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Abstract

The main goal of this paper is study a fractional order Sobolev-Morrey type spaces and obtained integral estimates
for the generalized derivatives of fractional order of functions in this spaces. Also, we study a smoothness of
solution of one class of high order fractional quasielliptic equations.
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1. Introduction and preliminary notes

In this paper in connection with the investigation of differential equation of higher fractional order of type

∑
(α,λ)≤1,(β,λ)≤1

Dα
(
aαβ (x) Dβu

)
=

∑
(α,λ)≤1

Dα fα, (1.1)

where x = (x1, ..., xn) , α = (α1, ..., αn) , β = (β1, ..., βn) , and α j, β j ≥ 0 ( j = 1, ..., n) we introduce the new form
of description of norm of the spaces W l

p (G) and W l
p,a,κ,τ (G) , when l = (l1, ..., ln) , l j > 0, j = 1, ..., n. Also,

such approach were studied in (A. M. Najafov, 2010) and (A. M. Najafov, 2013). In other words the norms
of the Sobolev and Sobolev-Morrey spaces of fractional order’s the generalized derivatives of fractional order
Dli

i f = D[li]
i D{li}

+i f ([li] is the integer part, {li} is the non-integer part of the number li) expression by the ordinary
Riemann-Liouville fractional derivatives of functions. But in the papers (T. I. Amanov, 1976; N. Aronszajn and
K. Smith, 1961; A. Calderon and A. Zygmund, 1961; A. D. Jabrailov, 1972; P. I. Lizorkin, 1963; P. I. Lizorkin,
1972; A. M. Najafov, 2005a,b; A. M. Najafov and A. T. Orujova, 2012; Yu. V. Netrusov, 1984; L. N. Slobodetskiy,
1958a,b; H. Triebel, 1986) and etc the Sobolev and Sobolev-Morrey type spaces the generalized derivatives of
fractional order expression by the differences of derivatives of functions. Also, we study the differential properties
of functions from spaces W l

p,a,κ,τ (G) (G ∈ Rn, l ∈ (0,∞)n , p ∈ [1,∞) , a ∈ [0, 1]n , τ ∈ [1,∞]) with parameters
in terms of embedding theory and some properties of fractional order Sobolev-Morrey type spaces is proved. As
application of obtained results we study a smoothness of solution of one class of higher order fractional quasielliptic
equations (1.1).The fundamental difference of this work from earlier work is to obtain estimates for generalized
derivatives of fractional order.

The Hölder continuity of solutions of integer order quasielliptic equations with continuous or Hölder continuous
coefficients of the leading derivatives was considered in (E. Guisti, 1967). In (L. Arkeryd, 1969), Lp− estimates for
solutions were studied, under the condition that the coefficients of leading derivatives are infinitely differentiable,
and in (L. A. Bagirov, 1979; S. V. Uspenskii, G. V. Demidenko and V. G. Perepelkin, 1984) some other problems
of the theory of quasielliptic equations were considered. In (R. V. Guseinov, 1992) and (A. M. Nadzhafov, 2005)
the theorems were proved claiming that the solution belongs to the Hölder class inside the domain, and in (P. S.
Filatov, 1997) local ”interior” Hölder estimates were obtained for solutions to a quasielliptic type equation in the
case when the right-hand side satisfies the anistropic Hölder condition. In this paper, as in (R. V. Guseinov, 1992)
and (A. M. Nadzhafov, 2005), we study the Hölder continuity of a solution without any smoothness conditions on
aαβ (x) .

In recent years, different problems of partial fractional differential equation were studied in (A. M. Nakhushev,
2001; M. Kh. Shkhanukov, 1996; A. V. Pskhu, 2010; A. A. Kilbas, H. M. Strivastava and J. J. Trujillo, 2006; J.
Öztürk, 2010; F. M. Nakhusheva, 2005) and others.
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Let G be a domain of Rn, t > 0. Given x ∈ Rn, we put

Itκ (x) =
{
y :

∣∣∣y j − x j

∣∣∣ < (1/2) tκ j , j = 1, 2, ..., n
}
, Gtκ (x) = G ∩ Itκ (x) .

Definition 1 Denote by W l
p,a,κ,τ (G) the space of locally summable functions f on G having the weak derivatives

Dli
i f on G (i = 1, 2, ..., n) with the finite norm

∥ f ∥W l
p,a,κ,τ(G) = ∥ f ∥Lp,a,κ,τ(G) +

n∑
i=1

∥∥∥Dli
i f

∥∥∥
Lp,a,κ,τ(G) , (1.2)

where (1 ≤ τ ≤ ∞) ,

∥ f ∥Lp,a,κ,τ(G) = ∥ f ∥p,a,κ,τ;G
= sup

x∈G


∞∫
0

[t]−
n∑

j=1

κ ja j
p

1 ∥ f ∥p,Gtκ (x)


τ

dt
t


1/τ

, (1.3)

[t]1 = min {1, t}, Dli
i f = D[li]

i D{li}
+i f , [li] is the integer part, {li} is the non-integer part of the number li . The partial

generalized fractional derivatives D{li}
+i in S. L. Sobolev’s sense are understood in the following sense:∫

G

f (x)
(
D[li]

i D{li}−i φ
)

(x) dx = (−1)[li]
∫
G

φ (x)
(
D[li]

i D{li}
+i f

)
(x) dx

for φ ∈ C∞0 (G) . The symbol D{li}
+i and D{li}−i are the ordinary Riemann-Liouville fractional derivatives of order

{li} (0 < {li} < 1) in the domain are understood as (A. M. Najafov, 2010) and (A. M. Najafov, 2013)(
D{li}
+i f

)
(x) =

1
Γ (1 − {li})

∂

∂xi

∫
G(i)

f (x1, x2, ..., xi−1, si, xi+1, ..., xn)
(xi − si){li}

dsi,

(
D{li}−i f

)
(x) = − 1

Γ (1 − {li})
∂

∂xi

∫
G

(i)

f (x1, x2, ..., xi−1, si, xi+1, ..., xn)
(si − xi){li}

dsi,

where x is the inner point of the domain G. Γ (α) is a gamma function, the sets G(i) and G
(i)

are determined as

G(i) =
{
(x1, x2, ..., xi−1, si, xi+1, ..., xn) ∈ G : x j = const ( j , i) ; si < xi

}
,

G
(i)
=

{
(x1, x2, ..., xi−1, si, xi+1, ..., xn) ∈ G : x j = const ( j , i) ; si > xi

}
.

It should be noted that ordinary Riemann-Liouville fractional derivative on the segments and the real line are
reminded in the monograph (S. G. Samko, A. A. Kilbas and O. N. Marichev, 1987).

Note that, the fractional order Sobolev space W l
p,0,κ,∞ (G) ≡ W l

p (G) was introduced in (A. M. Najafov, 2010)
and (A. M. Najafov, 2013). In the case l ∈ Nn, τ = ∞, a = (a, ..., a) the Sobolev-Morrey spaces W l

p,a,κ,∞ (G) ≡
W l

p,a,κ (G) were defined and studied by (V.P.Ilyin, 1971).

Observe some properties of Lp,a,κ,τ (G) and W l
p,a,κ,τ (G) .

1. The following embeddings hold for arbitrary κ j > 0 and 0 ≤ a j ≤ 1 ( j = 1, 2, ..., n) :

Lp,a,κ,τ (G) ↪→ Lp,a,κ (G) , W l
p,a,κ,τ (G) ↪→ W l

p,a,κ (G) ;

i.e.,
∥ f ∥

p,a,κ;G
≤ C ∥ f ∥

p,a,κ,τ;G
(1.4)

and
∥ f ∥W l

p,a,κ (G) ≤ C ∥ f ∥W l
p,a,κ,τ(G) . (1.5)

2. The spaces Lp,a,κ,τ (G) and W l
p,a,κ,τ (G) are complete.
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3. For every real c > 0,

∥ f ∥
p,a,cκ,τ;G

= c−
1
τ ∥ f ∥

p,a,κ,τ;G
, ∥ f ∥W l

p,a,cκ,τ(G) = c−
1
τ ∥ f ∥W l

p,a,κ,τ(G) .

4. The following relations are valid for every κ j > 0 ( j = 1, 2, ..., n) :

(a) ∥ f ∥
p,0,κ,∞;G

= ∥ f ∥
p;G
, ∥ f ∥W l

p,0,κ,∞(G) = ∥ f ∥W l
p(G) ;

(b) ∥ f ∥
p,1,κ,τ;G

≥ ∥ f ∥∞;G
, ∥ f ∥W l

p,1,κ,τ(G) ≥ ∥ f ∥W l
∞(G) .

5. If G is a bounded domain, p≤q, 1−b j

q ≤
1−a j

p , j = 1, ..., n, and 1 ≤ τ1 < τ2 ≤ ∞ then

Lq,b,κ,τ1 (G) ↪→ Lp,a,κ,τ2 (G) .

To prove the main theorems, we need some auxiliary inequalities in the lemmas below. Assume that M (·, y, z) ∈ C∞0
is such that

S (M) = sup pM ⊂ I1 = {y : |yi| < 1/2, j = 1, 2, ..., n} ,
0 < T ≤ 1, λ = (λ1, ..., λn) and λ j > 0, j = 1, 2, ..., n. Put

V = ∪
0<t≤T

{
y :

(
y/tλ

)
∈ S (M)

}
.

Clearly,V ⊂ IT λ . Let U be an open subset of G. Henceforth we always assume that U + V ⊂ G. Let

GTκ (U) = ∪
x∈U

GTκ (x) = (U + ITκ (x)) ∩G.

Note that if 0 < κ j ≤ λ j ( j = 1, 2, ..., n) and 0 < T ≤ 1 then IT λ ⊂ ITκ and so

U + V ⊂ GTκ (U) = Q.

Lemma 1 Let 1 ≤ p ≤ q ≤ r ≤ ∞, 0 < κ j ≤ λ j ( j = 1, 2, ..., n) , 0 < t ≤ T ≤ 1, 0 < ρ < ∞, 1 ≤ τ ≤ ∞, 0 < η ≤
T, ν = (ν1, ..., νn) .ν j ≥ 0 j = 1, 2, ..., n, Φ ∈ Lp,a,κ,τ (G) and

µi = λili −
n∑

j=1

[
ν jλ j +

(
λ j − κ ja j

)
(1/p − 1/q)

]
, (1.6)

A(i)
η (x) =

η∫
0

t−1−|λ|−|ν,λ|+λili

∫
Rn

Φ (x + y) M

 y
tλ
,
ρ
(
tλ, x

)
tλ
, ρ′

(
tλ, x

) dydt, (1.7)

A(i)
ηT (x) =

T∫
η

t−1−|λ|−|ν,λ|+λili

∫
Rn

Φ (x + y) M

 y
tλ
,
ρ
(
tλ, x

)
tλ
, ρ′

(
tλ, x

) dydt, (1.8)

where

ρ′ (u, x) =
∂

∂u
ρ (u, x) , |λ| =

n∑
j=1

λ j, |ν, λ| =
n∑

j=1

ν jλ j

Then

sup
−
x∈U

∥∥∥A(i)
η

∥∥∥
q,Uρκ

(
−
x
) ≤ C1 ∥Φ∥p,a,κ,τ;Q

[
ρ
] n∑

j=1

κ ja j
q

1 ηµi (µi > 0) (1.9)

sup
−
x∈U

∥∥∥∥A(i)
ηT

∥∥∥∥
q,Uρκ

(
−
x
) ≤ C2 ∥Φ∥p,a,κ,τ;Q

[
ρ
] n∑

j=1

κ ja j
q

1 (1.10)

Here Uρκ
(
−
x
)
=

{
x :

∣∣∣∣x j −
−
x j

∣∣∣∣ < 1
2ρ

κ j , j = 1, 2, ..., n
}

and C1 and C2 are constants independent of Φ, ρ, η and T.

151



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 3; 2015

Proof. Given
−
x ∈ U and applying the generalized Minkowski inequality, we obtain

∥∥∥A(i)
η

∥∥∥
q,Uρκ (x) ≤ C

η∫
t−1−|λ|−|ν,λ|+λili ∥F (·.t)∥q,Uρκ (x) dt. (1.11)

where

F (x, t) =
∫
Rn

Φ (x + y) M

 y
tλ
,
ρ
(
tλ, x

)
tλ
, ρ́

(
tλ, x

) dy

Estimate the norm ∥F (·, t)∥q,Uρκ (x) . By Holder’s inequality (q ≤ r) ,

∥F (·.t)∥q,Uρκ (x) ≤ ∥F (·.t)∥r,Uρκ (x) ρ

(
1
q−

1
r

) n∑
j=1. (1.12)

Let χ be the characteristic function of S (M) . Observing that 1 ≤ p ≤ r ≤ ∞, s ≤ r
(

1
s
= 1 − 1

p
+

1
r

)
, and

|ΦM| = (|Φ|p |M|s)
1
r (|Φ|p χ)

1
p−

1
r (|M|s)

1
s −

1
r

and applying Holder’s inequality
(

1
r
+

(
1
p
− 1

r

)
+

(
1
s
− 1

r

)
= 1

)
, we obtain

∥F (·.t)∥r,Uρκ (x) ≤ sup
x∈Uρκ (x)


∫
Rn

|Φ (x + y)|p χ
(
y : tλ

)
dy


1
p−

1
r

×

sup
x∈V


∫

Uρκ (x)

|Φ (x + y)|p dx


1
r


∫
Rn

∣∣∣∣∣∣∣∣M
 y

tλ
,
ρ
(
tλ, x

)
tλ
, ρ́

(
tλ, x

)
∣∣∣∣∣∣∣∣
s

dy


1
s

, (1.13)

Since Qtλ (x) ⊂ Qtκ (x) for arbitrary 0 ≤ t ≤ 1and κ j ≤ λ j ( j = 1, 2, ..., n) , given x ∈ U we have∫
Rn

|Φ (x + y)|p χ
(
y : tλ

)
dy ≤

∫
Qtκ (x)

|Φ (y)|p dy ≤ ∥Φ∥pp,a,κ;Q t
n∑

j=1
κ ja j

(1.14)

For y ∈ V ∫
Uρκ (x)

|Φ (x + y)|p dx ≤
∫

Qpκ (x+y)

|Φ (x)|p dx ≤ ∥Φ∥pp,a,κ;Q
[
ρ
] n∑

j=1
κ ja j

1 (1.15)

∫
Rn

∣∣∣∣∣∣∣∣M
 y

tλ
,
ρ
(
tλ, x

)
tλ
, ρ́

(
tλ, x

)
∣∣∣∣∣∣∣∣
s

dy = t|λ| ∥M∥ss (1.16)

It follows from (1.12) − (1.16) that
∥F (·, t)∥q,Uρκ (x) ≤

≤ C ∥Φ∥p,a,κ;Q t
n∑

j=1
λ j−

(
1
p−

1
r

) n∑
j=1

(λ j−κ ja j) [
ρ
] n

1
r
∑

j=1
κ ja j

1 ρ

(
1
q−

1
r

) n∑
j=1

κ j
(1.17)

Using (1.4) (1 ≤ r ≤ ∞) , inserting (1.17) in (1.11) , we arrive at (1.9) . Similarly, we prove (1.10) .

Corollary 1 Putting r = ∞ for 0 < p ≤ 1or r = q for p > 1 in (1.17) , we infer

sup
x∈U
∥F (·, t)∥q,Uρκ (x) ≤ C ∥Φ∥p,a,κ,;Q

[
ρ
] n∑

j=1
κ j

1
q

1
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or
∥F (·, t)∥q,b,κ;U ≤ C ∥Φ∥p,a,κ,;Q

hence, using (1.4) for 1 ≤ τ1 ≤ τ2 ≤ ∞ we obtain

∥F (·, t)∥q,b,κ,τ2;U ≤ C´∥Φ∥p,a,κ,τ1;Q (1.18)

Lemma 2 Let 1 ≤ p ≤ q < ∞, 0 < κ j ≤ λ j ( j = 1, 2, ..., n) , 0 < T ≤ 1, ν = (ν1, ..., νn) , ν j ≥ 0, j = 1, 2, ..., n, 1 ≤
τ1 ≤ τ2 ≤ ∞, µi > 0 and

µi,0 = λili −
n∑

j=1

[
ν jλ j +

(
λ j − κ ja j

) 1
p

]

Then the function A(i)
T (x) defined by (1.7) satisfies the estimate∥∥∥A(i)

T (x)
∥∥∥

q,b,κ,τ2;U ≤ ∥Φ∥p,a,κ,τ1;Q (1.19)

where b = (b1, ..., bn) and b j is an arbitrary number satisfying the inequalities

0 ≤ b j ≤ 1 if µi,0 > 0,

0 ≤ b j < 1 if µi,0 = 0,

0 ≤ b j < 1 +
µi,0q

(
1 − a j

)
n
(
λ j − κ ja j

) = a j +
µiq

(
1 − a j

)
n
(
λ j − κ ja j

) if µi,0 < 0. (1.20)

2. Main Results

Now we reduce main result of this paper.

Theorem 1 Assume that an open set G ⊂ Rn satisfies the flexible λ−horn condition (O. V. Besov, V. P. Ilyin and
S. M. Nikolskii, 1996), λ ∈ (0,∞)n, 1 ≤ p ≤ q ≤ ∞, κ̃ = cκ, where 1

c = max
1≤ j≤n

κ j

λ j
, ν = (ν1, ..., νn) , ν j ≥ 0,

j = 1, ..., n, 1 ≤ τ1 ≤ τ2 ≤ ∞, µi > 0 (i = 1, ..., n) , µi and µi,0 are defined in Lemmas1 and 2, and f ∈ W l
p,a,κ,τ1

(G).

Then Dν : W l
p,a,κ,τ1

(G) ↪→ Lq,b,κ,τ2 (G) ,i.e. there exists generalized mixed derivatives of fractional order Dν f and
the following inequalities are valid:

∥Dν f ∥q,G ≤ C1

T µ0 ∥ f ∥p,a,κ.τ1;G +

n∑
j=1

T µi
∥∥∥Dli

i f
∥∥∥

p,a,κ.τ1;G

 , (2.1)

∥Dν f ∥q,b,κ.τ2;G ≤ C2 ∥ f ∥W l
p,a,κ.τ1 (G) ( p ≤ q < ∞ ) , (2.2)

where

µ0 = µi − λili = −
n∑

j=1

[
ν jλ j +

(
λ j − κ ja j

) ( 1
p
− 1

q

)]
;

here T ≤ min (1,T0) ,C1 −C4 are constants independent of f and C1 and C3 are also independent of T .

In particular, if µi,0 > 0, i = 1, ..., n then Dν is continuous on G and

sup
x∈G
|Dν f | ≤ C

T µi,0−liλi ∥ f ∥p,a,κ.τ1;G +

n∑
j=1

T µi,0 ∥Dν f ∥p,a,κ.τ1;G

 (2.3)

where Dν f = D[ν]D{ν}+ f , and

(
Dν+ f

)
(x) =

1
Γ (1 − {ν})

∂n

∂x1∂x2...∂xn

∫
G(n)

f (s) ds
(x − s){ν}

,
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(
Dν− f

)
(x) = (−1)n 1

Γ (1 − {ν})
∂n

∂x1∂x2...∂xn

∫
G

(n)

f (s) ds
(s − x){ν}

.

where ds = ds1ds2 · · · dsn; Γ (1 − {ν}) = Γ (1 − {ν1}) ...Γ (1 − {νn}) ; (x − s){ν} = (x1 − s1){ν1} ... (xn − sn){νn} ,

Proof. First of all,observe that,since κ̃ = cκ using the property 4, we can assume that f ∈ W l
p,a,κ̃,τ1

(G) and
substitute κ̃ for κ everywhere in (2.1)-(2.3) and for µi in (1.6). We will prove these very inequalities (the greater
κ, the greater µi). Existence of the generalized mixed derivatives of fractional order Dν f under the conditions of
the theorem follows from (A. M. Najafov, 2010) and (A. M. Najafov, 2013).

Indeed, if µi > 0 then λili − |ν : l| > 0, for p ≤ q,0 ≤ a ≤ 1 and κ ≤ λ. Since f ∈ W l
p,a,κ,τ (G) ↪→ W l

p,a,κ (G) ↪→
W l

p (G) , by Theorem 1 (A. M. Najafov, 2010) and (A. M. Najafov, 2013) the generalized mixed derivatives of
fractional order exists on G andDν f ∈ Lp (G) . Then it is obtained integral representation for generalized mixed
derivatives of fractional order of functions from Sobolev spaces of fractional order defined on the n-dimensional
domains in Rn and satisfying flexible horn conditions (The domains satisfying flexible horn condition introduced
in (O. V. Besov, V. P. Ilyin and S. M. Nikolskii, 1996):

Dν f (x) = f (ν)
T λ +

T∫
0

∫
Rn

n∑
i=1

t−1−|λ|−|ν,λ|+λili×

×L(ν)
i

 y
tλ
,
ρ
(
tλ, x

)
tλ
, ρ′

(
tλ, x

) Dli
i f (x + y) dydt, (2.4).

f (ν)
T λ = T−|λ|−|ν,λ|

∫
Rn

f (x + y)Ω(ν)

 y
T λ
,
ρ
(
tλ, x

)
T λ

 dy (2.5).

where 0 < T ≤ min (1,T0) the functions Ω(ν) (·, y) and L(ν)
i (·, y, z) are of the class C∞0 (Rn) with support in I1 and

the support of (2.4), (2.5) is contained in the flexible horn x+V (λ, x, 0) ⊂ G. Using Minkowski’s inequality hence,
we obtain that

∥Dν f ∥q;G ≤
∥∥∥ f (ν)

T λ

∥∥∥
q;G
+

n∑
i=1

∥∥∥A(i)
T

∥∥∥
q;G (2.6)

From (1.17) for U = G, t = T as ρ→ ∞ and r = q we derive∥∥∥ f (ν)
T λ

∥∥∥
q;G
≤ C1T µ0 ∥ f ∥p,a,κ̃.τ1;G (2.7).

and from inequality (1.9) for U = G as ρ→ ∞, which we may apply, since µi > 0, i = 1, ..., n, we find that∥∥∥A(i)
T

∥∥∥
q;G ≤ C1T µi

∥∥∥Dli
i f

∥∥∥
p,a,κ̃.τ1;G (2.8)

Consequently,

∥Dν f ∥q;G ≤ C1

T µ0 ∥ f ∥p,a,κ̃.τ1;G +

n∑
j=1

T µi
∥∥∥Dli

i f
∥∥∥

p,a,κ̃.τ1;G


Similarly, using (1.18) and (1.19), we establish (2.2).

Assume now that µi,0 > 0,i = 1, ..., n. Show that then Dν f is continuous on G. From (2.4),(2.5), and (2.8) for
q = ∞ and µi = µi,0 > 0 we derive

∥Dν f − Dν fT λ∥q;G ≤
n∑

i=1

T µi
∥∥∥Dli

i f
∥∥∥

p,a,κ̃.τ1;G

Hence, the left-hand side of the inequality tends to zero as T → 0. Since Dν fT λ is continuous on G, in this case the
convergence of L∞ (G) coincides with uniform convergence; consequently, the limit function Dν f is continuous on
G. The theorem is proved.

154



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 3; 2015

Theorem 2 Suppose that the conditions of Theorem 1 are satisfied. Then for µi > 0, i = 1, ..., n, the generalized
mixed derivatives of fractional order Dν f satisfies the Holder condition on G in the metric of Lq with exponent β1;
more exactly,

∥∆ (γ,G) Dν f ∥q;G ≤ C ∥ f ∥W l
p,a,κ,τ(G) |γ|ε ,

where ε is an arbitrary number satisfying the inequalities

0 ≤ ε ≤ 1 if
µ0

λ0
> 1,

0 ≤ ε < 1 if
µ0

λ0
= 1,

0 ≤ ε < µ
0

λ0
if
µ0

λ0
< 1,

with µ0 = min µi, i = 1, ..., n, and λ0 = max λ j, j = 1, ..., n.

If µi,0 > 0 then
sup
x∈G
|∆ (γ,G) Dν f |q;G ≤ C ∥ f ∥W l

p,a,κ,τ(G) |γ|ε0 ,

where ε0 satisfies the same conditions as ε, but with µi,0 instead of µi.

Now, consider the problem of smoothness of solutions of higher order fractional quasielliptic equations (1.1).
Suppose that p = 2, λ = (λ1, ..., λn) , λ−1

j = l j > 0, j = 1, ..., n, and the coefficients aαβ (x) ≡ aβα (x) , aαβ (x) are
bounded, measurable in G, and such that∑

(α,λ)=(β,λ)=1

(−1)|α| aαβ (x) ξαξβ ≥ C0

∑
(α,λ)=1

|ξα|2 , C0 = const.

We suppose that fα ∈ L2 (G) for (α, λ) < 1 and fα ∈ L2,a,κ (G) for (α, λ) = 1.

A work solution to (1.1) in G is a function u (x) ∈ W l
2 (G) such that∑

(α,λ)≤1,(β,λ)≤1

∫
G

(−1)|α| aαβ (x) DβuDαϑ =
∑

(α,λ)≤1

∫
G

(−1)|α| fαDαϑdx

for every function ϑ (x) ∈
◦

W
l

2 (G) .

Theorem 3 If |λ|2 + |ν, λ| ≤ 1, ν = (ν1, ..., νn) , ν j ≥ 0, j = 1, ..., n, then every weak solution to (1.1) in W l
2 (G) belongs

to the space Cν+ε0

(
Gd

)
,G

d ⊂ G.

Remark 1 Note that Theorem 1, Theorem 2 and Theorem 3 in the case when l = (l1, l2, ..., ln) ,
(
l j ∈ N, j = 1, 2, ..., n)

were proved by the author (A. M. Nadzhafov, 2005).

Theorem 4 Let the domain G ⊂ Rn such that there exists ρ = const > 0, for any point x0 ∈ ∂G and the number
r < 1, there exists a parallelepiped Πρr

(
x1

)
⊂ Πr (x0) ∩ (Rn\G) and u (x) is solution of equation (1.1) from the

space
◦

W l
2 (G) . If |λ|2 + |ν, λ| ≤ 1, then u (x) belongs to the space Cν+ε0

(
G
)
.

Proof. It is sufficiently in this case, to let all aαβ (x) ≡ 0,except for ones for which |α, λ| = |β, λ| = 1. Let x0 ∈ ∂G,
and all fa ≡ 0 in Πb (x0) , u (x) ≡ 0 outside of G.

From the variational principle it follows that

A (u (x) ,Πb (x0)) ≤ A (θ (x) u (x) ,Πb (x0)) .

As θ (x) ≡ 0 in Π b
2

(x0) , then

A (u (x) ,Πb (x0)) ≤ A
(
u (x) ,Πb (x0) \Π b

2
(x0)

)
+
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+C
∑
|α,λ|<1

∫
Πb(x0)\Π b

2
(x0)

b−2+2|α,λ| (Dαu (x))2 dx.

As u|Πρb(x1) = 0, where Πρb
(
x1

)
⊂ Πb (x0) \Π b

2
(x0) , then we have

A (u (x) ,Πb (x0)) ≤ qA
(
u (x) ,Πb (x0) \Π b

2
(x0)

)
,

and hence it follows

A
(
u (x) ,Π b

2k
(x0)

)
≤

(
1 − 1

q

)k

A (u (x) ,Πb (x0)) .

Therefore

A (u (x) ,Πδ (x0)) ≤
(
δ

b

)ξ−σ
A (u (x) ,G) , (2.9)

if δ < b,∀x0 ∈ ∂G, fb (x0) . Let 0 < δ < 1, x ∈ G, fα , 0 and us consider two cases:

a) x0 ∈ G
√
δ;

b) x0 < G
√
δ.

a) In this case for all δ < b, assuming that b =
√
δ.We have

A (u (x) ,Πδ (x0)) ≤ C1

(
δ

b

)ξ−σ
A (u (x) ,G) +C2b△ ≤

≤ C3

(
δ

b

)ξ−σ
A (u (x) ,G) + 1.

b) In this case there is a point x1 ∈ ∂G, such that Π2
√
δ

(
x1

)
⊃ Π√δ (x0) . Let b > 2

√
δ, ub,x1 - solution of equation

(1.1) in Πb

(
x1

)
∩G form the space

◦
W l

2

(
Πb

(
x1

)
∩G

)
, for which inequality

A
(
ub,x1 ,Πδ

(
x1

))
≤ C4b△. (2.10)

The function u (x)−ub,x1 is a solution of equation (1.1) in Πb

(
x1

)
, where fα ≡ 0. From inequalities (2.9) and (2.10)

we have
A

(
u (x) ,Π2

√
δ

(
x1

))
≤ C5A

(
u − ub,x1 ,Π2

√
δ

(
x1

))
+C5A

(
ub,x1 ,Π2

√
δ

(
x1

))
≤

≤ 2C6

 √δb
ξ−σ A

(
u − ub,x1 ,Π2

√
δ

(
x1

))
+ 2C7b△ ≤ C8

(
δ

b

)ξ−σ
A (u (x) ,G) ,

A
(
u (x) ,Π√δ (x0)

)
≤ A

(
u (x) ,Π2

√
δ

(
x1

))
≤ C

(
δ

b

)ξ−σ
A (u (x) ,G) .

Consequently

A (u (x) ,Πδ (x0)) ≤ C
(
δ

b

)ξ−σ
A (u (x) ,G) ,

1∫
0

η−ξ
∫
Πη(x0)

u2 (x) dx


1
2

dη
η
≤ C

1∫
0

db

b1− 1
2σ
< ∞.

This implies that u ∈ L2,a,κ,1
(
G
)
⊂ L2,a,κ,τ

(
G
)

and also Dli
i u ∈ L2,a,κ,τ

(
G
)
, i = 1, 2, ..., n, then it follows that

u ∈ W l
2,a,κ,τ

(
G
)
. Then in this case the conditions in theorems 1 and 2 are satisfied. Thus by theorems1 and 2 it

follows that u ∈ Cν+ε0

(
G
)
.

The theorem is proved.
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