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Abstract

The possibility of free spin-1/2 particles (also called Dirac particles) superluminal motion in spacetime, is investigated.
The universal cover of the entire Lorentz groupL consists of S L (2,C) and the spinor map so that to obtain a relativistically
invariant description of the state of an electron, one looks to the representations of S L (2,C) , that is, to the 2-valued
representation of L, known as spinors. We restrict our approach to realistic one-particle systems along with the “positive
energy” and utilize the free Dirac waves propagating in the z−direction. The Dirac wave function ψ (x, t) is considered as a
“classical field” and the corresponding wave equation is derived from a Lagrange function. Using the symmetrized Dirac
Lagrange density, it is observed that variation in spin angular momentum (in the light cone) leads to causality violation,
whereas variation in orbital angular momentum does not. Consequently, it is shown that the expectation value of the
relative translational velocity component of the spinning free electron exceeds light speed.

Keywords: free spin-half particles, free Dirac particles, Dirac spinors, superluminal motion, relativistic wave equation,
spin angular momentum, orbital angular momenta, symmetrized Dirac Lagrange density, Lorentz boost, causality viola-
tion.

1. Introduction

The universal existential problem of particles capable of superluminal motion has been of great interest at the heart of many
controversies and occupied a lot of authors’ attention in mathematical physics, for decades. Though special relativity is
not in conflict with faster-than-light phenomena, many regard it paradoxical the fact that the speed of relativistic particles
always averages light velocity. No one can deny that the demonstration of superluminal particles existence underpins
the net advance of science. In this paper, we go beyond the usual luminal aspect of free fermions (as shown somewhere
in other literature, where the unsymmetrized Dirac Lagrange density is used) to prove these particles are superluminal,
employing the symmetrized Lagrangian.

To obtain a high resolution probe, high energies and momenta are requisite. So, the covariant generalization of the
Shrödinger equation becomes a necessity. We leave the theory of the principles of special relativity and Lorentz transfor-
mations, and their application to the construction of special relativistic wave equations for fermions and bosons, the Dirac
and Klein-Gordon equations, to the literature: Greiner (1994, 2000); Greiner & Reinhardt (1996); Naber (1992); Guidry
(1991); Carmeli (2000), and references therein.

The study of one-body problem necessarily passes by the review of classical field theory, see Greiner & Reinhardt (1996).
One must reckon with the important statement of Noether’s theorem by which each continuous symmetry transformation
leads to a conservation law. The conserved quantity G :=

∫
V d3x f0 (x) is defined from the Lagrange density through the

conserved Noether’s current given by

fµ (x) =
∂L (x)
∂ (∂µϕr)

δϕr (x) −
[
∂L (x)
∂ (∂µϕr)

∂ϕr

∂xν
− gµνL (x)

]
δxν, (1)

A first application of Noether’s theorem concerns invariance under translation and leads to the conserved canonical energy-
momentum tensor: Θµν =

∂L(x)
∂(∂µϕr)

∂ϕr
∂xν − gµνL. This implies four conserved quantities, which are the energy E and the mo-

mentum vector P of the field. In four-dimensional notation: Pν = (E/c, P) = 1
c

∫
V d3xΘ0ν (x) = const. Another important

application involves Lorentz invariance or invariance under spatial rotations. The corresponding integral conservation law
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is a constant of motion given by the antisymmetric tensor

Mνλ =

∫
d3x[Θ0λxν − Θ0νxλ +

∂L
∂
(
∂0ϕr

) (
Iνλ

)
rs
ϕs (x)]. (2)

For spatial rotations where ν, λ = 1, 2, 3, this relation is split into two parts, i.e., Mnl = Lnl + S nl, with Lnl representing
the orbital angular momentum and S nl which describes the spin angular momentum. A third application consists of
internal symmetries of the system. This yields the conserved current. Being in general not symmetric, the canonical
energy-momentum tensor can be symmetrized by adding a 4-divergence.

Greiner (2000) examined and obtained the solution of the free Dirac equation (that is, the Dirac equation without poten-
tials). The derivation of the time-evolution factor ε = λEp,where Ep is the energy, gives rise to positive and negative
energy solutions. For every momentum p there are two different kinds of solutions, those with λ = +1 (ε = +Ep) and
those with λ = −1 (ε = −Ep). The free one-particle states can also be classified using the helicity, which, physically, is
interpreted as the projection of the fermion spin onto the momentum direction, and is a constant of motion of a free Dirac
particle. It can be shown that helicity is invariant under spatial rotations. If the electron wave propagates in the direction

of the z -axis, we have p = (0, 0, p) and the helicity operator is Λ̂S = Ŝ z =
~
2 Σ̂z =

~
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , where ~ = h
2 is

Planck constant. One then can classify completely the free Dirac waves propagating in the z−direction. However, for our
interest in this paper, we will restrict ourselves to the solutions for positive energies only (where λ = +1). Denoting them
by Ψpz,λ,S z (x, t) , we have explicitly,

Ψp,λ,+1/2 = N


(

1
0

)
cσ̂z p

m0c2+λEp

(
1
0

)
 exp

[
i
(
pz − λEpt

)
/~

]
, (3)

Ψp,λ,−1/2 = N


(

0
1

)
cσ̂z p

m0c2+λEp

(
0
1

)
 exp

[
i
(
pz − λEpt

)
/~

]
, (4)

where N =
(

m0c2+λEp

2λEp

)1/2
is a normalization factor determined from the condition∫

Ψ
†
pλ (x, t)Ψp′λ′ (x, t) d3x = δλλ′ δ

(
p− p

′)
. (5)

Now, by Greiner (2000) and Guidry (1991), we study the restrictions in which a single-particle interpretation of the Dirac
equation and its solutions, holds.

2. Single-Particle Interpretation of the Plane (Free) Dirac Waves

The Lagrange density which leads to the free Dirac equation is

L = i~Ψ†
∂

∂t
Ψ + i~cΨ†∇ · α̂Ψ − m0c2Ψ†β̂Ψ. (6)

From this result, we can calculate the energy of the states related to the free solutions (3) and (4) of the Dirac equation:

E = ε = ±Ep. (7)

What is the interpretation of these positive and negative energy solutions, since there is no precedent in the framework of
a one-particle theory? The answer to this query is found in the proposal offered by the hole theory, whereby real electrons
are assumed to be described by only positive energy states with E = +Ep. All states of negative energy are occupied
by electrons, one electron in each state of negative energy and given spin projection (see Figure 1). Thus, in this way,
a real electron of positive energy is also prevented from falling into energetically lower and lower states by radiation
emission. This prevents a radiation catastrophe, by the effective Pauli exclusion principle by which two identical fermions
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(for example, two electrons) cannot occupy the same state. The set of filled negative-energy states is called the Fermi
sea, which is in excitation, due to quantum-fluctuations of the vacuum. From the free Dirac equation the gap between
the filled negative-energy states and the positive-energy states is twice the fermion rest mass, i.e., 2m0c2, as illustrated in
(Figure 1). Therefore, energy supplied to the vacuum either by virtual fluctuations, or by real physical processes such as
incident radiation, may cause a fermion to be promoted from the negative-energy sea to an unoccupied positive-energy
state, leaving a hole in the sea (Figure 1). Such a particle-hole excitation of the vacuum produces a positive-energy
fermion and a hole in the sea that will behave, because of the negative sign on the energy, as fermion of opposite charge,
an antifermion. This leads to the meaningful concept of the positron, as the antiparticle of the electron. Thus, the hole-
theory interpretation shows explicitly that the Dirac equation is generally not a single-particle equation; because of the
particle-hole excitation of the vacuum, it is inherently a many-body equation.

However, the restriction to weak and slowly varying fields, for which a broad gap ≃ 2m0c2 remains between the two
opposite energy states, renders legitimate the use of Klein-Gordon and Dirac equations as single-particle equations.

We can therefore pursue the single-particle aspect further utilizing modified one-particle operators and the Ehrenfest’s
theorems according to which: in nonrelativistic quantum mechanics there is always a correspondence between a relation
of operators and that of classical objects (measurable values). As an example, Newton’s classical equation of motion
corresponds to the operator equation dp̂

dt =
1
i~

[
p̂, Ĥ

]
= −∇U, with Ĥ = p̂2/2m + U (x). Another example is given by the

operator relation
dx
dt
=

1
i~

[
x, Ĥ

]
=

p̂
m0

, (8)

which corresponds to the classical relation between the velocity and linear momentum.

2.1 One-particle Operators

We introduce the sign operator Λ̂,

Λ̂ =
Ĥ f√
Ĥ2

f

=
cα̂ · p̂ + β̂m0c2

c
√

p̂2 + m2
0c2
≡ c (α̂ · p̂) + β̂m0c2

Ep
, (9)

which commutes with the free Dirac Hamiltonian Ĥ f , and is Hermitian and unitary. Λ̂ has as an eigenvalue the sign λ
(= ±1) of the time evolution factor, with λ = +1 meaning positive-energy states, and λ = −1 negative-energy states. An
arbitrary state with fixed λ can be written in the form

Ψλ =
∑
S z

∫
AS z (p)Ψp,λ,S z d

3 p⇒ Λ̂Ψλ =
∑
S z

∫
AS z (p)

Ĥ f

Ep
Ψp,λ,S z d

3 p = λΨλ. (10)

Then the projection operators Λ̂± is introduced in terms of Λ̂ as

Λ̂± =
1
2

(
1 ± Λ̂

)
. (11)

The operators Λ̂± split off the positive (or negative) parts of the states to which they are applied. Operators are identified
as “even” or “odd” according as they transform positive (negative) functions into positive (negative) or negative (positve)
functions, respectively. The product of two even or two odd operators is always an even operator, and the product of
an even and an odd operator is always an odd operator. Since all positive functions (λ = +1) are orthogonal with
respect to all negative (λ = −1) functions, the expectation value of an odd operator with states of fixed λ is always zero;
hence,

⟨
Ψλ | Âodd | Ψλ

⟩
= 0. A consistent one-particle theory can only use states with specified sign (either λ = +1 or

λ = −1), because the energy can only be defined meaningfully in that way. However, it follows that in a consistent
one-particle theory all physical quantities must necessarily be defined by even operators. It can be shown for Dirac’s
theory, that Ehrenfest’s theorems follow under this condition too, i.e., the quantum-mechanical operator equations and the
corresponding classical equations become identical. That is to say the mean values comply with the classical equations, a
quite significant fact. Formalizing these considerations, we split up every operator Â into an even

[
Â
]

and an odd
{
Â
}

part.

2.2 Canonical Energy-momentum Tensor of the Free Dirac Equation

From the Dirac Lagrange density given by (6) , one can calculate the canonical energy-momentum tensor:

T µ
ν =

∂L
∂
(
∂µψ

)∂νψ + ∂L
∂
(
∂µψ̄

)∂νψ̄ − δµνL = ψ̄i~cγµ∂µψ − δµν ψ̄i~cγσ∂σψ + δ
µ
νm0c2ψ̄ψ. (12)
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From this, one obtains the energy density T 0
0 ,

T 0
0 ,= −ψ†i~α̂ · ∇cψ + m0c2ψ̄ψ = ψ†Ĥ fψ. (13)

Consequently

E =
∫

T 0
0 d3x =

⟨
ψ | Ĥ f | ψ

⟩
, (14)

that is, the energy is just the expectation value of the free Dirac Hamiltonian Ĥ f in the state ψ. By analogy the momentum
density T 0

i is given by
T 0

i = ψ̄i~cγ0∂iψ = ψ
† (p̂)i cψ, (15)

in other words, pi = (1/c)
∫

T 0
i d3x =

⟨
ψ | (p̂)i | ψ

⟩
is the expectation value of the momentum operator in the state ψ. The

components
T i

j = ψ̄i~c
(
γ j∂ j − δi

jγ
µ∂µ

)
ψ + δi

jm0c2ψ̄ψ, (16)

which can simply be written for each solution of the equation of motion as

T i
j = ψ̄i~cγi∂ jψ = −ψ̄γi p̂ jcψ = −ψ†α̂i p̂ jcψ, (17)

are the components of the stress-strain tensor. The trace of T µ
ν is given by

T ≡ T µ
µ = ψ̄i~c

(
γµ∂µ − 4γσ∂σ

)
ψ + 4m0c2ψ̄ψ = m0c2ψ̄ψ. (18)

2.3 Energies of the Solutions to the Dirac Equation in the Canonical Formalism

We calculate in the framework of the canonical formalism the energies of the solutions (3) and (4) of the Dirac equation.

To start with, the energy can be determined [Cf. eq. (14)] as the integral

E =
∫

V
T 0

0 d3x. (19)

If we insert (13) as well as the solutions (3) into (19), we obtain

E = N2
∫

V

(
1, 0,

pc
m0c2 + λEp

, 0
) (
α̂ · p̂c + β̂m0c2

) 
1
0
pc

m0c2+λEp

0

 d3x. (20)

Since for (3) and (4) p = (0, 0, p) holds, by calculation, we obtain

E = N2V
(
1, 0,

pc
m0c2 + λEp

, 0
) [

pc
(

0 σz

σz 0

)
+ m0c2

(
1 0
0 −1

)] 
1
0
pc

m0c2+λEp

0


= N2V(m0c2 + λEp)−12λ2E2

p. (21)

Here we have used wave functions which are normalized with respect to a finite spherical volume V. If we furthermore

insert the expression of N from above: N2 = V−1
(

2λEP
m0c2+λEp

)−1
, we obtain

E = λEp = ±
√

p2c2 + m2
0c4 (22)

for the upper energy continuum (λ = +1) and for the lower energy continuum (λ = −1). Hence, the free Dirac equation
leads to states with positive and negative energy.

As for the Dirac Hamiltonian Ĥ f , the momentum operator component p̂ is also obtained:

Λ̂p̂Λ̂ = p̂, so that
[
p̂
]
= p̂.
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For the even part of the α̂ operator component, we have

Λ̂α̂iΛ̂ =
cα̂ · p̂ + β̂m0c2

c
√

p̂2 + m2
0c2

α̂i
cα̂ · p̂ + β̂m0c2

c
√

p̂2 + m2
0c2
= −α̂i + 2cp̂i

Λ̂

c
√

p̂2 + m2
0c2

,

and therefore

[α̂i] =
1
2

(
α̂i + Λ̂α̂iΛ̂

)
= cp̂i

Λ̂

c
√

p̂2 + m2
0c2

. (23)

Similarly [
β̂
]
=

m0c2

Ep
Λ̂ = m0c2 Λ̂

c
√

p̂2 + m2
0c2

. (24)

Now we determine the velocity operator in the Dirac theory. Since we are concerned with an equation of Shrôdinger type,
the theorems for the time derivatives of operators which are formulated in (8) are also valid here, and we obtain

dx̂
dt

=
1
i~

[
x̂, Ĥ f

]
=

1
i~

[
x̂, cα̂ · p̂ + β̂m0c2

]
=

c
i~

[
x̂, α̂ · p̂] = cα̂ ≡ v̂. (25)

Since the eigenvalues of α̂ have the values ±1, we obtain here the “seeming” paradoxical result that the absolute value
of the velocity of a relativistic spin-1/2 particle always equals the velocity of light.1 Of course, one may observe that
the components of the velocity dxi/dt would not be simultaneously measurable since the α̂i do not commute with each
other. Nevertheless, in the nonrelativistic limit where the Dirac equation is examined for physically reasonable results,
this “phenomenon” is confirmed, appealing for further investigation.

2.4 The Symmetrized Dirac Lagrange Density

In order to investigate the possibility of free Dirac particles superluminal motion introduced by the above paradox, we turn
to Greiner & Reinhardt (1996), for a short review of some fundamental relations of spin-1/2 fields (which are described
by the Dirac equation). Consider the Dirac wave function ψ (x, t) as a classical field and derive the corresponding wave
equation from a Lagrange function.

With the covariant relativistic notation, the Dirac equation for massive spin-1/2 particles reads (in relativistic units: ~ =
c = 1 )

(
iγµ∂µ − m

)
ψ = 0, (26)

where the four Dirac matrices γµ, µ = 0,...,3, satisfy the algebra

γµγν + γνγµ = 2gµν. (27)

The wave function ψ has four components and satisfies the transformation law of a relativistic spinor. The dimension of
the Dirac field is dim

[
ψ
]
= length−3/2, i.e., it has the natural dimension d = +3/2.

As seen in equation (6) the Lagrangian that leads to (26) is a bilinear function composed of the fields ψ, ψ̇, ∇ψ and the
hermitian conjugate fields ψ†, ψ̇†, ∇ψ†. It has to transform as a Lorentz scalar density and can contain only derivatives of
first order since the Dirac equation itself is of first order. We now show that this Lagrangian leads to the Dirac equation
(26) . First rewrite (6) in relativistic units as

L = ψ̄
(
iγµ∂µ − m

)
ψ = iψ†ψ̇ + iψ†α · ∇ψ − mψ†βψ. (28)

Here, in the second step the matrices β = γ0, β2 = 1, α = γ0γ and the adjoint spinor ψ̄ = ψ†γ0 were used. We will treat
the spinors ψ and ψ† as independent fields, each having four components. Differentiation of L with respect to these fields
and to their time and space derivatives gives

∂L
∂ψ̇
= iψ†,

∂L
∂ψ̇†
= 0,

∂L
∂ (∇ψ)

= iψ†α,
∂L

∂
(∇ψ†) = 0, and

∂L
∂ψ
= −mψ†β,

∂L
∂ψ†
= iψ̇ + iα · ∇ψ − mβψ (29)

1This was first recognized by Gregory Breit in 1928.
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Note that these equations are to be interpreted as matrix equations. For example the last but one equation reads explicitly

∂L
∂ψρ
= −m

∑
τ

ψ†τβτρ. (30)

For a much more compact notation, we will drop the spinor indices without causing confusion. Variation of the action
with respect to ψ† leads to the Euler-Lagrange equation

∂

∂t
∂L
∂ψ̇†
=
∂L
∂ψ†
− ∇ ∂L

∂
(∇ψ†) =⇒ iψ̇ + iα · ∇ − mβψ = 0, (31)

where we have used (29) . Multiplying this last equation by γ0 = β, we obtain the standard form of the Dirac equation(
iγµ∂µ − m

)
ψ = 0 (32)

as desired. Variation with respect to ψ using (29) leads to the differential equation

iψ̇† = −mψ† − i∇ψ†α. (33)

This can be identified as the hermitian conjugate of (31)

ψ̄
(
iγµ
←−
∂µ + m

)
= 0, (34)

where the arrow indicates that the partial derivative acts on the function to the left.

To proceed further we need the canonically conjugate fields πψ and πψ† . As in the case of the Shrödinger field these turn
out to dependent quantities. We find

πψ =
∂L
∂ψ̇
= iψ†, πψ† =

∂L
∂ψ̇†
= 0. (35)

Thus there are two independent degrees of freedom of the Dirac field, which are given by ψ and ψ†.

As usual the Hamilton density is obtained through the Legendre transformation

H = πψψ̇ + πψ† ψ̇
† − L = iψ†ψ̇ − iψ†ψ̇ − iψ†α · ∇ψ + mψ†βψ

= ψ† (−iα · ∇ + βm)ψ. (36)

The Hamiltonian is thus given by the expectation value of Dirac’s differential operator HD = α · p+ βm :

H =
∫

d3xψ† (x, t) (−iα · ∇ + βm)ψ (x, t) . (37)

Finally let us derive the conserved quantities that follow from Noether’s theorem. The canonical energy-momentum tensor
Θµν reads

Θµν =
∂L

∂ (∂µψ)
∂νψ +

∂L
∂
(
∂µψ†

)∂νψ† − gµνL = ψ̄iγµ∂νψ − gµνψ̄ (iγσ∂σ − m)ψ, (38)

which leads to the conserved four-momentum vector

Pν =

∫
d3xΘ0ν =

∫
d3x

[
ψ̄iγ0∂νψ − g0νψ̄ (iγσ∂σ − m)ψ

]
. (39)

The time component of these vector is the energy

P0 =

∫
d3xψ̄ (iγ0∂0 − iγ0∂0 − iγ · ∇ + m)ψ =

∫
d3xψ† (−iα · ∇ + βm)ψ. (40)

As expected this is just the Hamiltonian H of (37) . The spatial momentum vector reads

P = −i
∫

d3xψ†∇ψ. (41)

The transformation law of Dirac spinors under infinitesimal Lorentz transformations is given by

ψ
′ (

x
′)
= ψ (x) − i

4
δωµνσ

µνψ (x) , (42)
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where σµν = i
2
[
γµ, γν

]
. This leads to the infinitesimal generators

(Iµν)αβ = −
i
2

(σµν)αβ , (43)

where µ, ν = 0, ..., 3 are Lorentz indices and α, β = 1, ..., 4 are Dirac indices. The generalized angular momentum tensor
of the Dirac field has the form

Mνλ = Lνλ + S νλ, (44)

Lνλ =
∫

d3x (Θ0λxν − Θ0νxλ) , (45)

S νλ, =

∫
d3x

∂L
∂
(
∂0ψ

) Iνλψ =
1
2

∫
d3xψ†σνλψ. (46)

The three-dimensional vectors of orbital and spin angular momentum are

L = −i
∫

d3xψ†x × ∇ψ, (47)

S =
1
2

∫
d3xψ†Σψ. (48)

In the standard representation of the Dirac matrices, Σ is the “double” Pauli matrix

Σ =

(
σ 0
0 σ

)
. (49)

The Lagrange density (28) is invariant under global phase transformations ψ → ψeiχ and ψ† → ψ†e−iχ. This implies the
existence of conserved current-density vector jµ (x, t) :

jµ = −ie
(

∂L
∂ (∂µψ)

ψ − ∂L
∂
(
∂µψ†

)ψ†) = eψ̄γµψ. (50)

We have included the electrical elementary charge e as a factor in the definition of jµ since expression (50) is just the
electrical current density of the Dirac field. The resulting conserved quantity is the total charge

Q =
∫

d3x j0 (x, t) = e
∫

d3xψ†ψ. (51)

The constancy of Q is seen to coincide with the conservation of the norm of the Dirac field.

Next we show that L is not a real number, since

L⋆ ≡ L† =
[
ψ̄

(
iγµ
−→
∂µ − m

)
ψ
]†
= ψ†

(
−i (γµ)†

←−
∂µ − m

) (
γ0

)†
ψ

= ψ†
(
−iγ0γµγ0←−∂µ − m

)
γ0ψ = ψ̄

(
−iγµ
←−
∂µ − m

)
ψ, (52)

where the properties of the γ matrices
(
γ0

)†
= γ0 and γ0 (γµ)† γ0 = γµ have been used. The expression (52) in general will

not agree with (28) , L⋆ , L. This deficiency, however, can be cured by defining the real Lagrange density as

L′ : =
1
2

(
L +L†

)
=

1
2
ψ̄

(
iγµ
−→
∂µ − m

)
ψ +

1
2
ψ̄

(
−iγµ
←−
∂µ − m

)
ψ

=
1
2
ψ̄iγµ
←→
∂µψ − mψ̄ψ. (53)

This symmetrized Lagrange density essentially leads to the same equations of motion and to the same conserved quantities
as the simpler relation (28) . We show this in Theorem 1, below.

Theorem 1 The symmetrized Dirac Lagrange density (53) leads to the same equations of motion and the same conserva-
tion laws as the unsymmetrized expression (28).
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Proof. This can be seen even without performing the explicit calculation since L′ and L are identical up to a four-
divergence:

L′ = L + δL = L + 1
2

(−i) ∂µ
(
ψ̄γµψ

)
. (54)

This additional term δL only leads to a surface term in the action integral and thus does not show up in the Euler-Lagrange
equation.

To compute the conserved quantities the canonically conjugate fields are needed:

πψ =
∂L′

∂ψ̇
=

i
2
ψ† ≡ π and πψ† =

∂L′

∂ψ̇†
= − i

2
ψ ≡ π†. (55)

The energy-momentum tensor then becomes

Θ
′

0ν = π∂νψ + π
†∂νψ

† − g0νL
′
=

i
2
ψ†
←→
∂νψ − g0ν

( i
2
ψ̄γµ
←→
∂µψ − mψ̄ψ

)
. (56)

The difference between Θ
′

0ν and the original result Θ0ν given in (38) is

δΘ0ν = Θ
′

0ν − Θ0ν = −
i
2
∂ν

(
ψ†ψ

)
+

i
2

g0ν∂µ
(
ψ̄γµψ

)
. (57)

This implies that there is no difference in the field energy:

δP0 =

∫
d3xδΘ00 =

∫
d3x

[
− i

2
∂0

(
ψ†ψ

)
+

i
2
∂0

(
ψ̄γ0ψ

)
+

i
2
∇· (ψ̄γψ)]

=
i
2

∫
d3x∇ ·

(
ψ†αψ

)
= 0. (58)

In the same way the space components (n = 1, 2, 3) of the momentum differ only by a vanishing surface term

δPn = −
i
2

∫
d3x∂n

(
ψ†ψ

)
= 0. (59)

The generalized angular momentum tensor becomes

M
′

νλ = L
′

νλ + S
′

νλ,, (60)

where

L
′

νλ =

∫
d3x

(
Θ
′

0λxν − Θ
′

0νxλ
)
= Lνλ +

∫
d3x (δΘ0λxν − δΘ0νxλ) = Lνλ + δLνλ. (61)

The difference in the spatial orbital angular momentum tensor (ν = n, λ = l) again vanishes:.

δLnl =

∫
d3x

[
− i

2
∂l

(
ψ†ψ

)
xn +

i
2
∂n

(
ψ†ψ

)
xl

]
=

∫
d3x

[
− i

2
∂l

(
ψ†ψxn

)
− i

2
ψ†ψgln +

i
2
∂n

(
ψ†ψxl

)
+

i
2
ψ†ψgnl

]
= 0 (62)

The mixed spacetime components, however, do not vanish:

δL0l =

∫
d3x (δΘ0lx0 − δΘ00xl) = −

i
2

∫
d3x

[
∂l

(
ψ†ψ

)
x0 + ∂k

(
ψ̄γkψ

)
xl

]
= − i

2

∫
d3x

[
∂k

(
ψ̄γkψxl

)
− ψ̄γkψgkl

]
=

i
2

∫
d3xψ̄γlψ , 0. (63)

To compute the spin contribution S
′

νλ in (44) , the hermitian conjugate of (42) is needed:

ψ
′†

(
x
′)
= ψ† (x) +

1
2
∆ωµνψ† (x) I†µν, (64)
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which according to (43) leads to

S
′

νλ =

∫
d3x

(
πIνλψ + ψ†I

†
νλπ
†
)
=

1
4

∫
d3x

(
ψ†σνλψ + ψ

†σ†νλπ
)
. (65)

The space components satisfy

σ
′

nl =

[ i
2

(γnγl − γlγn)
]†
= − i

2

(
γ †l γ

†
n − γ†nγ†l

)
= σnl (66)

which implies

S
′

nl =
1
2

∫
d3xψ†σnlψ = S nl. (67)

The mixed components, on the other hand, vanish identically since

δS 0l = −
1
2

∫
d3xψ†σ0lψ = −

1
2

∫
d3xψ†iγ0γlψ (68)

and

σ†0l =

[ i
2

(γ0γl − γlγ0)
]†
= −σ0l (69)

thus
S
′

0l = S 0l + δS 0l = 0. (70)

Therefore the differences in the orbital and spin angular momentum are found to cancel each other:

δM0l = δL0l + δS 0l =
i
2

∫
d3xψ̄γlψ −

1
2

∫
d3xψ†iγ0γlψ = 0. (71)

�

At this point, we reach the limit of our review of results sufficient for the purpose of this work. In the following, for our
investigation, we propose, with no essential lost of generality, to restrict ourselves to realistic one-particle systems with
positive energy, and we use the free Dirac waves propagating in the z−direction.

Figure 1. Gap between the filled negative-energy states and the positive-energy states.

3. Superluminal Motion of Free Spin-1/2 Particles in Spacetime

We utilize the symmetrized Dirac Lagrange density. Our interest here concerns two results of Theorem 1; they are eq.(63)
of variations in mixed space-time components of orbital angular momentum, and eq.(68) of spin angular momentum.
Consider waves propagating in the z−direction so that the index l = 3; we rewrite, using functional notation (Gelfand &
Fomin (1991)) , these equations as

δL03

[
ψ (x) , ψ† (x)

]
= S 03

[
ψ (x) , ψ† (x)

]
=

1
2

∫
d3xψ† (x)σ03ψ (x) (72)

δS 03

[
ψ (x) , ψ† (x)

]
= −S 03

[
ψ (x) , ψ† (x)

]
= −1

2

∫
d3xψ† (x)σ03ψ (x) . (73)
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Figure 2. Causality violation by variation in spin angular momentum in the light-cone.

Figure 3. Two reference systems: Lorentz boost in the z−direction.

Inserting the solutions of the Dirac equation (3) into (71) , computing and integrating, yield

δL03 (x) =
1
2

∫
d3xN

(
1 0 cσ̂z p

m0c2+Ep
0

)
exp

[
−i

(
pz − Ept

)
/~

]

×σ03N


(

1
0

)
cσ̂z p

m0c2+Ep

(
1
0

)
 exp

[
i
(
pz − Ept

)
/~

]

=
1
2
σ03 xµ =

1
2
σ03


t
x
y
z

 . (74)

Thus, δL03 (x) is a linear dependence on the 4-vector xµ =


t
x
y
z

 alone, along the z − axis. Similarly, (72) simplifies to

δS 03 (x) = −1
2
σ03 xµ =

1
2
σ03

(
−xµ

)
=

1
2
σ03


−t
−x
−y
−z

 . (75)
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Figure 4. Electrons with positive and negative helicity: the double arrow denotes spin-up and spin-down and symbolizes
the two possible rotations of the electron.

So, variation in spin angular momentum in (75) leads to negative temporal component (t → −t), depicting backward in
time motion (Figure 2): Clearly, physically interpreted, this is causality violation. Shore (2003) and Modanese (2013)
discuss the velocity requirements for the possibility of such an occurrence. There exist suitable reference systems in
relative motion where the temporal order of events appears to be reversed, i.e., the delay ∆t

′
becomes negative; this is

mathematically due to the singularity of the Lorentz transformations for β→ 1−. But then, a legitimate question arises as
to how fast must such a relative motion be, for the moving observer to see the temporal order of the two events reversed. It
has been shown that if the two events appear to be connected by a superluminal signal with velocity V (i.e., ∆x/∆t = V > c
in the rest reference system), then the causality violation is observed in reference systems moving with relative velocity
v larger than c2/V , Modanese (2013). As a result, it is legitimate to regard the phenomenon described by (74) as a
superluminal propagation. In contradistinction, variation in orbital angular momentum does not violate causality and so
accords with special relativistic principles of subluminal motion.

We will now compute and identify the transformations which underpin these events.

3.1 Evaluation of the Dirac Spinor σ03 in Eqs. (74)-(75)

From the transformation law of Dirac spinors under infinitesimal Lorentz transformations given through (42)-(43) above,
we have in particular

σ0k =
i
2

(
γ0γk − γkγ0

)
= iγ0γk = iαk = i

(
0 σk

σk 0

)
, (76)

σi j = ϵ i jkΣk = ϵ
i jk

(
σk 0
0 σk

)
(77)

where we employ an obvious shorthand notation where each entry of the matrices is itself a 2 × 2 matrix, ϵ i jk is the
antisymmetric third-rank tensor and σk are Pauli spin matrices (with k = 1, 2, 3 ). In (76) when k = 3, we have σ03 =

iα3 = i
(

0 σ3
σ3 0

)
where σ3 =

(
1 0
0 −1

)
represents spin around the z − axis, so that

σ03 = i


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 . (78)

Next, if a contravariant 4−vector has components Aµ =
(
A0, A1, A2, A3

)
, its covariant partner has components A0 = A0,

A1 = −A1, A2 = −A2, and A3 = −A3. That is, if Aµ =
(
A0,A

)
then the corresponding covariant vector is Aµ =

(
A0,−A

)
.

The 3-vector A (in boldface notation ) has components
(
A1, A2, A3

)
. It follows, symbolically, concerning the 3-vector αk

in (76), that αk =
{
α1, α2, α3

}
= {−α1,−α2,−α3} , Greiner (2000). Now, from the contravariant equation σ03 = iα3 in (76),

we have the corresponding covariant equation σ03 = iα3 = −iα3, that is

σ03 = i
(
−α3

)
= i


0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 . (79)

The polar form of the complex number (x, y) or x + iy in the complex plane is w = x + iy = r (cos θ + i sin θ) with
x = r cos θ and y = r sin θ, where r =

√
x2 + y2 = |x + iy| is called the modulus of w and θ the amplitude or argument of
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w. Specifically, the complex number i = 1 · [cos (π/2) + i sin (π/2)] in polar form or, i = eiπ/2, using Euler’s formula, is
unimodular and has amplitude or argument θ = π/2. In this form, when it is applied (in multiplication) to any plane vector
(x, y) , this represents a unimodular rotation transformation of angle θ = π/2 about the origin O of the xy−coordinate
system. Obviously, its application to a 3-vector (x, y, z) in 3-space corresponds to a unimodular 3-dimensional rotation
transformation of angle θ = π/2 about the z−axis; so that the matrix of the transformation is unimodular and given by cos (π/2) sin (π/2) 0
− sin (π/2) cos (π/2) 0

0 0 1

 =
 0 1 0
−1 0 0
0 0 1

 , which is an element of the group S O (3) of 3 × 3 unimodular orthog-

onal matrices of determinant 1. Notice that S O(3) is a subgroup of S O (1, 3) that denotes the group of all unimodular
4 × 4 rotation matrices of determinant unity, also called the Lorentz group. Hence, in an extension to 4-dimensional
space-time (1-time, 3-space), multiplication by the complex number i corresponds to multiplying by the 4 × 4 matrix

1 0 0 0
0 cos (π/2) sin (π/2) 0
0 − sin (π/2) cos (π/2) 0
0 0 0 1

 =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 . Substituting this into (79), we obtain the Dirac spinor in the

z−direction:

σ03 =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1




0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 =


0 0 −1 0
−1 0 0 0
0 0 0 −1
0 1 0 0

 . (80)

We can now compute the matrix of the variation δS 03. We obtain

MδS 03 = −
1
2
σ03 =


0 0 1

2 0
1
2 0 0 0
0 0 0 1

2
0 − 1

2 0 0

 . (81)

Similarly the matrix of the variation δL03 is

MδL03 =
1
2
σ03 =


0 0 − 1

2 0
− 1

2 0 0 0
0 0 0 − 1

2
0 1

2 0 0

 . (82)

3.2 Determination of the ’Expectation of Trajectory’ of the Free Spin-1/2 Field

The propagation of the fermion field is ’expected’ to be a helical motion and helicity is invariant under spatial rotations,
Greiner (2000); Guidry (1991); Ohanian (1984) (see Figure 4) . Based on Ehrenfest’s theorems, the expectation of position
or, precisely, the expectation of trajectory of a spin-1/2 particle corresponds to the classical 3-space circular (right-handed)
helix parametrized by the equations:

x1 = a cos t, x2 = a sin t, x3 = bt, a, b , 0, −∞ < t < ∞, (83)

which lead to the parametric derivative equations:

dx1/dt = −a sin t, dx2/dt = a cos t, dx3/dt = b. (84)

Observe that the constant b represents the linear velocity component in the z−direction.

3.3 Calculation of the Expectation Value of the Overall Linear Velocity Component of the Field

Let VS and vL be the expectation values of the linear velocity components under the transformations MδS 03 and MδL03 ,
respectively. We must understand that every transformation from one reference system to another (in the light cone) is
a velocity transformation or Lorentz boost (see Figure 3), from which the constant transformation matrices MδS 03 and
MδS 03 originate. The matrices of (81) and (82) must be regarded as numerical solutions of some generalized velocity
transformations which remained to be determined. Since the variations δS 03 (x) and δL03 (x) are linear, they carry a vector
xµ into its scalar multiples MδS 03 xµ and MδL03 xµ under their respective matrices MδS 03 and MδL03 , both of which have all
their entries equal in the absolute value of 1/2. Furthermore, to get the clear picture of the transformation of matrix MδS 03 ,

observe that MδS 03 maps the 4-vector xµ =


t
x
y
z

 unto its image x
′
µ =


t
′

x
′

y
′

z
′

 =


1
2 y
1
2 t
1
2 z
− 1

2 x

, i.e., t 7→ t
′
= 1

2 y, x 7→ x
′
= 1

2 t,
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y 7→ y
′
= 1

2 z, and z 7→ z
′
= − 1

2 x. So, each coordinate of the image vector is found on a different coordinate axis, as
if the coordinate axes have been altered or somehow ’interchanged’ under the effect of MδS 03 . This scenario describes
a quadratic (or a rotation) transformation of the coordinate axes in four dimensions. A prediction can be made of this
situation from (80)-(81) where the matrix MδS 03 has been obtained as a rotation matrix since it is the product of the Dirac
Spinor σ03 which is a spin (i.e., rotation) matrix and the factor 1/2 which emanates from the giro factor of intrinsic spin.
Bearing in mind our previous remarks, we deduce that the entries of this matrix, which are all equal in the absolute value
of 1/2, are expressible in a unique sine or cosine function of argument VS /c (representing ’boost’), where c is the speed
of light. This is also valid for the transformation MδL03 . By inspection and based on our previous discussions, due to the
superluminal propagation under spin, we will assign the cosine function to MδS 03 and the sine function to the subluminal
variation δL03.

(1) Explicitly, for variation under spin angular momentum, we have

MδS 03 (VS ) = ανµ (VS ) =


0 0 cos (VS /c) 0

cos (VS /c) 0 0 0
0 0 0 cos (VS /c)
0 − cos (VS /c) 0 0


=


0 0 1

2 0
1
2 0 0 0
0 0 0 1

2
0 − 1

2 0 0

 , (85)

that is
cos (VS /c) =

1
2
, (86)

=⇒ VS =

(
π

3
+ 2kπ

)
× c (87)

where k = 0, 1, 2, ... Thus, the expectation value of the relative linear velocity component under spin angular momentum
is superluminal, and its minimal value is

VS min = (π/3) c = (1.047....) × c, (88)

which also exceeds the speed of light.

(2) Similarly, for variation under orbital angular momentum, we have

MδL03 (vL) =


0 0 − sin (vL/c) 0

− sin (vL/c) 0 0 0
0 0 0 − sin (vL/c)
0 sin (vL/c) 0 0

 =


0 0 − 1
2 0

− 1
2 0 0 0

0 0 0 − 1
2

0 1
2 0 0

 , (89)

that is
sin (vL/c) =

1
2

(90)

=⇒ vL =

(
π

6

)
× c ≃ (0.524) × c. (91)

Notice here that we must ignore the additive ±2kπ term in order to keep vL subluminal.

(3) Furthermore, let V denote the expectation value of the overall relative linear velocity component of the field. It should
also be understood that the transformation of the generalized angular momentum in mixed space-time components (let
us denote it by F ) is the composition of the two transformations spin MδS 03 and orbital MδL03 . Based on our previous
discussions, we have

F (V) = MδL03 ◦ MδS 03 = MδL03 MδS 03

=


0 0 − 1

2 0
− 1

2 0 0 0
0 0 0 − 1

2
0 1

2 0 0




0 0 1
2 0

1
2 0 0 0
0 0 0 1

2
0 − 1

2 0 0

 =


0 0 0 − 1
4

0 0 − 1
4 0

0 1
4 0 0

1
4 0 0 0


=


0 0 0 − cos (V/c)
0 0 − cos (V/c) 0
0 cos (V/c) 0 0

cos (V/c) 0 0 0

 , (92)
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that is,

cos (V/c) =
1
4

(93)

=⇒ V ≃
(

21π
50
+ 2kπ

)
× c, (k = 0, 1, 2, ...) . (94)

Hence, the expectation value of the overall relative linear velocity component of the spin-1/2 field is superluminal and, its
minimal value is

Vmin = (1.318...) × c, (95)

this also exceeds light speed, as expected, completing our investigation.

Observe that V takes discrete values (one at a time with respect to k = 0, 1, 2...). Each value of V may be thought of as
corresponding to the level at which the electron is spinning. But then, a legitimate query arises here: Must k = 0, 1, 2...
be left to run indefinitely (that is, from zero to infinity)? In other words: Is there any constraint on the velocity of the
superluminal electron? For an answer to this question, see, for example, Stecker (2014) who studies and discusses the
limits on superluminal electron and neutrino velocities.

4. Conclusions

The above calculations show, in the strict limit of realistic systems of single particle, using positive energy only and waves
propagating only in the z- direction , that the expectation value of the relative linear velocity component of a spin-1/2
particle exceeds the speed of light. Under these restrictions, it can be noted that what so far appears to be a disaster
(namely, the violation of causality by spin angular momentum) can prove to be a highly desirable aspect of spin-1/2 field
theory. Finally, this work shows explicitly that the phenomenon of spin exists not only at low and relativistic velocities,
but at superluminal propagation, as well.
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