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Abstract

Let M be a paracompact smooth manifold, A a Weil algebra and M* the associated Weil bundle. In this paper, we
give a characterization of hamiltonian field on M in the case of Poisson manifold and of Symplectic manifold.
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1. Introduction

In what follows, we denote by M, a paracompact smooth manifold of dimension n, C*(M) the algebra of smooth
functions on M and A a Weil algebra i.e a real commutative algebra of finite dimension, with unit, and with an
unique maximal ideal m of codimension 1 over R (Weil, 1953). In this case, there exists an integer & such that
m"*! = (0) and m" # (0). The integer /4 is the height of A. Also we have A = R @ m.

We recall that a near point of x € M of kind A (Weil, 1953) is a morphism of algebras
E:CM) — A

such that
ENH-f(x)em

for any f € C*(M). We denote M2 the set of near points of x € M of kind A and M* = |J M% the manifold of
xeM
infinitely near points of M of kind A and
Ty M — M

the projection which assigns every infinitely near point of x € M to its origin x. The triplet (M“, m);, M) defines a
bundle called bundle of infinitely near points or simply Weil bundle (Kolér, Michor, Slovak, 1993).

When M and N are smooth manifolds and when 2 : M — N is a differentiable map of class C*, then the map
W MY — N E v )

such that for all g in C*(N),
[1*()1(g) = &(g o h)

is differentiable (Morimoto, 1976). Thus, for f € C*(M), the map
fAoMt — R = A& [fAONidr) = &idg o f) = E(f)

is differentiable of class C*. The set, C*(M4, A) of smooth functions on M4 with values in A, is a commutative
algebra over A with unit and the map

C¥(M) — C*(M*,A), f +— f*
is an injective morphism of algebras. Then, we have (Bossoto & Okassa, 2008):

F+ret=r+ghQ-pr=2-rG -9 = ¢
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for f,g € C*(M) and A € R.
1.1 Vector Fields on Weil Bundles

In (Bossoto & Okassa, 2008) and (Nkou, Bossoto & Okassa, 2015), we showed that the following assertions are
equivalent:

1) A vector field on M* is a differentiable section of the tangent bundle (TMA, 7tyga, M),
2) A vector field on M4 is a derivation of C®(M*).

3) A vector field on M4 is a derivation of C*°(M*, A) which is A-linear.

4) A vector field on M* is a linear map X : C*(M) — C(M*, A) such that

X(f-8)=X(f)-g"+f* X(g), foranyf,geC (M).

In all that follows, we denote by X(M4) the set of vector fields on M* and Der,[C*(M*, A)] the set of A-linear
maps
X:C(MA,A) — C¥(MA, A)

such that
X(e-v)=X(p) -y +¢-X@), foranyp,y e Co(M* A).

Then (Nkou, Bossoto & Okassa, 2015),
X(MA) = Der,[C®(M, A)).
The map
X(MY) x (M) — XM, (X, V) — [X,Y]=XoY-YoX

is skew-symmetric A-bilinear and defines a structure of an A-Lie algebra over X(M*).

If
0:C*(M) — C(M),

is a vector field on M, then there exists one and only one A-linear derivation,
¢ C¥(MA,A) — C¥(MA, A)
called prolongation of the vector field 8, such that

0 (f*) = 10N, forany f e C*(M).
If 6,6, and 6, are vector fields on M and if f € C*(M), then we have:

O +0) =0 +65,(f- 0" = 404 5101,61" = [6},651.

The map
X(M) — Ders[C*(M*,A)],0 — ¢

is an injective morphism of R-Lie algebras.
1.2 Structure of A-Poisson Manifold on M* When M is a Poisson Manifold

We recall that a Poisson structure on a smooth manifold M is due to the existence of a bracket {, } on C*(M) such
that the pair (C*(M), {, }) is a real Lie algebra such that, for any f € C*(M) the map

ad(f) : C*(M) — C*(M),g — {f, &}
is a derivation of commutative algebra i.e

{f.g-ny=1{f.8l-h+g-{f.h
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for f,g,h € C*(M). In this case we say that M is a Poisson manifold and C*(M) is a Poisson algebra (Vaisman,
1994, 1995).

We denote by
C*(M) — Derr[CT(M)], f — ad(f),

the adjoint representation and d,; the operator of cohomology associated to this representation. For any p € N,

AP

Pois

(M) = L7, [C¥(M),C™(M)]

denotes the C*°(M)-module of skew-symmetric multilinear forms of degree p from C*(M) into C*(M). We have

A%, (M) = C™(M).

When M is a smooth manifold, A a weil algebra and M4 the associated Weil bundle, the A-algebra C*(M4, A)
is a Poisson algebra over A if there exists a bracket {,} on C®(M*, A) such that the pair (C*(M4, A),{,}) is a Lie
algebra over A satisfying

{01 - 02,03} = {@1, 03} - 02 + 1 - {2, 03}

for any @y, @2, @3 € C°(M*, A) (Bossoto & Okassa, 2012).
When M is a Poisson manifold with bracket {, }, for any f € C*(M), let

lad()]* : C™(M) — C™(M*, A), g — {f. &}",
be the prolongation of the vector field ad(f) and let
lad())]A : C¥(MA, A) — C=(M*, A)
be the unique A-linear derivation such that

lad(HAgY) = [ad(H(g) = (f. "

for any g € C*(M).
For ¢ € C*(MA4, A), the application

7,1 C¥(M) — C¥(M™,A), f — —[ad(H)](p)
is a vector field on M4 considered as derivation of C®(M) into C*(M*, A) and
Ty 1 C¥(M*,A) — C™(MA,A)
the unique A-linear derivation (vector field) such that
() = 14(f) = ~lad())]A(p)

for any f € C*(M). We have for f € C*(M),

T = [ad(f)]A,
and for @, € C®(M*, A) and for a € A,
;FQO-H// = "F‘p +"F¢;"Fa.‘p =a ?90’?‘Pl// =@ ';Flll +y "‘Hp.

For any ¢, € C*(MA, A), we let
{909 l!/}A = :Ftp(l//)
In (Bossoto & Okassa, 2012), we showed that this bracket defines a structure of A-Poisson algebra on C®(M*, A).

Thus when M is a Poisson manifold with bracket {, }, then {, }, is the prolongation on MA of the structure of Poisson
on M defined by {, }.
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The map
C®(M*,A) — Ders[C*(M*,A)], ¢ — T,

is a representation from C®(M*,A) into C*(M*, A). We denote d, the cohomology operator associated to this
adjoint representation ( Nkou & Bossoto, 2014).
Forany p € N, A . (M*,~,) = L0 [C™(M*,A),C*(M*, A)] denotes the C*(M*, A)-module of skew-symmetric

multilinear forms of degree p from C*(M4, A) into C*(M*4, A). We have

AL (MA, ~p) = C¥(MA, A).

We denote
n
Apois(M,~4) = @D AL, (M*,~).
p=0
For Q e Ab . (M*,~4) and @1, @3, ..., pps1 € C(M*, A), we have

p+l
AAQAP1, .o Ppa1) = Z(—l)'_l‘?;;[ﬁ(gol, oo P eves Ppa1)]

i=1

O DU @A Pt B s B Ppi1)

I<i<j<p+l
where @; means that the term ¢; is omitted.

Proposition 1.1 ( Nkou & Bossoto, 2014) For any 5 € AL . (M), we have

Pois
da(1) = (daam)™.

2. Hamiltonian Vector Fields on Weil Bundles

When M is a Poisson manifold with bracket {, }, we recall that a vector field
0:C(M) — C*(M)

is locally hamiltonian if 6 is closed for the cohomology associated with the adjoint representation

ad : C*(M) — Derg [C”(M)]
i.e. dg8 = 0 and 6 is globally hamiltonian if € is exact for the cohomology associated with the adjoint representa-
tion

ad : C*(M) — Derg [C*(M)]
i.e. there exists f € C*(M) such that 8 = d,(f).

Thus a vector field on M4
X:C®(M*,A) — C®(M*,A)

is locally hamiltonian if X is closed for the cohomology associated with the adjoint representation

Co(M*, A) — Dery [C(M*, A)], ¢ — T,
ied,X =0and X is globally hamiltonian if X is exact for the cohomology associated with the adjoint representa-
tion

C(M*, A) — Dery [C(MA, A)], ¢ — T,

i.e. there exists ¢ € C®(MA, A) such that X = da(¢).

Proposition 2.1 When M is a Poisson manifold with bracket {, }, then a vector field

0: C¥(M) —s C(M)
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is locally hamiltonian if and only if the vector field

@' . CO(M™,A) — C™(MA,A).
is locally hamiltonian.
Proof Indeed, for any 7 € Agois(M), we have

da() = (daam)™.

In particular, for p = 1, we have
da(0) = (du0)".

Thus, d,40 = 0 if and only if J/;(GA) =0.
Proposition 2.2 When M is a A-Poisson manifold with bracket {, },, then, a vector field
X:CO(M*,A) — C¥(M*, A)

locally hamiltonian is a derivation of the Poisson A-algebra C®(M*, A).

Proof We have
dyX 1 C®(MA,A) X C¥(MA,A) —> C:"(MA,A)
(¢ ) = (daX)(p, ¥)

and if d,X = 0, then for any ¢,y € C®(M*4, A),
0 = X)ew)

= T XW)] - 1y [X(©)] = X({p, ¥} 4)

= {o, X — Y. X(@)}a — X(e, ¥la)
ie

X, yp) = {X(@), ¥ha + {0, X(W))a-
That ends the proof.
Proposition 2.3 Let M be a Poisson manifold with bracket {, }. If a vector field

0:C*(M) — C(M)
is globally hamiltonian then the vector field
¢ CO(MA,A) — C¥(MA,A)

is globally hamiltonian.

Proof Based on the assumptions, there exists f € C*(M) such that 8 = d,4(f). Thus,
0"

[ad(£))"
= da(f?).

Thus, 6 = d,q(f) then 64 = ds(f*) is globally hamiltonian.

Proposition 2.4 When M is a A-Poisson manifold with bracket {,},, then a vector field
X : C®(MA,A) — C¥(M*, A)

globally hamiltonian is the derivation interior of the Poisson A-algebra C*(M*,A).

Proof 1f the vector field
X: C®(M*,A) — C®(M*,A)
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is globally hamiltonian, there exists ¢ € C®(M*, A) suth that X = d,¢. For any ¢ € C®(M*, A), we have

X() (da)¥)
7,0)
{90’ ¢}A

i.e. X = ad(yp). where
ad(p) : C™(MA,A) — C™(M*, A), ¥ — {p,¥}a

Thus, X is globally hamiltonian if there exists ¢ € C®(MA,A) such that X = T, = ad(p) i.e. X is the interior
derivation of the Poisson A-algebra C*(MA4, A).

3. Hamiltonian Vector Fields on M4 When M is a Symplectic Manifold
When (M, Q) is a symplectic manifold, then (M*, Q") is a symplectic A-manifold (Bossoto & Okassa, 2012).
For any f € C*(M), we denote Xy the unique vector field on M such that

ix,Q=df

where
d: A(M) — A(M)

is the operator of de Rham cohomology. We denote
d* : A(MA,A) — A(MA,A)
the operator of cohomology associated with the representation
X(M*) — Dery [C""(MA,A)] X — X,

For ¢ € C®(M*, A), we denote by X, the unique vector field on M?*, considered as a derivation from C*(M*4, A)
into C®(M*, A), such that
ix, Q" = d*(¢).

The bracket

(. ¥lgn = —Q* (X, Xy)
= X ()

defines a structure of A-Poisson manifold on M* and for any f € C®(M), X =X f)A and

. A . A
l(X/)AQ = lX./'AQ .

We deduce that (Bossoto & Okassa, 2012):

Theorem 3.1 If (M, Q) is a symplectic manifold, the structure of A-Poisson manifold on M* defined by Q* coincide
with the prolongation on M of the Poisson structure on M defined by the symplectic form Q i.e for any ¢ €
C™(MA,A), T, = X,

Therefore, for any @, € C*(M*, A), we have
{90’ W}QA = {90’ d’}A .
Proposition 3.2 If w is a differential form on M and if 6 is a vector field on M, then

(igw)* = iga(w™).

Proof If the degree of w is p, according (Bossoto & Okassa, 2012, Proposition 9), (isw)” is the unique differential
A-form of degree p — 1 such that

0 O s 0 ) = [0 O s p)|

= [(6.61. . 6,0
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for any 61,6, ...,0,_1 € X(M). As ig (w) is of degree p — 1 and is such that
lHA(wA) I:QIA’ ceey 0?_]] = (’-)A(HA’ 91]49 (XX} 62_])
A

= |w(©.61. ..6,-)]

for any 6y, 6,,...,0,_1 € X(M), we conclude that (igw)* = igi(w™?).

When (M, Q) is a symplectic manifold, we recall that a vector field 6 on M is locally hamiltonian if the form i,Q is
closed for the de Rham cohomology and 6 is globally hamiltonian if there exists f € C*(M) such that i{,Q2 = d(f),
i.e. the form i»yQ is d-exact.

Thus a vector field X on M* is locally hamiltonian if the form ixQ" is d4-closed and X is globally hamiltonian if
there exists ¢ € C*(M*, A) such that ixQA = d4(¢p), i.e. the form ixQ* is d4-exact.

Proposition 3.3 A vector field 6 : C*(M) — C*(M) on a symplectic manifold M is locally hamiltonian, if and
only if 6% : C®(MA,A) — C®(M*, A) is a locally hamiltonian vector field.

Proof For any 6 € X(M), we have
A )]
[d(ip )]

dA (i )

Thus 6 is locally hamiltonian, i.e d(i,Q) = 0 if and only if, d*(ipQ*) = 0i.e 04 : C°(MA,A) — C®(M4,A)is a
locally hamiltonian vector field.

Theorerm 3.4 A vector field X : C®(MA,A) — C*(M*,A) on M* locally hamiltonian is a derivation of the
A-Lie algebra induced by the A-structure of Poisson defined by the symplectic A-manifold (M*,Q%).

Proof Let (M4, Q%) be a symplectic manifold. For any ¢, € C*(M*4, A),

o, Yo = - (X, Xy)
= X, ()

If X is locally hamiltonian vector field, we have d*(ixQ") = O i.e. for any Y and Z € X(M*),
d*(ixQ Y, Z) = 0.

In particular, for any ¢,y € C*(M*, A), we have

0 (@ (ixQ") (X, Xy)

X, [ixQ (X1 = Xy [ixQ (X)) — ixQ* ([ X, Xy 1)

Therefore
ixQ ([ Xy, Xy1) = X, [ixQ* (X)1 — Xy [ix QA (X)]
ie
QX [X,, Xy 1) = X, [QA(X, X,)] — X, [Q(X, X,)]
Hence
X, ¥lar) = {X(0), ¥lar + {@, X(¥)}on.
That ends the proof.

Proposition 3.5 Let (M, Q) be a symplectic manifold. If a vector field
0:C*(M) — C>(M)
is globally hamiltonian then the vector field
¢4 CO(MA,A) — C¥(MA,A)

is globally hamiltonian.
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Proof If 0 is globally hamiltonian, then there exists f € C*(M) such that i{,Q2 = d(f). Then,

(" = [
= d"(r")
Thus
ip Q" =d*(f1).
i.e 6 is globally hamiltonian.
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