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Abstract

Let M be a paracompact smooth manifold, A a Weil algebra and MA the associated Weil bundle. In this paper, we
give a characterization of hamiltonian field on MA in the case of Poisson manifold and of Symplectic manifold.
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1. Introduction

In what follows, we denote by M, a paracompact smooth manifold of dimension n, C∞(M) the algebra of smooth
functions on M and A a Weil algebra i.e a real commutative algebra of finite dimension, with unit, and with an
unique maximal ideal m of codimension 1 over R (Weil, 1953). In this case, there exists an integer h such that
mh+1 = (0) and mh , (0). The integer h is the height of A. Also we have A = R ⊕m.

We recall that a near point of x ∈ M of kind A (Weil, 1953) is a morphism of algebras

ξ : C∞(M) −→ A

such that
ξ( f ) − f (x) ∈ m

for any f ∈ C∞(M). We denote MA
x the set of near points of x ∈ M of kind A and MA =

∪
x∈M

MA
x the manifold of

infinitely near points of M of kind A and
πM : MA −→ M

the projection which assigns every infinitely near point of x ∈ M to its origin x. The triplet (MA, πM ,M) defines a
bundle called bundle of infinitely near points or simply Weil bundle (Kolár, Michor, Slovak, 1993).

When M and N are smooth manifolds and when h : M −→ N is a differentiable map of class C∞, then the map

hA : MA −→ NA, ξ 7−→ hA(ξ)

such that for all g in C∞(N),
[hA(ξ)](g) = ξ(g ◦ h)

is differentiable (Morimoto, 1976). Thus, for f ∈ C∞(M), the map

f A : MA −→ RA = A, ξ 7−→ [ f A(ξ)](idR) = ξ(idR ◦ f ) = ξ( f )

is differentiable of class C∞. The set, C∞(MA, A) of smooth functions on MA with values in A, is a commutative
algebra over A with unit and the map

C∞(M) −→ C∞(MA, A), f 7−→ f A

is an injective morphism of algebras. Then, we have (Bossoto & Okassa, 2008):

( f + g)A = f A + gA; (λ · f )A = λ · f A; ( f · g)A = f A · gA
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for f , g ∈ C∞(M) and λ ∈ R.

1.1 Vector Fields on Weil Bundles

In (Bossoto & Okassa, 2008) and (Nkou, Bossoto & Okassa, 2015), we showed that the following assertions are
equivalent:

1) A vector field on MA is a differentiable section of the tangent bundle (T MA, πMA ,MA).

2) A vector field on MA is a derivation of C∞(MA).

3) A vector field on MA is a derivation of C∞(MA, A) which is A-linear.

4) A vector field on MA is a linear map X : C∞(M) −→ C∞(MA, A) such that

X( f · g) = X( f ) · gA + f A · X(g), for any f , g ∈ C∞(M).

In all that follows, we denote by X(MA) the set of vector fields on MA and DerA[C∞(MA, A)] the set of A-linear
maps

X : C∞(MA, A) −→ C∞(MA, A)

such that
X(φ · ψ) = X(φ) · ψ + φ · X(ψ), for anyφ, ψ ∈ C∞(MA, A).

Then (Nkou, Bossoto & Okassa, 2015),

X(MA) = DerA[C∞(MA, A)].

The map
X(MA) × X(MA) −→ X(MA), (X,Y) 7−→ [X,Y] = X ◦ Y − Y ◦ X

is skew-symmetric A-bilinear and defines a structure of an A-Lie algebra over X(MA).

If
θ : C∞(M) −→ C∞(M),

is a vector field on M, then there exists one and only one A-linear derivation,

θA : C∞(MA, A) −→ C∞(MA, A)

called prolongation of the vector field θ, such that

θA( f A) = [θ( f )]A, for any f ∈ C∞(M).

If θ, θ1 and θ2 are vector fields on M and if f ∈ C∞(M), then we have:

(θ1 + θ2)A = θA
1 + θ

A
2 ; ( f · θ)A = f A · θA ; [θ1, θ2]A = [θA

1 , θ
A
2 ].

The map
X(M) −→ DerA[C∞(MA, A)], θ 7−→ θA

is an injective morphism of R-Lie algebras.

1.2 Structure of A-Poisson Manifold on MA When M is a Poisson Manifold

We recall that a Poisson structure on a smooth manifold M is due to the existence of a bracket {, } on C∞(M) such
that the pair (C∞(M), {, }) is a real Lie algebra such that, for any f ∈ C∞(M) the map

ad( f ) : C∞(M) −→ C∞(M), g 7−→ { f , g}

is a derivation of commutative algebra i.e

{ f , g · h} = { f , g} · h + g · { f , h}
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for f , g, h ∈ C∞(M). In this case we say that M is a Poisson manifold and C∞(M) is a Poisson algebra (Vaisman,
1994, 1995).

We denote by
C∞(M) −→ DerR[C∞(M)], f 7−→ ad( f ),

the adjoint representation and dad the operator of cohomology associated to this representation. For any p ∈ N,

Λ
p
Pois(M) = Lp

sks[C
∞(M),C∞(M)]

denotes the C∞(M)-module of skew-symmetric multilinear forms of degree p from C∞(M) into C∞(M). We have

Λ0
Pois(M) = C∞(M).

When M is a smooth manifold, A a weil algebra and MA the associated Weil bundle, the A-algebra C∞(MA, A)
is a Poisson algebra over A if there exists a bracket {, } on C∞(MA, A) such that the pair (C∞(MA, A), {, }) is a Lie
algebra over A satisfying

{φ1 · φ2, φ3} = {φ1, φ3} · φ2 + φ1 · {φ2, φ3}
for any φ1, φ2, φ3 ∈ C∞(MA, A) (Bossoto & Okassa, 2012).
When M is a Poisson manifold with bracket {, }, for any f ∈ C∞(M), let

[ad( f )]A : C∞(M) −→ C∞(MA, A), g 7−→ { f , g}A,

be the prolongation of the vector field ad( f ) and let

˜[ad( f )]A : C∞(MA, A) −→ C∞(MA, A)

be the unique A-linear derivation such that

˜[ad( f )]A(gA) = [ad( f )]A(g) = { f , g}A

for any g ∈ C∞(M).

For φ ∈ C∞(MA, A), the application

τφ : C∞(M) −→ C∞(MA, A), f 7−→ − ˜[ad( f )]A(φ)

is a vector field on MA considered as derivation of C∞(M) into C∞(MA, A) and

τ̃φ : C∞(MA, A) −→ C∞(MA, A)

the unique A-linear derivation (vector field) such that

τ̃φ( f A) = τφ( f ) = − ˜[ad( f )]A(φ)

for any f ∈ C∞(M). We have for f ∈ C∞(M),

τ̃ f A = ˜[ad( f )]A,

and for φ, ψ ∈ C∞(MA, A) and for a ∈ A,

τ̃φ+ψ = τ̃φ + τ̃ψ; τ̃a·φ = a · τ̃φ; τ̃φ·ψ = φ · τ̃ψ + ψ · τ̃φ.

For any φ, ψ ∈ C∞(MA, A), we let
{φ, ψ}A = τ̃φ(ψ).

In (Bossoto & Okassa, 2012), we showed that this bracket defines a structure of A-Poisson algebra on C∞(MA, A).

Thus when M is a Poisson manifold with bracket {, }, then {, }A is the prolongation on MA of the structure of Poisson
on M defined by {, }.
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The map
C∞(MA, A) −→ DerA[C∞(MA, A)], φ 7−→ τ̃φ,

is a representation from C∞(MA, A) into C∞(MA, A). We denote d̃A the cohomology operator associated to this
adjoint representation ( Nkou & Bossoto, 2014).
For any p ∈ N, Λp

Pois(MA,∼A) = Lp
sks[C

∞(MA, A),C∞(MA, A)] denotes the C∞(MA, A)-module of skew-symmetric
multilinear forms of degree p from C∞(MA, A) into C∞(MA, A). We have

Λ0
Pois(MA,∼A) = C∞(MA, A).

We denote

ΛPois(MA,∼A) =
n⊕

p=0

Λ
p
Pois(MA,∼A).

For Ω ∈ Λp
Pois(MA,∼A) and φ1, φ2, ..., φp+1 ∈ C∞(MA, A), we have

d̃AΩ(φ1, ..., φp+1) =
p+1∑
i=1

(−1)i−1τ̃φi [Ω(φ1, ..., φ̂i, ..., φp+1)]

+
∑

1≤i< j≤p+1

(−1)i+ jΩ({φi, φ j}A, φ1, ..., φ̂i, ..., φ̂ j, ..., φp+1)

where φ̂i means that the term φi is omitted.

Proposition 1.1 ( Nkou & Bossoto, 2014) For any η ∈ Λp
Pois(M), we have

d̃A(ηA) = (dadη)A.

2. Hamiltonian Vector Fields on Weil Bundles

When M is a Poisson manifold with bracket {, }, we recall that a vector field

θ : C∞(M) −→ C∞(M)

is locally hamiltonian if θ is closed for the cohomology associated with the adjoint representation

ad : C∞(M) −→ DerR
[
C∞(M)

]
i.e. dadθ = 0 and θ is globally hamiltonian if θ is exact for the cohomology associated with the adjoint representa-
tion

ad : C∞(M) −→ DerR
[
C∞(M)

]
i.e. there exists f ∈ C∞(M) such that θ = dad( f ).

Thus a vector field on MA

X : C∞(MA, A) −→ C∞(MA, A)

is locally hamiltonian if X is closed for the cohomology associated with the adjoint representation

C∞(MA, A) −→ DerA

[
C∞(MA, A)

]
, φ 7−→ τ̃φ

i.e d̃AX = 0 and X is globally hamiltonian if X is exact for the cohomology associated with the adjoint representa-
tion

C∞(MA, A) −→ DerA

[
C∞(MA, A)

]
, φ 7−→ τ̃φ

i.e. there exists φ ∈ C∞(MA, A) such that X = d̃A(φ).

Proposition 2.1 When M is a Poisson manifold with bracket {, }, then a vector field

θ : C∞(M) −→ C∞(M)
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is locally hamiltonian if and only if the vector field

θA : C∞(MA, A) −→ C∞(MA, A).

is locally hamiltonian.

Proof Indeed, for any η ∈ Λp
Pois(M), we have

d̃A(ηA) = (dadη)A.

In particular, for p = 1, we have
d̃A(θA) = (dadθ)A.

Thus, dadθ = 0 if and only if d̃A(θA) = 0.

Proposition 2.2 When MA is a A-Poisson manifold with bracket {, }A, then, a vector field

X : C∞(MA, A) −→ C∞(MA, A)

locally hamiltonian is a derivation of the Poisson A-algebra C∞(MA, A).

Proof We have
d̃AX : C∞(MA, A) ×C∞(MA, A) −→ C∞(MA, A)

(φ, ψ) 7−→ (d̃AX)(φ, ψ)

and if d̃AX = 0, then for any φ, ψ ∈ C∞(MA, A),

0 = (d̃AX)(φ, ψ)
= τ̃φ[X(ψ)] − τ̃ψ[X(φ)] − X({φ, ψ}A)
= {φ, X(ψ)}A − {ψ, X(φ)}A − X({φ, ψ}A)

i.e
X({φ, ψ}A) = {X(φ), ψ}A + {φ, X(ψ)}A.

That ends the proof.

Proposition 2.3 Let M be a Poisson manifold with bracket {, }. If a vector field

θ : C∞(M) −→ C∞(M)

is globally hamiltonian then the vector field

θA : C∞(MA, A) −→ C∞(MA, A)

is globally hamiltonian.

Proof Based on the assumptions, there exists f ∈ C∞(M) such that θ = dad( f ). Thus,

θA = [ad( f )]A

= d̃A( f A).

Thus, θ = dad( f ) then θA = d̃A( f A) is globally hamiltonian.

Proposition 2.4 When MA is a A-Poisson manifold with bracket {, }A, then a vector field

X : C∞(MA, A) −→ C∞(MA, A)

globally hamiltonian is the derivation interior of the Poisson A-algebra C∞(MA, A).

Proof If the vector field
X : C∞(MA, A) −→ C∞(MA, A)
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is globally hamiltonian, there exists φ ∈ C∞(MA, A) suth that X = d̃Aφ. For any ψ ∈ C∞(MA, A), we have

X(ψ) = (d̃Aφ)(ψ)
= τ̃φ(ψ)
= {φ, ψ}A

i.e. X = ad(φ). where
ad(φ) : C∞(MA, A) −→ C∞(MA, A), ψ 7−→ {φ, ψ}A

Thus, X is globally hamiltonian if there exists φ ∈ C∞(MA, A) such that X = τ̃φ = ad(φ) i.e. X is the interior
derivation of the Poisson A-algebra C∞(MA, A).

3. Hamiltonian Vector Fields on MA When M is a Symplectic Manifold

When (M,Ω) is a symplectic manifold, then (MA,ΩA) is a symplectic A-manifold (Bossoto & Okassa, 2012).

For any f ∈ C∞(M), we denote X f the unique vector field on M such that

iX fΩ = d f

where
d : Λ(M) −→ Λ(M)

is the operator of de Rham cohomology. We denote

dA : Λ(MA, A) −→ Λ(MA, A)

the operator of cohomology associated with the representation

X(MA) −→ DerA

[
C∞(MA, A)

]
, X 7−→ X.

For φ ∈ C∞(MA, A), we denote by Xφ the unique vector field on MA, considered as a derivation from C∞(MA, A)
into C∞(MA, A), such that

iXφΩ
A = dA(φ).

The bracket

{φ, ψ}ΩA = −ΩA(Xφ, Xψ)
= Xφ(ψ)

defines a structure of A-Poisson manifold on MA and for any f ∈ C∞(M), X f A = (X f )A and

i(X f )AΩA = iX f AΩ
A.

We deduce that (Bossoto & Okassa, 2012):

Theorem 3.1 If (M,Ω) is a symplectic manifold, the structure of A-Poisson manifold on MA defined byΩA coincide
with the prolongation on MA of the Poisson structure on M defined by the symplectic form Ω i.e for any φ ∈
C∞(MA, A), τ̃φ = Xφ.

Therefore, for any φ, ψ ∈ C∞(MA, A), we have

{φ, ψ}ΩA = {φ, ψ}A .

Proposition 3.2 If ω is a differential form on M and if θ is a vector field on M, then

(iθω)A = iθA (ωA).

Proof If the degree of ω is p, according (Bossoto & Okassa, 2012, Proposition 9), (iθω)A is the unique differential
A-form of degree p − 1 such that

(iθω)A(θA
1 , ..., θ

A
p−1) =

[
(iθω)(θ1, ..., θp−1)

]A
=
[
ω(θ, θ1, ..., θp−1)

]A
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for any θ1, θ2, ..., θp−1 ∈ X(M). As iθA (ωA) is of degree p − 1 and is such that

iθA (ωA)
[
θA

1 , ..., θ
A
p−1

]
= ωA(θA, θA

1 , ..., θ
A
p−1)

=
[
ω(θ, θ1, ..., θp−1)

]A
for any θ1, θ2, ..., θp−1 ∈ X(M), we conclude that (iθω)A = iθA (ωA).

When (M,Ω) is a symplectic manifold, we recall that a vector field θ on M is locally hamiltonian if the form iθΩ is
closed for the de Rham cohomology and θ is globally hamiltonian if there exists f ∈ C∞(M) such that iθΩ = d( f ),
i.e. the form iθΩ is d-exact.

Thus a vector field X on MA is locally hamiltonian if the form iXΩ
A is dA-closed and X is globally hamiltonian if

there exists φ ∈ C∞(MA, A) such that iXΩ
A = dA(φ), i.e. the form iXΩ

A is dA-exact.

Proposition 3.3 A vector field θ : C∞(M) −→ C∞(M) on a symplectic manifold M is locally hamiltonian, if and
only if θA : C∞(MA, A) −→ C∞(MA, A) is a locally hamiltonian vector field.

Proof For any θ ∈ X(M), we have

dA(iθAΩA) = dA[(iθΩ)A]
= [d(iθΩ)]A.

Thus θ is locally hamiltonian, i.e d(iθΩ) = 0 if and only if, dA(iθAΩA) = 0 i.e θA : C∞(MA, A) −→ C∞(MA, A) is a
locally hamiltonian vector field.

Theorerm 3.4 A vector field X : C∞(MA, A) −→ C∞(MA, A) on MA locally hamiltonian is a derivation of the
A-Lie algebra induced by the A-structure of Poisson defined by the symplectic A-manifold (MA,ΩA).

Proof Let (MA,ΩA) be a symplectic manifold. For any φ, ψ ∈ C∞(MA, A),

{φ, ψ}ΩA = −ΩA(Xφ, Xψ)
= Xφ(ψ)

If X is locally hamiltonian vector field, we have dA(iXΩ
A) = 0 i.e. for any Y and Z ∈ X(MA),

dA(iXΩ
A)(Y,Z) = 0.

In particular, for any φ, ψ ∈ C∞(MA, A), we have

0 = (dA(iXΩ
A))(Xφ, Xψ)

= Xφ[iXΩ
A(Xψ)] − Xψ[iXΩ

A(Xφ)] − iXΩ
A([Xφ, Xψ])

Therefore
iXΩ

A([Xφ, Xψ]) = Xφ[iXΩ
A(Xψ)] − Xψ[iXΩ

A(Xφ)]

i.e
ΩA(X, [Xφ, Xψ]) = Xφ[ΩA(X, Xψ)] − Xψ[ΩA(X, Xφ)]

Hence
X({φ, ψ}ΩA ) = {X(φ), ψ}ΩA + {φ, X(ψ)}ΩA .

That ends the proof.

Proposition 3.5 Let (M,Ω) be a symplectic manifold. If a vector field

θ : C∞(M) −→ C∞(M)

is globally hamiltonian then the vector field

θA : C∞(MA, A) −→ C∞(MA, A)

is globally hamiltonian.
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Proof If θ is globally hamiltonian, then there exists f ∈ C∞(M) such that iθΩ = d( f ). Then,

(iθΩ)A = [d( f )]A

= dA
(

f A
)

Thus
iθAΩA = dA

(
f A
)

.

i.e θA is globally hamiltonian.
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proches. Arch. math. (BRNO), Tomus, 44, 159-171.

Helgason, S. (1962). Differential Geometry and symmetric spaces, New York; Academic Press.

Kolár, I, Michor, P. W., & Slovak, J. (1993). Natural Operations in Differential Geometry, Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-662-02950-3

Koszul, J. L., & Ramanan, S. (1960). Lectures On Fibre Bundles and Differential Geometry, Tata Institute of
Fundamental Research, Bombay.

Lichnerowicz, A. (1977). Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom., 12, 253–300.
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