1

2
) (3𝑘2 + 7𝑘 − 2) ;  

                        ℎ6{𝑘} =  
1

576

  

(𝑘 +  6
7

)(63𝑘5  +  315 𝑘4 +  315 𝑘3 − 91𝑘2 − 42𝑘 + 16);  

                        ℎ7{𝑘} =  
1

72

  

(𝑘  +  7
8

) (𝑘  +  1
2

) (9𝑘4  +  54𝑘3  +  51𝑘2 −  58𝑘 + 16).  

From (3.2), we get: ℎ𝑛 {1} = 1 and ℎ𝑛{2} = 2𝑛 + 1 − 1; and hence primarily it is easy to verify the above successive 

results by putting k = 1 and k = 2.  

(b) Application of (20) to find 𝒆𝟏{𝒌}, 𝒆𝟐{𝒌}, …   

Implementing the method of derivation of (1), we can also derive a fundamental identity for elementary symmetric 

polynomial. For n of k variables: 𝑥1 , … , 𝑥𝑘 , elementary symmetric polynomial 𝑒𝑛 (𝑥1 , … , 𝑥𝑘 ) or in brief   

 𝑒𝑛 {𝑥𝑘}  =  ∑  𝑥𝑖1

1 ≤ 𝑖1 < 𝑖2 < …  < 𝑖𝑛  ≤ 𝑘

𝑥𝑖2 
… 𝑥𝑖𝑛 

. 

Some special values of 𝑒𝑛 {𝑥𝑘} are: 𝑒0 {𝑥𝑘} = 1; for n > k, 𝑒𝑛 {𝑥𝑘} = 0; 𝑒1 {𝑥𝑘}  =  𝑥1 + ⋯ + 𝑥𝑘 ;  

𝑒𝑘{𝑥𝑘}  =  𝑥1 𝑥2 … 𝑥𝑘 . 

Letting that 𝑥𝑚 is a definite variable in the set (𝑥1 , … , 𝑥𝑘 +1), we denote other k variables by 𝑦1 , … ,  𝑦𝑘 . Then by the 

definition of 𝑒𝑛 {𝑥𝑘}, the following laws hold:   

The number of terms of 𝑒𝑛 {𝑦𝑘} is (𝑘 
𝑛

). A term of 𝑒𝑛 + 1{𝑦𝑘} for k ≥ n + 1 is also a term of 𝑒𝑛 + 1{𝑥𝑘 + 1}, which does 

not contain 𝑥𝑚 as a factor; and if 𝑥𝑚  is multiplied with a term of 𝑒𝑛{𝑦𝑘} then the product is a term of 𝑒𝑛 + 1{𝑥𝑘 + 1} , 

which contains 𝑥𝑚  as a factor. This implies that 𝑒𝑛 + 1{𝑦𝑘}  is the sum of ( 𝑘 
𝑛 + 1

) terms of 𝑒𝑛 + 1{𝑥𝑘 + 1} where none 

of these terms has a factor 𝑥𝑚 ; and 𝑥𝑚 𝑒𝑛 {𝑦𝑘 } is the sum of other (𝑘 
𝑛 

) terms of 𝑒𝑛 + 1{𝑥𝑘 + 1} where 𝑥𝑚 is a 

common factor of these terms. Then we have the following identity from the basic laws.  

                                                    𝑒𝑛 + 1{𝑥𝑘 + 1}  =  𝑒𝑛 + 1{𝑦𝑘} + 𝑥𝑚 𝑒𝑛 {𝑦𝑘} .                                      (21)  

We use (21) in the next topic. When 𝑥𝑚 = 𝑥𝑘 + 1 then other k variables are: 𝑥1 , … , 𝑥𝑘 for which we can write {𝑥𝑘} 

instead of {𝑦𝑘}. Hence from (21),  

                                               𝑒𝑛 + 1{𝑥𝑘 + 1}  =  𝑒𝑛 + 1{𝑥𝑘}  +  𝑥𝑘 + 1 𝑒𝑛 {𝑥𝑘} .                                                               (21.1)  

                                                 ∑[ 𝑒𝑛 + 1{𝑥𝑖 + 1}  −  𝑒𝑛 + 1{𝑥𝑖 } ] 

𝑘 

𝑖 = 1

 =  ∑ 𝑥𝑖 + 1 𝑒𝑛 {𝑥𝑖} .

𝑘

𝑖 = 1

 

                                                𝑒𝑛 + 1{𝑥𝑘 + 1 }  = ∑ 𝑥𝑖 + 1 𝑒𝑛 {𝑥𝑖}.

𝑘

𝑖 = 1

                                                                                          (21.2) 

Writing 1, …, k +1 for 𝑥1 , … ,  𝑥𝑘 + 1 , (21.2) is reduced to      
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  𝑒𝑛 + 1{𝑘 + 1}   =  ∑(𝑖 + 1)𝑒𝑛 {𝑖} .

𝑘

𝑖 = 1

 

                                               𝑒𝑛{𝑘}  = ∑ 𝑖 𝑒𝑛 − 1 {𝑖 − 1} .

𝑘

𝑖 = 1

                                                                 (21.3) 

 [𝑒0{𝑘} = 1; for k < n, 𝑒𝑛{𝑘} = 0.] 

To obtain the values of 𝑒1{𝑘}, 𝑒2{𝑘}, ... in succession, we write (21.3) simply as: 𝑒𝑛{𝑘} = ∑ 𝑘 𝑒𝑛 − 1{𝑘 − 1} or the 

summation series whose k
th 

term is 𝑘 𝑒𝑛 − 1 {𝑘 − 1}. Applying (20) and (21.3), we find the successive counting formulas 

as shown. 

                                   𝑒1{𝑘}  =  ∑𝑘 =  
1

2
 𝑘 (𝑘 +  1). 

Applying (21.3) and (20), 

                                  𝑒2{𝑘}  = ∑ 𝑘 𝑒1{𝑘 − 1}  

                                         =
1

2
 ∑ 𝑘2 (𝑘 − 1)1  

                                         =
1

2
 (𝑘 + 1)3 [ 

1

4
 (𝑘 + 2)1 −  

1

3
 ]  

                                         =  
1

4
 (𝑘 +  1

3
) (3𝑘 +  2);   

                           𝑒3{𝑘}  =  ∑ 𝑘

 

𝑒2{𝑘 − 1}  

                                 =  
1

4
  ∑ k (𝑘 

3
) (3k – 1)    

                                                  =  
1

24
  ∑ (k – 1)2 (3k

3 
– k

2
) 

                                 =  
1

24
(𝑘 + 1)4  [ 

3

6
 (𝑘 + 3)2  −   

1

5
 (3ℎ1{2} + 1) (𝑘 + 2)1 +  

1

4
(3 + 1)]                                  

                                                   =  (𝑘 + 1
4

) [ 
1

2
 (𝑘 + 3)(𝑘 + 2) −  2 (𝑘 + 2)  +  1] 

                                  =  (𝑘 + 1
4

) (𝑘 + 1
2

) . 

In this way, 

                            𝑒4{𝑘}  =  
1

48
 (𝑘 + 1

5
) (15 𝑘3 + 15 𝑘2 − 10𝑘 − 8);  

                            𝑒5{𝑘}  = 
 

1

8 
(𝑘 + 1

6
) (𝑘 + 1

2
)
 

(3𝑘2 − 𝑘 − 6);   

                            
𝑒6{𝑘}  = 

 

1

576  
(𝑘 + 1

7
) (63𝑘5 − 315𝑘3 − 224𝑘2 + 140𝑘 + 96);  

                            𝑒7{𝑘}  = 
 

1

72 
(𝑘 + 1

8
) (𝑘 + 1

2
) (9𝑘4 −  18𝑘3 −  57𝑘2 + 34𝑘 + 80). 

Since 𝑒𝑛 {𝑘} = 𝑘! for n = k, primarily one can verify the above results by putting n = k.  

Remark 1: Comparable forms of hn{k} and en{k} 

The general form of the formulas for ℎ1{𝑘}, ℎ2{𝑘}, ℎ3{𝑘}, …; and this for 𝑒1{𝑘}, 𝑒2{𝑘}, 𝑒3{𝑘}, …, can be written:   

                          ℎ𝑛{𝑘}  =  
1

𝑚
 (𝑘 + 𝑛

𝑛 + 1
) (𝑝1 𝑘

𝑛 − 1  +  …  +  𝑝𝑛) .                          (22.1) 
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                 𝑒𝑛{𝑘}  =  
1

𝑚
 (𝑘 + 1

𝑛 + 1
) (𝑞1 𝑘

𝑛 − 1  +  …  +  𝑞𝑛) .                         (22.2) 

Remark 2: Common property of divisibility of hn{k} and en{k} 

For n = 1, ℎ𝑛{𝑘}  =  𝑒𝑛 {𝑘}  = 1 + … + k  =  (𝑘 + 1
2

). We also notice that (𝑘 + 1
2

) occurs as a common factor in the 

successive formulas for both ℎ𝑛 {𝑘} and 𝑒𝑛 {𝑘} when n = 1, 3, 5 and 7. Different integer-values of ℎ𝑛{𝑘} and 𝑒𝑛{𝑘} 

which can be obtained from their counting formulas lead to guess their common property of divisibility as stated in 

Conjectur1.1. 

Conjecture 1.1: Both ℎ𝑛{𝑘} and 𝑒𝑛{𝑘} are exactly divisible by 1 + … + k if n is odd. 

Conjecture 1.2 can be the basic rule with respect to Conjecture 1.1. 

Conjecture 1.2: A monomial symmetric polynomial of degree n in 1, 2, …, k is exactly divisible by 1 + … + k  if n is 

odd.        

ℎ𝑛{𝑥𝑘} is the sum of some distinct monomial symmetric polynomials and 𝑒𝑛{𝑥𝑘} is a special monomial symmetric 

polynomial. Therefore if it is possible to establish Conjecture 1.2 then Conjecture 1.1 is established at once.  

Examples for Conjecture 1.2: Partitions of 5 are: 5,  4 + 1,  3 + 2,  3 + 1 + 1,  2 + 2 + 1,  2 + 1 + 1 + 1,  1 + 1 + 

1 + 1 + 1. We present below two polynomial summations with respect to the partitions: 3 + 1 + 1 and 2 + 2 + 1. 

𝑚(3,1,1)(1,2,3)  =  13 ∙ 2 ∙ 3 +  1 ∙ 23 ∙ 3 +  1 ∙ 2 ∙ 33  =  84. 

𝑚(2,2,1)(1,2,3,4) = 12 ∙ 22 ∙ 3 +  12 ∙ 2 ∙ 32  + 1 ∙ 22 ∙ 32 + 12 ∙ 22 ∙ 4 + 12 ∙ 2 ∙ 42 + 1 ∙ 22 ∙ 42 

+ 12 ∙ 32 ∙ 4  + 12 ∙ 3 ∙ 42  +  1 ∙ 32 ∙ 42  +  22 ∙ 32 ∙ 4 +  22 ∙ 3 ∙ 42  +  2 ∙ 32 ∙ 42  = 1030.  

84 and 1030 are divisible by (1 + 2 + 3) and (1 + 2 + 3 + 4) respectively.           

4. Comparable Recurrence Functions for (𝒌)𝒏 and 𝒆𝒏{𝒙𝒌} and a Relation between 𝒉𝒏{𝒙𝒌} and 𝒆𝒏{𝒙𝒌} 

(a) Recurrence function for (𝒌)𝒏 

Letting the initial condition: F(1, k) = (𝑘)1, we define an (n + 1)
th

 order recurrence function F(n + 1, k) by the 

recurrence relation:  

𝐹(𝑛 + 1, 𝑘)  = (𝑛 + 𝑘)1 𝐹(𝑛, 𝑘)  −  (𝑛 + 𝑘)2 𝐹(𝑛 − 1, 𝑘) + … 

                       + (−1)𝑛 –1 (𝑛 + 𝑘)𝑛  𝐹(1, 𝑘)  +  (−1)𝑛 (𝑛 + 𝑘)𝑛 + 1 .                        (23.1) 

The solution of the recurrence function is Proposition1. 

Proposition 1: 𝐹(𝑛 + 1, 𝑘) = 0. 

Proof: The sum of the last two terms of the relation is:  

                  (−1)𝑛 − 1 (𝑛 + 𝑘)𝑛  𝐹(1, 𝑘)  + (−1)𝑛(𝑛 + 𝑘)𝑛 + 1    

                  = (−1)𝑛 − 1{(𝑛 + 𝑘)𝑛 𝑘 − (𝑛 + 𝑘)𝑛 +  1}     

                  = (−1)𝑛 − 1{(𝑛 + 𝑘)(𝑛 + 𝑘 − 1) … (𝑘 + 1) 𝑘 − (𝑛 + 𝑘)(𝑛 + 𝑘 − 1) …  𝑘}  =  0 . 

It is then easy to prove the proposition by induction on n. We have: F(2, k) = 0. Assuming that the proposition is true for 

the first n natural numbers for any given n, we deduce that 

 𝐹(𝑛 + 2, 𝑘) = (𝑛 + 𝑘 + 1)1 𝐹(𝑛 + 1, 𝑘) – (𝑛 + 𝑘 + 1)2 𝐹(𝑛, 𝑘) +  …  

             + (−1)𝑛 − 1 (𝑛 + 𝑘 + 1)𝑛 𝐹(2, 𝑘)   +  (−1)𝑛 (𝑛 + 𝑘 + 1)𝑛 + 1 𝐹(1, 𝑘)  +  (−1)𝑛 + 1 (𝑛 + 𝑘 + 1)𝑛 + 2 .  

            = (𝑛 + 𝑘 + 1)1 · 0  – (𝑛 + 𝑘 + 1 )2 · 0 +  … + (−1)𝑛 – 1(𝑛 + 𝑘 + 1)𝑟  · 0 + 0   

            = 0. 

The proposition follows. ▮ 

(b) Recurrence function for 𝒆𝒏{𝒙𝒌}  

Replacing the coefficients: (𝑛 + 𝑘)1 , (𝑛 + 𝑘)2 , … , (𝑛 + 𝑘)𝑛 + 1 from (23.1) by 

 𝑒1{𝑥𝑛 + 𝑘}, 𝑒2 {𝑥𝑛 + 𝑘}, … , 𝑒𝑛 + 1{𝑥𝑛 + 𝑘} respectively, we consider the recurrence relation (23.2) with the initial 

condition: F(1, k) = e1{xk} as shown.  

𝐹(𝑛 + 1, 𝑘)  =  𝑒1{𝑥𝑛 + 𝑘} 𝐹(𝑛, 𝑘)  –  𝑒2{𝑥𝑛 + 𝑘} 𝐹(𝑛 − 1, 𝑘)  +  … 

             + (−1)𝑛 –1 𝑒𝑛 {𝑥𝑛 + 𝑘} 𝐹(1, 𝑘)  + (−1)𝑛 𝑒𝑛 + 1{𝑥𝑛 + 𝑘} .                   (23.2)  

(23.1) and (23.2) can yield the similar recurrence expressions that we show in Topic 4.2. The solution of the recurrence 
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function: 𝐹(𝑛 + 1, 𝑘) is Proposition 4 which is the consequence of Proposition 2 and proposition 3. 

Proposition 2: 𝐹(𝑛, 1) = 𝑥1
𝑛 .  

Proof: We give the proof  by the method of induction.  

                                   𝐹(1, 1) =  𝑥1 ; 

                                   𝐹(2, 1)  = 𝑒1{𝑥2} 𝐹(1,1) – 𝑒2 {𝑥2}  = (𝑥1 + 𝑥2) 𝑥1  −  𝑥1 𝑥2  = 𝑥1
2. 

Hence the proposition holds for n = 1 and for n = 2.  To complete the proof, we assume that the proposition holds for 

all n  ℕ with 1 ≤  n ≤  m.   

Then we deduce that 

 𝐹(𝑚 + 1, 1)  =  𝑒1{𝑥𝑚 + 1} 𝐹(𝑚, 1)  – … +  (−1)𝑚 – 1 𝑒𝑚{𝑥𝑚 + 1} 𝐹(1, 1)  +  (−1)𝑚 𝑒𝑚 + 1{𝑥𝑚 + 1} . 
  

             = 𝑒1{𝑥𝑚 + 1} 𝑥1
𝑚  −  …  + (−1)𝑚 − 1 𝑒𝑚{𝑥𝑚 + 1} 𝑥1   +  (−1)𝑚 𝑒𝑚 + 1{𝑥𝑚 + 1}.

  
[By inductive assumption]

 

            = [𝑥1 + 𝑒1{𝑦𝑚}] 𝑥1
𝑚  –   [𝑥1 𝑒1{𝑦𝑚}  + 𝑒2{𝑦𝑚}] 𝑥1

𝑚 – 1
 +  … 

              + (−1)𝑚 − 1 [𝑥1 𝑒𝑚 −1{𝑦𝑚} + 𝑒𝑚 {𝑦𝑚}] 𝑥1  +  (−1)𝑚 𝑥1 𝑒𝑚{𝑦𝑚} .  

[By (21)] 

            = 𝑥1
𝑚 + 1  +  [𝑒1{𝑦𝑚} 𝑥1

𝑚 − 𝑒1{𝑦𝑚} 𝑥1
𝑚]  −  [𝑒2{𝑦𝑚} 𝑥1

𝑚 − 1 − 𝑒2{𝑦𝑚} 𝑥1
𝑚 − 1] + …   

                + (−1)𝑚 − 1[𝑒𝑚{𝑦𝑚} 𝑥1 − 𝑒𝑚{𝑦𝑚} 𝑥1] . 

            = 𝑥1
𝑚 + 1 .                                

The proposition follows.▮ 

Corollary 1:  𝐹(𝑛, 1) =  ℎ𝑛 {𝑥1 }. 

Proposition 3: 𝐹(𝑛 + 1, 𝑘 + 1) =  𝐹(𝑛 + 1, 𝑘)  +  𝑥𝑘 + 1 𝐹(𝑛, 𝑘 + 1). 

Proof: The proof is inductive on n. When n = 1 and k is a fixed positive integer, we find: 

𝐹(2, 𝑘 + 1)  =  𝑒1{𝑥𝑘 + 2} 𝐹(1, 𝑘 + 1)  −  𝑒2 {𝑥𝑘 + 2}    

                      = [𝑒1{𝑥𝑘 + 1}  + 𝑥𝑘 + 2] 𝐹(1, 𝑘 + 1)  −  [𝑒2{𝑥𝑘 + 1}  + 𝑥𝑘 + 2  𝑒1{𝑥𝑘 + 1}]  

[By (21.1)] 

                      = 𝑒1{𝑥𝑘 + 1} [𝐹(1, 𝑘) + 𝑥𝑘 + 1] + 𝑥𝑘 + 2 𝑒1{𝑥𝑘 + 1} − 𝑒2{𝑥𝑘 + 1}  −  𝑥𝑘 + 2 𝑒1{𝑥𝑘 + 1}  

                      = 𝑒1{𝑥𝑘 + 1} 𝐹(1, 𝑘)  −  𝑒 2{𝑥𝑘 + 1}  + 𝑥𝑘 + 1 𝑒1{𝑥𝑘 + 1}    

                      = 𝐹(2, 𝑘)  + 𝑥𝑘 + 1 𝐹(1, 𝑘 + 1) . 

Hence the proposition holds for n = 1 and a fixed k. We assume that the proposition holds for n ℕ with 1 ≤ n ≤ m and a 

fixed k. Then we shall show that the proposition holds for n = m + 1 and a fixed k. We deduce that 𝐹(𝑚 + 2, 𝑘 + 1)  

                      =  𝑒1{𝑥𝑘 + 𝑚 + 2} 𝐹(𝑚 + 1, 𝑘 + 1)  −   𝑒2{𝑥𝑘 + 𝑚 + 2} 𝐹(𝑚, 𝑘 + 1)  +  …   

                        + (−1)𝑚 𝑒𝑚 + 1{𝑥𝑘 + 𝑚 + 2} 𝐹(1, 𝑘 + 1)   +  (−1)𝑚 + 1 𝑒𝑚 + 2{𝑥𝑘 + 𝑚 + 2} .  

                      = [𝑒1{𝑥𝑘 + 𝑚 + 1}   + 𝑥𝑘 + 𝑚 + 2] 𝐹(𝑚 + 1, 𝑘 + 1)    

                         − [𝑒2{𝑥𝑘 + 𝑚 + 1}   + 𝑥𝑘 + 𝑚 +  2 𝑒1{𝑥𝑘 + 𝑚 + 1}] 𝐹(𝑚, 𝑘 + 1)  +  …  

                         + (−1)𝑚   [𝑒𝑚 + 1{𝑥𝑘 + 𝑚 + 1}  +  𝑥𝑘 + 𝑚 + 2  𝑒𝑚 {𝑥𝑘 + 𝑚 + 1}] 𝐹(1, 𝑘 + 1)  

                         + (−1)𝑚 + 1  [𝑒𝑚 + 2{𝑥𝑘 + 𝑚 + 1}  + 𝑥𝑘 + 𝑚 + 2  𝑒𝑚 + 1{𝑥𝑘 + 𝑚 + 1}] . 

                      = 𝑒1{𝑥𝑘 + 𝑚 + 1} 𝐹(𝑚 + 1, 𝑘 + 1)  −  𝑒2{𝑥𝑘 + 𝑚 + 1} 𝐹(𝑚, 𝑘 + 1)  +  …     

                         + (−1)𝑚 𝑒𝑚 + 1{𝑥𝑘 + 𝑚 + 1} 𝐹(1, 𝑘 + 1)  +  (−1)𝑚 + 1 𝑒𝑚 + 2{𝑥𝑘 + 𝑚 + 1}  

                         + 𝑥𝑘 + 𝑚 + 2 𝐹(𝑚 + 1, 𝑘 + 1) −  𝑥𝑘 + 𝑚 + 2 𝐹(𝑚 + 1, 𝑘 + 1). 

                     = 𝑒1{𝑥𝑘  +  𝑚 + 1} [𝐹(𝑚 + 1, 𝑘 )  +  𝑥𝑘 + 1𝐹(𝑚, 𝑘 + 1)]  

                        − 𝑒2{𝑥𝑘 + 𝑚 + 1} [𝐹(𝑚, 𝑘) + 𝑥𝑘 + 1 𝐹(𝑚 − 1, 𝑘 + 1)]  +  …  

                        +(−1)𝑚 𝑒𝑚 + 1{𝑥𝑘 + 𝑚 + 1} [𝐹(1, 𝑘 )  + 𝑥𝑘 + 1]  + (−1)𝑚 + 1 𝑒𝑚 + 2{𝑥𝑘 + 𝑚 + 1} . 

[By inductive assumption] 
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= 𝐹(𝑚 + 2, 𝑘 ) + 𝑥𝑘 + 1 𝐹(𝑚 + 1, 𝑘 + 1). 

Thus we have the proposition by induction on n. Yet k can be given any positive integer-value to obtain the above result. 

It follows that the proposition holds for all n, k  ℕ. ▮  

Proposition 4: 𝐹(𝑛, 𝑘) = ℎ𝑛 {𝑥𝑘}.
 

Proof:  From Proposition3, 

                                     ∑  [𝐹(𝑛 + 1, 𝑖 + 1) –  𝐹(𝑛 + 1, 𝑖 )]  =  ∑ 𝑥𝑖 + 1 

𝑘

𝑖 =1

𝐹(𝑛, 𝑖 + 1) .

𝑘

𝑖 = 1

 

                                       𝐹(𝑛 + 1, 𝑘 + 1) –  𝐹(𝑛 + 1, 1 )   =   ∑ 𝑥𝑖 + 1 

𝑘

𝑖 =1

𝐹(𝑛, 𝑖 + 1) . 

By Proposition 2,  

                                     𝐹(𝑛 + 1,   𝑘 + 1)  =  ∑ 𝑥𝑖 

𝑘 + 1

𝑖 =1

𝐹(𝑛, 𝑖 ) . 

Then  

(i) 𝐹(2, 𝑘 + 1)  =  𝑥𝑘 + 1 𝐹(1, 𝑘 + 1)  + … +  𝑥1 𝐹(1, 1)   

                               =  𝑥𝑘 + 1 ℎ1 {𝑥𝑘 + 1}  + … + 𝑥1 ℎ1 {𝑥1} .  

[The initial condition for (23.2) is: 𝐹(1, 𝑘)  =  𝑒1 {𝑥𝑘}  =  ℎ1 {𝑥𝑘}.] 

                        =  ℎ2 {𝑥𝑘 + 1}.   [By (2)]                                                                                              

       (ii) 𝐹(3, 𝑘 + 1) = 𝑥𝑘 + 1 𝐹(2, 𝑘 + 1)  +  … +  𝑥1 𝐹(2, 1)  

                               = 𝑥𝑘 + 1 ℎ2 {𝑥𝑘 + 1}   + … + 𝑥1 ℎ2 {𝑥1}   

                               = ℎ3{𝑥𝑘 + 1}.   

                    …   …  

Thus  

𝐹(𝑛 + 1, 𝑘 + 1) =  ℎ𝑛+1{𝑥𝑘 + 1} . 
By the initial condition and Corollary 1,  

𝐹(𝑛, 𝑘)  =  ℎ𝑛{𝑥𝑘} . 
This completes the proof. ▮ 

4.1 Relation between ℎ𝑛{𝑥𝑘} and 𝑒𝑛{𝑥𝑘}  

From (23.2) and Proposition 4, ℎ𝑛 + 1{𝑥𝑘} 

=  𝑒1 {𝑥𝑘 + 𝑛} ℎ𝑛{𝑥𝑘}  − … + (−1)𝑛 − 1 𝑒𝑛{𝑥𝑘 + 𝑛} ℎ1{𝑥𝑘}  +  (−1)𝑛 𝑒𝑛 + 1{𝑥𝑘 + 𝑛}. 

Since ℎ0 {𝑥𝑘} = 𝑒0 {𝑥𝑘} = 1,  the above recurrence relation can be written: 

                                         ∑(−1)𝑖 

𝑛

𝑖 = 0

𝑒𝑖 {𝑥𝑘 + 𝑛 − 1} ℎ𝑛 − 𝑖{𝑥𝑘}  = 0 .                                                           (24) 

We use (24) in Topic 5.  

4.2 Common Occurrences of the
 
Compositions in the Recurrence Expressions from (23.1) and (23.2) 

(a)  The initial condition of (23.1) is:  

                             F(1, k)  =  (𝑘)1.                                        (25.1) 

From Proposition1, 

              0  =  F(2, k)  =  F(3, k)  =   F(4, k)  =  … 

That is,  

0 =  (𝑘 + 1)1 (𝑘)1  −   (𝑘 + 1)2 .                                                  (25.2) 

               =  (𝑘 + 2)1(𝑘 + 1)1(𝑘)1 – (𝑘 + 2)1 (𝑘 + 1)2 –  (𝑘 + 2)2 (𝑘)1  + (𝑘 + 2)3 .             (25.3)  

                =  (𝑘 + 3)1(𝑘 + 2)1 (𝑘 + 1)1 (𝑘)1 –   (𝑘 + 3)1 (𝑘 + 2)1(𝑘 + 1)2  

                   − (𝑘 + 3)1 (𝑘 + 2)2 (𝑘)1 + (𝑘 + 3)1 (𝑘 + 2)3 − (𝑘 + 3)2 (𝑘 + 1)1(𝑘)1 

                  + (𝑘 + 3)2 (𝑘 + 1)2  +  (𝑘 + 3)3 (𝑘)1  −  (𝑘 + 3)4 .                              (25.4) 

                      …  … 

The process to find the successive results is recursive substitution. We get: (i) (25.2) from (23.1) and (25.1); (ii) (25.3) 

from (23.1), (25.1) and (25.2); (iii) (25.4) from (23.1), (25.1), (25.2) and (25.3); and so on. (25.1) contains only one 

bottom index: 1. Two sets of bottom indices in two terms of (25.2) are: (1, 1) and 2 such that 1 + 1 = 2.  Four sets of 
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bottom indices in four terms of (25.3) are: (1, 1, 1),  (1, 2),  (2, 1) and 3 such that 1 + 1 + 1  =  1 + 2  =  2 + 1  =  

3.  Eight sets of bottom indices in eight terms of (23.4) are: (1, 1, 1, 1),  (1, 1, 2),  (1, 2, 1),  (1, 3),  (2, 1, 1),  (2, 

2),  (3, 1) and 4  such that 1 + 1 + 1 + 1  =  1 + 1 + 2  =  1 + 2 + 1  =  1 + 3  =  2 + 1 + 1  =  2 + 2  =  3 

+ 1  =  4. Thus 1, 2, 4 and 8 sets of bottom indices in 1, 2, 4 and 8 terms of (25.1), (25.2), (25.3) and (25.4) involve 

with 1, 2, 4 and 8 compositions of 1, 2, 3 and 4 respectively. In this way 2𝑛 − 1 terms of (25.n) can involve with 2𝑛 − 1 

compositions of n. 

(b) The initial condition of (23.2) is:  𝐹(1, 𝑘) =                                                                                         

 ℎ1{𝑥𝑘}  =  𝑒1{𝑥𝑘} .                                              (26.1) 

Then from (24) which is the consequence of (23.2) and Proposition 4, the recurrence expressions are: 

ℎ2{𝑥𝑘}  =  𝑒1{𝑥𝑘 + 1} 𝑒1{𝑥𝑘}  − 𝑒2{𝑥𝑘 + 1} .                                    (26.2) 

                     ℎ3{𝑥𝑘}  =  𝑒1{𝑥𝑘+2} 𝑒1{𝑥𝑘+1} 𝑒1{𝑥𝑘} − 𝑒1{𝑥𝑘+2} 𝑒2{𝑥𝑘+1} 

                              −𝑒2{𝑥𝑘+2} 𝑒1{𝑥𝑘} + 𝑒3{𝑥𝑘+2} .                                     (26.3)           

                    ℎ4{𝑥𝑘}  =  𝑒1{𝑥𝑘 + 3} 𝑒1{𝑥𝑘 + 2} 𝑒1{𝑥𝑘 + 1} 𝑒1{𝑥𝑘}  

                             −  𝑒1{𝑥𝑘 + 3} 𝑒1{𝑥𝑘 + 2} 𝑒2{𝑥𝑘 + 1} − 𝑒1{𝑥𝑘 + 3} 𝑒2{𝑥𝑘 + 2} 𝑒1{𝑥𝑘} 

                             + 𝑒1{𝑥𝑘 + 3} 𝑒3{𝑥𝑘 + 2} − 𝑒2{𝑥𝑘 + 3} 𝑒1{𝑥𝑘 + 1} 𝑒1{𝑥𝑘 }     

                             + 𝑒2{𝑥𝑘 + 3} 𝑒2{𝑥𝑘 + 1}   + 𝑒3{𝑥𝑘 + 3} 𝑒1{𝑥𝑘}  −  𝑒4{𝑥𝑘 + 3} .               (26.4)  

                   …  …                  

1, 2, 4 and 8 sets of bottom indices of the notation: e in 1, 2, 4 and 8 terms of (26.1), (26.2), (26.3) and (26.4) involve 

with 1, 2 , 4 and 8 compositions of  1, 2, 3 and 4 respectively. In this way 2𝑛 − 1 terms of (26.n) can involve with 

2𝑛 − 1 compositions of n. 

We further notice that ‘k’ occurs inside the parenthesis of (25.1); and as the bottom index of x in (26.1). Two sets of 

parenthesis in two terms of (25.2) contain two sets of integers: (k + 1, k); and k + 1; which are also two sets bottom 

indices of the notation: x in two terms of (26.2) in the same order. Four sets of parenthesis in four terms of (25.3) 

contain four sets of integers: (k + 2, k + 1, k); (k + 2, k + 1); (k + 2, k); and k + 2; which are also four sets bottom indices 

of the notation: x in four terms of (26.3) in the same order; and so on. 

5. Divisibility of 𝒉𝒏{𝒌} by an Odd Prime  

We establish here two theorems regarding divisibility of ℎ𝑛{𝑘} by an odd prime p. The famous Lagrange’s Theorem in 

classical number theory is important to prove the theorems. 

Lagrange’s Theorem: Let p be an odd prime and x an integer, and let 

(𝑥 + 1) (𝑥 + 2)  . . .  (𝑥 + 𝑝 – 1)   =  𝑥𝑝 − 1 + 𝑐1𝑥𝑝 − 2 + … + 𝑐𝑝 − 2𝑥 + (𝑝 − 1)!  

Then the coefficients 𝑐1,  ..., 𝑐𝑝 − 2  are all divisible by p. 

Lagrange’s Theorem in short form: If p is an odd prime and n an integer with 1 ≤ n ≤ p – 2 then 𝑒𝑛{𝑝 − 1} ≡
0 (𝑚𝑜𝑑 𝑝).  

Theorem 1: An odd prime p divides ℎ𝑛{𝑘} if k + n = p, n ≥ 1, k ≥ 2. 

Proof: Substituting 1, 2, …, k  for 𝑥1, 𝑥2, …, 𝑥𝑘 respectively, we get  the reduced form of (24): 

                                         ℎ𝑛{𝑘}  =  ∑(−1)𝑖 − 1

𝑛

𝑖 = 1

𝑒𝑖{𝑘 + 𝑛 − 1} ℎ𝑛 − 𝑖{𝑘} .                                                (27) 

When k + n = p, n ≥ 1, k ≥ 2 then 1 ≤ n ≤ p – 2. By Lagrange’s Theorem, the coefficients:  𝑒1{𝑘 + 𝑛 − 1},  ..., 

𝑒𝑛{𝑘 + 𝑛 − 1} on the right of (27) are all divisible by p if k + n = p, 1 ≤ n ≤ p – 2. The theorem follows at once.▮ 

We can enunciate Theorem1 in an alternative form. 

Alternative form of Theorem 1: If p is an odd prime then ℎ1{𝑝 − 1}, ℎ2{𝑝 − 2}, … , ℎ𝑝 − 2{2} are all divisible by p. 

Theorem 2: An odd prime p divides ℎ𝑛{𝑘} if k + n = p + 1, n ≥ 1, k ≥ 3. 

Proof.  From (1.1),  

                   ℎ𝑛{𝑘}  =  ℎ𝑛{𝑘 − 1}  + 𝑘 ℎ𝑛 − 1{𝑘} .                                (28)                                                                                             

Let us verify divisibility of the right hand side of (28) by p. By Theorem1, p divides:  
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(i) ℎ𝑛{𝑘 − 1} if n + (k  – 1) = p,  n ≥ 1,  k – 1 ≥ 2  and  

(ii) ℎ𝑛 − 1{𝑘} if (n  – 1) + k = p,  n – 1 ≥ 1,  k ≥ 2. 

p divides 𝑘ℎ𝑛 − 1{𝑘} if n =1 and k = p.  

It follows that p divides both the terms on the right of (28); and hence divides ℎ𝑛{𝑘} if k + n = p + 1, n ≥ 1, k ≥ 3. This 

completes the proof. ▮ 

Alternative form of Theorem 2: If p is an odd prime then ℎ1{𝑝}, ℎ2{𝑝 − 1}, … , ℎ𝑝 − 2{3} are all divisible by p. 

(1) and (21); (2) and (3); (2.1) and (2.2); (3.2) and (8); (11.1) and (11.2); (15) and (18); (19) and (20); (22.1) and (22.2) ; 

(25.n) and(26.n); Theorem 1 and Theorem 2 in pairs are comparable or analogous. The math formulas or laws under 

each pair are alike in some ways. In fact the polynomial, which is specified by the pair of adjectives: homogeneous and 

symmetric, is rhythmical for its involvement with many pairs of comparable relations. 
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Annexure 

The following inequalities may be relevant when we speak of comparable relations for ℎ𝑛{𝑘}. 

6. Inequalities between  𝒉𝒏 {𝒌} and 𝒉𝒌 {𝒏} 

We have: 1𝑛 <  𝑛1 where n > 1;  23 <  32; 24 = 42; and for other positive integer-values of n and k, the general rule is:  𝑘𝑛  > 

𝑛𝑘 for n > k. These are the inequalities between the monomials of single variables: 𝑘𝑛 and 𝑛𝑘 for n, k ∈ ℕ.  The inequalities 

between ℎ𝑛 {𝑘} and ℎ𝑘 {𝑛} can be comparable with the inequalities between 𝑘𝑛 and 𝑛𝑘. We have: ℎ𝑛 {1} = 1𝑛; and  ℎ1{𝑛} = 1 

+ … + n. Hence ℎ𝑛{1} < ℎ1{𝑛} for n > 1. We can get different integer-values for ℎ𝑛{𝑘} by using the counting formulas: (3.2) & 

(2). Surveying the values, it is found that there is no single formula for the inequalities between ℎ𝑛 {𝑘} and ℎ𝑘 {𝑛} when n ∈ (2, 3); 

or when k ∈ (2, 3); and rather exists a general rule when n, k ≥ 4, n ≠ k. The rules for the inequalities are shown in Conjecture 2. 

Conjecture 2:  For all n, k ∈ℕ,  

                                     ℎ𝑛 {2}  <   ℎ2 {𝑛} if 3 ≤ n ≤ 9, 

                                     ℎ𝑛 {3}  <  ℎ3 {𝑛} if 4 ≤ n ≤ 5 , 

and in all other cases, the general rule is: ℎ𝑛 {𝑘} > ℎ𝑘 {𝑛}; more precisely:   

                                     ℎ𝑛 {2}  >  ℎ2 {𝑛} if n ≥ 10,  

                                     ℎ𝑛 {3}  >  ℎ3 {𝑛} if n ≥ 6, 

                                     ℎ𝑛 {𝑘}  >  ℎ𝑘 {𝑛} if n > k ≥ 4. 

The inequalities between the monomials of single variables give an idea about existence of the flowing math problem.  

Let 𝑛 = 𝑎1𝑏1 = 𝑎2𝑏2 =  𝑎3𝑏3 =  …, where 𝑛, 𝑎1, 𝑏1, 𝑎2, 𝑏2, … are all positive real numbers. Which one among the monomials of 

single variables: 𝑎1
𝑏1 , 𝑏1

𝑎1 ,  𝑎2
𝑏2 , 𝑏2

𝑎2 , … is the greatest? A math rule with respect to the problem is guessed and stated in Conjecture 3.  

Conjecture 3: Let 𝑛 = 𝑎 ∙ 𝑏 where n, a, and b are all positive real numbers. Then the greatest value of 𝑎𝑏 for any given n is  

3
𝑛

3⁄  ; that is, a = 3 and b =  
𝑛

3
  for the desired greatest value. 

Conjecture 3 further gives an idea about existence of the following math problem. 
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Let a positive integer n has m partitions: n =  𝑎1+ 𝑎2 +  …  =  𝑏1+ 𝑏2+  =  … =  … . If we replace the plus signs (+) by the 

multiplication dots (∙) then we get the products: 𝑎1. 𝑎2 .  … ;  𝑏1. 𝑏2 .  … ; and so on. Now the problem is: Which product is the 

greatest? A math rule is guessed regarding the problem and stated in Conjecture 4. 

Some integers are of the kind: 3k for k = 1 then others are of two kinds: 3𝑘 −  1 and 3𝑘 −  2. Excluding the preliminary case of the 

first three natural numbers: 1, 2 and 3; Conjecture 4 is stated below for other natural numbers. 

Conjecture 4: (i) If the number is of the kind: 3k for k ≥ 2, then the greatest product is 3k with respect to the partition: 3 + 3 + 3 + …; 

(ii) if the number is of the kind: 3𝑘 − 1 for k ≥ 2, then the greatest product is 2 ∙ 3𝑘 − 1 with respect to the partition: 2 + 3 + 3 + 3 

+ …;  and (iii) if the number is of the kind: 3𝑘 − 2 for k ≥ 2, then the greatest product is  22 ∙ 3𝑘 − 2 with respect to the partition: 

2 + 2 + 3 + 3 + 3 + …            

The roles of 3 in Conjecture 3 and Conjecture 4 are remarkable. 
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