Hamiltonian Vector Fields on Weil Bundles

Norbert Mahoungou Moukala ${ }^{1}$, Basile Guy Richard Bossoto ${ }^{1,2}$
${ }^{1}$ Marien NGOUABI University, Faculty of Science and Technology, Brazzaville, Congo
${ }^{2}$ Institut de Recherche en Sciences Naturelles et Exactes, Brazzaville, Congo
Correspondence: Basile Guy Richard BOSSOTO, Marien NGOUABI University, Faculty of Science and Technology; Institut de Recherche en Sciences Naturelles et Exactes. BP : 69, Brazzaville, Congo. E-mail: bossotob@yahoo.fr

Received: May 30, 2015 Accepted: June 18, 2015 Online Published: July 17, 2015
doi:10.5539/jmr.v7n3p141 URL: http://dx.doi.org/10.5539/jmr.v7n3p141

Abstract

Let M be a paracompact smooth manifold, A a Weil algebra and M^{A} the associated Weil bundle. In this paper, we give a characterization of hamiltonian field on M^{A} in the case of Poisson manifold and of Symplectic manifold.
Keywords: Weil algebra, Weil bundle, Poisson manifold, hamiltonian vector fields

1. Introduction

In what follows, we denote by M, a paracompact smooth manifold of dimension $n, C^{\infty}(M)$ the algebra of smooth functions on M and A a Weil algebra i.e a real commutative algebra of finite dimension, with unit, and with an unique maximal ideal \mathfrak{m} of codimension 1 over \mathbb{R} (Weil, 1953). In this case, there exists an integer h such that $\mathfrak{m}^{h+1}=(0)$ and $\mathfrak{m}^{h} \neq(0)$. The integer h is the height of A. Also we have $A=\mathbb{R} \oplus \mathfrak{m}$.

We recall that a near point of $x \in M$ of kind A (Weil, 1953) is a morphism of algebras

$$
\xi: C^{\infty}(M) \longrightarrow A
$$

such that

$$
\xi(f)-f(x) \in \mathfrak{m}
$$

for any $f \in C^{\infty}(M)$. We denote M_{x}^{A} the set of near points of $x \in M$ of kind A and $M^{A}=\bigcup_{x \in M} M_{x}^{A}$ the manifold of infinitely near points of M of kind A and

$$
\pi_{M}: M^{A} \longrightarrow M
$$

the projection which assigns every infinitely near point of $x \in M$ to its origin x. The triplet $\left(M^{A}, \pi_{M}, M\right)$ defines a bundle called bundle of infinitely near points or simply Weil bundle (Kolár, Michor, Slovak, 1993).

When M and N are smooth manifolds and when $h: M \longrightarrow N$ is a differentiable map of class C^{∞}, then the map

$$
h^{A}: M^{A} \longrightarrow N^{A}, \xi \longmapsto h^{A}(\xi)
$$

such that for all g in $C^{\infty}(N)$,

$$
\left[h^{A}(\xi)\right](g)=\xi(g \circ h)
$$

is differentiable (Morimoto, 1976). Thus, for $f \in C^{\infty}(M)$, the map

$$
f^{A}: M^{A} \longrightarrow \mathbb{R}^{A}=A, \xi \longmapsto\left[f^{A}(\xi)\right]\left(i d_{\mathbb{R}}\right)=\xi\left(i d_{\mathbb{R}} \circ f\right)=\xi(f)
$$

is differentiable of class C^{∞}. The set, $C^{\infty}\left(M^{A}, A\right)$ of smooth functions on M^{A} with values in A, is a commutative algebra over A with unit and the map

$$
C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto f^{A}
$$

is an injective morphism of algebras. Then, we have (Bossoto \& Okassa, 2008):

$$
(f+g)^{A}=f^{A}+g^{A} ;(\lambda \cdot f)^{A}=\lambda \cdot f^{A} ;(f \cdot g)^{A}=f^{A} \cdot g^{A}
$$

for $f, g \in C^{\infty}(M)$ and $\lambda \in \mathbb{R}$.

1.1 Vector Fields on Weil Bundles

In (Bossoto \& Okassa, 2008) and (Nkou, Bossoto \& Okassa, 2015), we showed that the following assertions are equivalent:

1) A vector field on M^{A} is a differentiable section of the tangent bundle $\left(T M^{A}, \pi_{M^{A}}, M^{A}\right)$.
2) A vector field on M^{A} is a derivation of $C^{\infty}\left(M^{A}\right)$.
3) A vector field on M^{A} is a derivation of $C^{\infty}\left(M^{A}, A\right)$ which is A-linear.
4) A vector field on M^{A} is a linear map $X: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right)$ such that

$$
X(f \cdot g)=X(f) \cdot g^{A}+f^{A} \cdot X(g), \quad \text { for any } f, g \in C^{\infty}(M)
$$

In all that follows, we denote by $\mathfrak{X}\left(M^{A}\right)$ the set of vector fields on M^{A} and $\operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right]$ the set of A-linear maps

$$
X: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that

$$
X(\varphi \cdot \psi)=X(\varphi) \cdot \psi+\varphi \cdot X(\psi), \quad \text { for any } \varphi, \psi \in C^{\infty}\left(M^{A}, A\right)
$$

Then (Nkou, Bossoto \& Okassa, 2015),

$$
\mathfrak{X}\left(M^{A}\right)=\operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right] .
$$

The map

$$
\mathfrak{X}\left(M^{A}\right) \times \mathfrak{X}\left(M^{A}\right) \longrightarrow \mathfrak{X}\left(M^{A}\right),(X, Y) \longmapsto[X, Y]=X \circ Y-Y \circ X
$$

is skew-symmetric A-bilinear and defines a structure of an A-Lie algebra over $\mathfrak{X}\left(M^{A}\right)$.
If

$$
\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

is a vector field on M, then there exists one and only one A-linear derivation,

$$
\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

called prolongation of the vector field θ, such that

$$
\theta^{A}\left(f^{A}\right)=[\theta(f)]^{A}, \quad \text { for any } f \in C^{\infty}(M)
$$

If θ, θ_{1} and θ_{2} are vector fields on M and if $f \in C^{\infty}(M)$, then we have:

$$
\left(\theta_{1}+\theta_{2}\right)^{A}=\theta_{1}^{A}+\theta_{2}^{A} ;(f \cdot \theta)^{A}=f^{A} \cdot \theta^{A} ;\left[\theta_{1}, \theta_{2}\right]^{A}=\left[\theta_{1}^{A}, \theta_{2}^{A}\right] .
$$

The map

$$
\mathfrak{X}(M) \longrightarrow \operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right], \theta \longmapsto \theta^{A}
$$

is an injective morphism of \mathbb{R}-Lie algebras.

1.2 Structure of A-Poisson Manifold on M^{A} When M is a Poisson Manifold

We recall that a Poisson structure on a smooth manifold M is due to the existence of a bracket $\{$,$\} on C^{\infty}(M)$ such that the pair $\left(C^{\infty}(M),\{\},\right)$ is a real Lie algebra such that, for any $f \in C^{\infty}(M)$ the map

$$
a d(f): C^{\infty}(M) \longrightarrow C^{\infty}(M), g \longmapsto\{f, g\}
$$

is a derivation of commutative algebra i.e

$$
\{f, g \cdot h\}=\{f, g\} \cdot h+g \cdot\{f, h\}
$$

for $f, g, h \in C^{\infty}(M)$. In this case we say that M is a Poisson manifold and $C^{\infty}(M)$ is a Poisson algebra (Vaisman, 1994, 1995).
We denote by

$$
C^{\infty}(M) \longrightarrow \operatorname{Der}_{\mathbb{R}}\left[C^{\infty}(M)\right], f \longmapsto \operatorname{ad}(f),
$$

the adjoint representation and $d_{a d}$ the operator of cohomology associated to this representation. For any $p \in \mathbb{N}$,

$$
\Lambda_{P o i s}^{p}(M)=\mathcal{L}_{s k s}^{p}\left[C^{\infty}(M), C^{\infty}(M)\right]
$$

denotes the $C^{\infty}(M)$-module of skew-symmetric multilinear forms of degree p from $C^{\infty}(M)$ into $C^{\infty}(M)$. We have

$$
\Lambda_{P o i s}^{0}(M)=C^{\infty}(M)
$$

When M is a smooth manifold, A a weil algebra and M^{A} the associated Weil bundle, the A-algebra $C^{\infty}\left(M^{A}, A\right)$ is a Poisson algebra over A if there exists a bracket $\{$,$\} on C^{\infty}\left(M^{A}, A\right)$ such that the pair $\left(C^{\infty}\left(M^{A}, A\right),\{\},\right)$ is a Lie algebra over A satisfying

$$
\left\{\varphi_{1} \cdot \varphi_{2}, \varphi_{3}\right\}=\left\{\varphi_{1}, \varphi_{3}\right\} \cdot \varphi_{2}+\varphi_{1} \cdot\left\{\varphi_{2}, \varphi_{3}\right\}
$$

for any $\varphi_{1}, \varphi_{2}, \varphi_{3} \in C^{\infty}\left(M^{A}, A\right)$ (Bossoto \& Okassa, 2012).
When M is a Poisson manifold with bracket $\{$,$\} , for any f \in C^{\infty}(M)$, let

$$
[\operatorname{ad}(f)]^{A}: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), g \longmapsto\{f, g\}^{A}
$$

be the prolongation of the vector field $\operatorname{ad}(f)$ and let

$$
\left[\widetilde{\operatorname{ad(f)}]^{A}}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)\right.
$$

be the unique A-linear derivation such that

$$
\left[\widetilde{a d(f)]^{A}}\left(g^{A}\right)=[a d(f)]^{A}(g)=\{f, g\}^{A}\right.
$$

for any $g \in C^{\infty}(M)$.
For $\varphi \in C^{\infty}\left(M^{A}, A\right)$, the application

$$
\tau_{\varphi}: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto-\left[\widetilde{a d(f)]^{A}}(\varphi)\right.
$$

is a vector field on M^{A} considered as derivation of $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$ and

$$
\widetilde{\tau_{\varphi}}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

the unique A-linear derivation (vector field) such that

$$
\tilde{\tau}_{\varphi}\left(f^{A}\right)=\tau_{\varphi}(f)=-\left[\widetilde{a d(f)]^{A}}(\varphi)\right.
$$

for any $f \in C^{\infty}(M)$. We have for $f \in C^{\infty}(M)$,

$$
\widetilde{\tau_{f^{A}}}=\left[\widetilde{a d(f)]^{A}},\right.
$$

and for $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$ and for $a \in A$,

$$
\tilde{\tau}_{\varphi+\psi}=\widetilde{\tau}_{\varphi}+\widetilde{\tau}_{\psi} ; \widetilde{\tau}_{a \cdot \varphi}=a \cdot \widetilde{\tau}_{\varphi} ; \widetilde{\tau}_{\varphi \cdot \psi}=\varphi \cdot \widetilde{\tau}_{\psi}+\psi \cdot \widetilde{\tau}_{\varphi} .
$$

For any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$, we let

$$
\{\varphi, \psi\}_{A}=\widetilde{\tau}_{\varphi}(\psi)
$$

In (Bossoto \& Okassa, 2012), we showed that this bracket defines a structure of A-Poisson algebra on $C^{\infty}\left(M^{A}, A\right)$. Thus when M is a Poisson manifold with bracket $\{$,$\} , then \{,\}_{A}$ is the prolongation on M^{A} of the structure of Poisson on M defined by $\{$,$\} .$

The map

$$
C^{\infty}\left(M^{A}, A\right) \longrightarrow \operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right], \varphi \longmapsto \widetilde{\tau_{\varphi}}
$$

is a representation from $C^{\infty}\left(M^{A}, A\right)$ into $C^{\infty}\left(M^{A}, A\right)$. We denote $\widetilde{d_{A}}$ the cohomology operator associated to this adjoint representation (Nkou \& Bossoto, 2014).
For any $p \in \mathbb{N}, \Lambda_{P o i s}^{p}\left(M^{A}, \sim_{A}\right)=\mathcal{L}_{s k s}^{p}\left[C^{\infty}\left(M^{A}, A\right), C^{\infty}\left(M^{A}, A\right)\right]$ denotes the $C^{\infty}\left(M^{A}, A\right)$-module of skew-symmetric multilinear forms of degree p from $C^{\infty}\left(M^{A}, A\right)$ into $C^{\infty}\left(M^{A}, A\right)$. We have

$$
\Lambda_{\text {Pois }}^{0}\left(M^{A}, \sim_{A}\right)=C^{\infty}\left(M^{A}, A\right)
$$

We denote

$$
\Lambda_{\text {Pois }}\left(M^{A}, \sim_{A}\right)=\bigoplus_{p=0}^{n} \Lambda_{P o i s}^{p}\left(M^{A}, \sim_{A}\right)
$$

For $\Omega \in \Lambda_{P o i s}^{p}\left(M^{A}, \sim_{A}\right)$ and $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{p+1} \in C^{\infty}\left(M^{A}, A\right)$, we have

$$
\begin{aligned}
\widetilde{d_{A}} \Omega\left(\varphi_{1}, \ldots, \varphi_{p+1}\right) & =\sum_{i=1}^{p+1}(-1)^{i-1} \widetilde{\boldsymbol{\tau}_{\varphi_{i}}}\left[\Omega\left(\varphi_{1}, \ldots, \widehat{\varphi_{i}}, \ldots, \varphi_{p+1}\right)\right] \\
& +\sum_{1 \leq i<j \leq p+1}(-1)^{i+j} \Omega\left(\left\{\varphi_{i}, \varphi_{j}\right\}_{A}, \varphi_{1}, \ldots, \widehat{\varphi_{i}}, \ldots, \widehat{\varphi_{j}}, \ldots, \varphi_{p+1}\right)
\end{aligned}
$$

where $\widehat{\varphi_{i}}$ means that the term φ_{i} is omitted.
Proposition 1.1 (Nkou \& Bossoto, 2014) For any $\eta \in \Lambda_{\text {Pois }}^{p}(M)$, we have

$$
\widetilde{d_{A}}\left(\eta^{A}\right)=\left(d_{a d} \eta\right)^{A}
$$

2. Hamiltonian Vector Fields on Weil Bundles

When M is a Poisson manifold with bracket $\{$,$\} , we recall that a vector field$

$$
\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

is locally hamiltonian if θ is closed for the cohomology associated with the adjoint representation

$$
a d: C^{\infty}(M) \longrightarrow \operatorname{Der}_{\mathbb{R}}\left[C^{\infty}(M)\right]
$$

i.e. $d_{a d} \theta=0$ and θ is globally hamiltonian if θ is exact for the cohomology associated with the adjoint representation

$$
a d: C^{\infty}(M) \longrightarrow \operatorname{Der}_{\mathbb{R}}\left[C^{\infty}(M)\right]
$$

i.e. there exists $f \in C^{\infty}(M)$ such that $\theta=d_{a d}(f)$.

Thus a vector field on M^{A}

$$
X: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

is locally hamiltonian if X is closed for the cohomology associated with the adjoint representation

$$
C^{\infty}\left(M^{A}, A\right) \longrightarrow \operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right], \varphi \longmapsto \widetilde{\tau_{\varphi}}
$$

i.e $\widetilde{d_{A}} X=0$ and X is globally hamiltonian if X is exact for the cohomology associated with the adjoint representation

$$
C^{\infty}\left(M^{A}, A\right) \longrightarrow \operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right], \varphi \longmapsto \widetilde{\tau_{\varphi}}
$$

i.e. there exists $\varphi \in C^{\infty}\left(M^{A}, A\right)$ such that $X=\widetilde{d_{A}}(\varphi)$.

Proposition 2.1 When M is a Poisson manifold with bracket $\{$,$\} , then a vector field$

$$
\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

is locally hamiltonian if and only if the vector field

$$
\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

is locally hamiltonian.
Proof Indeed, for any $\eta \in \Lambda_{\text {Pois }}^{p}(M)$, we have

$$
\widetilde{d_{A}}\left(\eta^{A}\right)=\left(d_{a d} \eta\right)^{A}
$$

In particular, for $p=1$, we have

$$
\widetilde{d_{A}}\left(\theta^{A}\right)=\left(d_{a d} \theta\right)^{A}
$$

Thus, $d_{a d} \theta=0$ if and only if $\widetilde{d_{A}}\left(\theta^{A}\right)=0$.
Proposition 2.2 When M^{A} is a A-Poisson manifold with bracket $\{,\}_{A}$, then, a vector field

$$
X: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

locally hamiltonian is a derivation of the Poisson A-algebra $C^{\infty}\left(M^{A}, A\right)$.
Proof We have

$$
\begin{array}{rlll}
\widetilde{d}_{A} X: \quad C^{\infty}\left(M^{A}, A\right) \times C^{\infty}\left(M^{A}, A\right) & \longrightarrow & C^{\infty}\left(M^{A}, A\right) \\
(\varphi, \psi) & \longmapsto & \left(\widetilde{d_{A}} X\right)(\varphi, \psi)
\end{array}
$$

and if $\widetilde{d_{A}} X=0$, then for any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$,

$$
\begin{aligned}
0 & =\left(\widetilde{d_{A}} X\right)(\varphi, \psi) \\
& =\widetilde{\tau_{\varphi}}[X(\psi)]-\widetilde{\tau_{\psi}}[X(\varphi)]-X\left(\{\varphi, \psi\}_{A}\right) \\
& =\{\varphi, X(\psi)\}_{A}-\{\psi, X(\varphi)\}_{A}-X\left(\{\varphi, \psi\}_{A}\right)
\end{aligned}
$$

i.e

$$
X\left(\{\varphi, \psi\}_{A}\right)=\{X(\varphi), \psi\}_{A}+\{\varphi, X(\psi)\}_{A}
$$

That ends the proof.
Proposition 2.3 Let M be a Poisson manifold with bracket $\{$,$\} . If a vector field$

$$
\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

is globally hamiltonian then the vector field

$$
\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

is globally hamiltonian.
Proof Based on the assumptions, there exists $f \in C^{\infty}(M)$ such that $\theta=d_{a d}(f)$. Thus,

$$
\begin{aligned}
\theta^{A} & =[\operatorname{ad}(f)]^{A} \\
& =\widetilde{d}_{A}\left(f^{A}\right)
\end{aligned}
$$

Thus, $\theta=d_{a d}(f)$ then $\theta^{A}=\widetilde{d}_{A}\left(f^{A}\right)$ is globally hamiltonian.
Proposition 2.4 When M^{A} is a A-Poisson manifold with bracket $\{,\}_{A}$, then a vector field

$$
X: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

globally hamiltonian is the derivation interior of the Poisson A-algebra $C^{\infty}\left(M^{A}, A\right)$.
Proof If the vector field

$$
X: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

is globally hamiltonian, there exists $\varphi \in C^{\infty}\left(M^{A}, A\right)$ suth that $X=\widetilde{d_{A}} \varphi$. For any $\psi \in C^{\infty}\left(M^{A}, A\right)$, we have

$$
\begin{aligned}
X(\psi) & =\left(\tilde{d}_{A} \varphi\right)(\psi) \\
& =\tilde{\tau}_{\varphi}(\psi) \\
& =\{\varphi, \psi\}_{A}
\end{aligned}
$$

i.e. $X=\operatorname{ad}(\varphi)$. where

$$
\operatorname{ad}(\varphi): C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right), \psi \longmapsto\{\varphi, \psi\}_{A}
$$

Thus, X is globally hamiltonian if there exists $\varphi \in C^{\infty}\left(M^{A}, A\right)$ such that $X=\widetilde{\tau_{\varphi}}=\operatorname{ad}(\varphi)$ i.e. X is the interior derivation of the Poisson A-algebra $C^{\infty}\left(M^{A}, A\right)$.

3. Hamiltonian Vector Fields on M^{A} When M is a Symplectic Manifold

When (M, Ω) is a symplectic manifold, then $\left(M^{A}, \Omega^{A}\right)$ is a symplectic A-manifold (Bossoto \& Okassa, 2012).
For any $f \in C^{\infty}(M)$, we denote X_{f} the unique vector field on M such that

$$
i_{X_{f}} \Omega=d f
$$

where

$$
d: \Lambda(M) \longrightarrow \Lambda(M)
$$

is the operator of de Rham cohomology. We denote

$$
d^{A}: \Lambda\left(M^{A}, A\right) \longrightarrow \Lambda\left(M^{A}, A\right)
$$

the operator of cohomology associated with the representation

$$
\mathfrak{X}\left(M^{A}\right) \longrightarrow \operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right], X \longmapsto X
$$

For $\varphi \in C^{\infty}\left(M^{A}, A\right)$, we denote by X_{φ} the unique vector field on M^{A}, considered as a derivation from $C^{\infty}\left(M^{A}, A\right)$ into $C^{\infty}\left(M^{A}, A\right)$, such that

$$
i_{X_{\varphi}} \Omega^{A}=d^{A}(\varphi)
$$

The bracket

$$
\begin{aligned}
\{\varphi, \psi\}_{\Omega^{A}} & =-\Omega^{A}\left(X_{\varphi}, X_{\psi}\right) \\
& =X_{\varphi}(\psi)
\end{aligned}
$$

defines a structure of A-Poisson manifold on M^{A} and for any $f \in C^{\infty}(M), X_{f^{A}}=\left(X_{f}\right)^{A}$ and

$$
i_{\left(X_{f}\right)^{4}} \Omega^{A}=i_{X_{f^{A}}} \Omega^{A} .
$$

We deduce that (Bossoto \& Okassa, 2012):
Theorem 3.1 If (M, Ω) is a symplectic manifold, the structure of A-Poisson manifold on M^{A} defined by Ω^{A} coincide with the prolongation on M^{A} of the Poisson structure on M defined by the symplectic form Ω i.e for any $\varphi \in$ $C^{\infty}\left(M^{A}, A\right), \widetilde{\tau_{\varphi}}=X_{\varphi}$.
Therefore, for any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$, we have

$$
\{\varphi, \psi\}_{\Omega^{A}}=\{\varphi, \psi\}_{A}
$$

Proposition 3.2 If ω is a differential form on M and if θ is a vector field on M, then

$$
\left(i_{\theta} \omega\right)^{A}=i_{\theta^{A}}\left(\omega^{A}\right)
$$

Proof If the degree of ω is p, according (Bossoto \& Okassa, 2012, Proposition 9), ($\left.i_{\theta} \omega\right)^{A}$ is the unique differential A-form of degree $p-1$ such that

$$
\begin{aligned}
\left(i_{\theta} \omega\right)^{A}\left(\theta_{1}^{A}, \ldots, \theta_{p-1}^{A}\right) & =\left[\left(i_{\theta} \omega\right)\left(\theta_{1}, \ldots, \theta_{p-1}\right)\right]^{A} \\
& =\left[\omega\left(\theta, \theta_{1}, \ldots, \theta_{p-1}\right)\right]^{A}
\end{aligned}
$$

for any $\theta_{1}, \theta_{2}, \ldots, \theta_{p-1} \in \mathfrak{X}(M)$. As $i_{\theta^{1}}\left(\omega^{A}\right)$ is of degree $p-1$ and is such that

$$
\begin{aligned}
i_{\theta^{\wedge}}\left(\omega^{A}\right)\left[\theta_{1}^{A}, \ldots, \theta_{p-1}^{A}\right] & =\omega^{A}\left(\theta^{A}, \theta_{1}^{A}, \ldots, \theta_{p-1}^{A}\right) \\
& =\left[\omega\left(\theta, \theta_{1}, \ldots, \theta_{p-1}\right)\right]^{A}
\end{aligned}
$$

for any $\theta_{1}, \theta_{2}, \ldots, \theta_{p-1} \in \mathfrak{X}(M)$, we conclude that $\left(i_{\theta} \omega\right)^{A}=i_{\theta^{4}}\left(\omega^{A}\right)$.
When (M, Ω) is a symplectic manifold, we recall that a vector field θ on M is locally hamiltonian if the form $i_{\theta} \Omega$ is closed for the de Rham cohomology and θ is globally hamiltonian if there exists $f \in C^{\infty}(M)$ such that $i_{\theta} \Omega=d(f)$, i.e. the form $i_{\theta} \Omega$ is d-exact.

Thus a vector field X on M^{A} is locally hamiltonian if the form $i_{X} \Omega^{A}$ is d^{A}-closed and X is globally hamiltonian if there exists $\varphi \in C^{\infty}\left(M^{A}, A\right)$ such that $i_{X} \Omega^{A}=d^{A}(\varphi)$, i.e. the form $i_{X} \Omega^{A}$ is d^{A}-exact.
Proposition 3.3 A vector field $\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)$ on a symplectic manifold M is locally hamiltonian, if and only if $\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)$ is a locally hamiltonian vector field.
Proof For any $\theta \in \mathfrak{X}(M)$, we have

$$
\begin{aligned}
d^{A}\left(i_{\theta^{1}} \Omega^{A}\right) & =d^{A}\left[\left(i_{\theta} \Omega\right)^{A}\right] \\
& =\left[d\left(i_{\theta} \Omega\right)\right]^{A} .
\end{aligned}
$$

Thus θ is locally hamiltonian, i.e $d\left(i_{\theta} \Omega\right)=0$ if and only if, $d^{A}\left(i_{\theta^{A}} \Omega^{A}\right)=0$ i.e $\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)$ is a locally hamiltonian vector field.
Theorerm $3.4 A$ vector field $X: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)$ on M^{A} locally hamiltonian is a derivation of the A-Lie algebra induced by the A-structure of Poisson defined by the symplectic A-manifold (M^{A}, Ω^{A}).
Proof Let $\left(M^{A}, \Omega^{A}\right)$ be a symplectic manifold. For any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$,

$$
\begin{aligned}
\{\varphi, \psi\}_{\Omega^{A}} & =-\Omega^{A}\left(X_{\varphi}, X_{\psi}\right) \\
& =X_{\varphi}(\psi)
\end{aligned}
$$

If X is locally hamiltonian vector field, we have $d^{A}\left(i_{X} \Omega^{A}\right)=0$ i.e. for any Y and $Z \in \mathfrak{X}\left(M^{A}\right)$,

$$
d^{A}\left(i_{X} \Omega^{A}\right)(Y, Z)=0
$$

In particular, for any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$, we have

$$
\begin{aligned}
0 & =\left(d^{A}\left(i_{X} \Omega^{A}\right)\right)\left(X_{\varphi}, X_{\psi}\right) \\
& =X_{\varphi}\left[i_{X} \Omega^{A}\left(X_{\psi}\right)\right]-X_{\psi}\left[i_{X} \Omega^{A}\left(X_{\varphi}\right)\right]-i_{X} \Omega^{A}\left(\left[X_{\varphi}, X_{\psi}\right]\right)
\end{aligned}
$$

Therefore

$$
i_{X} \Omega^{A}\left(\left[X_{\varphi}, X_{\psi}\right]\right)=X_{\varphi}\left[i_{X} \Omega^{A}\left(X_{\psi}\right)\right]-X_{\psi}\left[i_{X} \Omega^{A}\left(X_{\varphi}\right)\right]
$$

i.e

$$
\Omega^{A}\left(X,\left[X_{\varphi}, X_{\psi}\right]\right)=X_{\varphi}\left[\Omega^{A}\left(X, X_{\psi}\right)\right]-X_{\psi}\left[\Omega^{A}\left(X, X_{\varphi}\right)\right]
$$

Hence

$$
X\left(\{\varphi, \psi\}_{\Omega^{4}}\right)=\{X(\varphi), \psi\}_{\Omega^{4}}+\{\varphi, X(\psi)\}_{\Omega^{4}} .
$$

That ends the proof.
Proposition 3.5 Let (M, Ω) be a symplectic manifold. If a vector field

$$
\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

is globally hamiltonian then the vector field

$$
\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

is globally hamiltonian.

Proof If θ is globally hamiltonian, then there exists $f \in C^{\infty}(M)$ such that $i_{\theta} \Omega=d(f)$. Then,

$$
\begin{aligned}
\left(i_{\theta} \Omega\right)^{A} & =[d(f)]^{A} \\
& =d^{A}\left(f^{A}\right)
\end{aligned}
$$

Thus

$$
i_{\theta^{A}} \Omega^{A}=d^{A}\left(f^{A}\right)
$$

i.e θ^{A} is globally hamiltonian.

References

Bossoto, B. G. R., \& Okassa, E. (2012). A-Poisson structures on Weil bundles. Int. J. Contemp. Math. Sciences, 7(16), 785-803.

Bossoto, B. G. R., \& Okassa, E. (2008). Champs de vecteurs et formes différentielles sur une variété des points proches. Arch. math. (BRNO), Tomus, 44, 159-171.
Helgason, S. (1962). Differential Geometry and symmetric spaces, New York; Academic Press.
Kolár, I, Michor, P. W., \& Slovak, J. (1993). Natural Operations in Differential Geometry, Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-662-02950-3
Koszul, J. L., \& Ramanan, S. (1960). Lectures On Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay.
Lichnerowicz, A. (1977). Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom., 12, 253-300.
Morimoto, A. (1976). Prolongation of connections to bundles of infinitely near points. J. Diff. Geom, 11, 479-498.
Nkou, V. B., \& Bossoto, B. G. R., Okassa, E. (2015). New characterization of vector field on Weil bundles. Theoretical Mathematics \& Applications, 5(2), 1-17.
Nkou, V. B., \& Bossoto, B. G. R. (2014). Cohomology associated to a Poisson structure on Weil bundles. Int. Math. Forum, 9(7), 305-316.
Okassa, E. (1986-1987). Prolongement des champs de vecteurs à des variétés des points prohes. Ann. Fac. Sci. Toulouse Math. VIII (3), 346-366.
Pham-Mau-Quan, F. (1969). Introduction à la géométrie des variétés différentiables, Dunod Paris.
Vaisman, I. (1995). Second order Hamiltonian vector fields on tangent bundles. Differential Geom., 5, 153-170. http://dx.doi.org/10.1016/0926-2245(95)00012-S
Vaisman, I. (1994). Lectures on the Geometry of Poisson Manifolds, in: Progress in Math., 118, Basel Birkhäuser. http://dx.doi.org/10.1007/978-3-0348-8495-2
Weil, A. (1953). Théorie des points proches sur les variétés différentiables, Colloq. Géom. Diff. Strasbourg, 111-117.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

