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Abstract

The construction of the integers introduced by Dedekind is an algebraic one. Subtraction can not be done without re-
striction in natural numbers N. If we consider the definition of multiplication of integral domain Z, N with respect to
subtraction is needed. It is necessary to give the definition of subtraction in N. Instead of starting from natural numbers,
one could begin with any commutative semi-group and construct from it as the construction of the integers to obtain a
commutative group. If the cancellation law does not hold in the commutative semi-group, some modifications are re-
quired. The mapping from the commutative semi-group to the commutative group is not injective and compatible with
addition. In the relation between real numbers and decimals, N also plays an important role.
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1. The construction and application of subtraction of natural numbers

1.1 Subtraction of natural numbers N

Definition a = b − c⇐⇒ a + c = b. ∀a, b, c ∈ N.

If a = b − c and also a′ = b − c, then a + c = b and a′ + c = b. And we have a = a′ from a + c = a′ + c, according to the
cancellation law of N. Hence, subtraction of N is well-defined.

Besides, commutative law, association law and distribution law with respect to subtraction of N are satisfied.

Commutative law: a = b − c⇔ a + c = b. a′ = c − b⇔ a′ + b = c. We have a′ + (a + c) = c⇒ a′ + a = 0.
Namely, (c − b) + (b − c) = 0, (c − b) = −(b − c).

Association law: a = b−c⇔ a+c = b.⇒ d+b = d+(a+c)⇒ d+b = (d+a)+c⇒ d+a = (d+b)−c⇒ d+(b−c) = (d+b)−c.

Distribution law: a = b − c⇔ a + c = b.⇒ d(a + c) = db⇒ da + dc = db⇒ da = db − dc⇒ d(b − c) = db − dc.

Similarly, a = b − c⇔ a + c = b.⇒ (a + c)d = bd ⇒ ad + cd = bd ⇒ ad = bd − cd ⇒ (b − c)d = bd − cd.

According to the operations of N, we can prove multiplication in Z is well-defined and integers form an integral domain
with respect to addition and multiplication.

1.2 The integral domain Z

We should like (a − b) · (c − d) to be equal to (ac + bd) − (ad + bc) and accordingly this leads to the following definition:
[a, b] · [c, d] = [ac + bd, ad + bc] for a, b, c, d ∈ N

This definition is independent of the particular choice of the representative pairs.

Next we will prove [a, b] · [c, d] = [ac + bd, ad + bc] for a, b, c, d ∈ N is well-defined.

If [a, b] = [a′, b′], [c, d] = [c′, d′], then [a, b] = [a′, b′]⇒ a + b′ = a′ + b⇒ a = a′ + b − b′.
[c, d] = [c′, d′]⇒ c+d′ = c′+d ⇒ c = c′+d−d′. [a, b]·[c, d] = [ac+bd, ad+bc], [a′, b′]·[c′, d′] = [a′c′+b′d′, a′d′+b′c′].

We have ac + bd + a′d′ + b′c′ = (a′ + b − b′)(c′ + d − d′) + bd + a′d′ + b′c′ = a′c′ + a′d − a′d′ + bc′ + bd − bd′ − b′c′ −
b′d + b′d′ + bd + a′d′ + b′c′ = a′c′ + a′d + bc′ + 2bd − bd′ − b′d + b′d′

a′c′ + b′d′ + ad + bc = a′c′ + b′d′ + (a′ + b − b′)d + b(c′ + d − d′) = a′c′ + b′d′ + a′d + bd − b′d + bc′ + bd − bd′ =

a′c′ + b′d′ + a′d + 2bd − b′d + bc′ − bd′
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then (ac + bd) + (a′d′ + b′c′) = (a′c′ + b′d′) + (ad + bc).Namely, [ac + bd, ad + bc] = [a′c′ + b′d′, a′d′ + b′c′].
That is to say, [a, b] · [c, d] = [a′, b′] · [c′, d′].
Theorem The integers form an integral domain with respect to addition and multiplication. (that is, a commutative ring
without zero divisors and with identity element).

We have proved Z is a commutative group with respect to addition. Next we will consider Z with respect to multiplication.

Commutative law: [a, b] · [c, d] = [ac + bd, ad + bc] = [ca + db, cb + da] = [c, d] · [a, b]. ∀[a, b], [c, d] ∈ Z

Associative law:
([a, b] · [c, d]) · [e, f ] = [ac + bd, ad + bc] · [e, f ] = [(ace + bde) + (ad f + bc f ), (ac f + bd f ) + (ade + bce)] = [(ace + ad f ) +

(bc f + bde), (ac f + ade) + (bce + bd f )] = [a, b] · [ce + d f , c f + de] = [a, b] · ([c, d] · [e, f ]) ∀[a, b], [c, d], [e, f ] ∈ Z

Distribution law:
[a, b] · ([c, d]+ [e, f ]) = [a, b] · [c+e, d + f ] = [a(c+e)+b(d + f ), a(d + f )+b(c+e)] = [ac+ae+bd +b f , ad +a f +bc+be]
= [(ac + bd) + (ae + b f ), (ad + bc) + (a f + be)] = [ac + bd, ad + bc] + [ae + b f , a f + be] = [a, b] · [c, d] + [a, b] · [e, f ]

Here we know Z is a commutative ring.

Besides, [1, 0] · [a, b] = [a, b] · [1, 0] = [a · 1 + b · 0, a · 0 + b · 1] = [a, b]. ∀[a, b] ∈ Z.

Next we assume there exist zero-divisors in Z, that is to say, ∃[a, b] , [0, 0], and ∃[c, d] , [0, 0].

[a, b] · [c, d] = [ac + bd, ad + bc] = [0, 0], ∀[a, b], [c, d] ∈ Z.
Then ac + bd + 0 = 0 + ad + bc, ac + bd = ad + bc, ac − ad = bc − bd, a(c − d) = b(c − d), a(c − d) − b(c − d) =

0, (c − d)(a − b) = 0.⇒ c = d or a = b.

Which is contradictory to the assumption [a, b] , [0, 0], [c, d] , [0, 0].

Hence, the assumption is not satisfied, there is no zero-divisors in Z.

Here we should also prove ”If m, n ∈ N and mn = 0 then m = 0 or n = 0. ⇔ If m , 0 and n , 0 , then mn , 0. ” by
induction.

Firstly, we should prove ”If m , 0 and n , 0, then m + n , 0. ” by induction.

If m = 1, 1 + n = S (n) , 0.
If m = k, k + n , 0.
When m = k + 1, (k + 1) + n = (k + n) + 1 = S (k + n) , 0.

So, ”If m , 0 and n , 0 , then m + n , 0. ” is proved.

If m = 1, 1 · n = n , 0.
If m = k, k · n , 0.
When m = k + 1, (k + 1) · n = k · n + n , 0.

Hence, ” ””If m, n ∈ N and mn = 0 then m = 0 or n = 0.” is proved.

2.The construction of commutative group

We begin with any commutative semi-group H and construct from it as the construction of the integers to obtain a
commutative group G. If the cancellation law does not hold in H, we define(a, b) ∼ (c, d) if and only if there is an e such
that a + d + e = b + c + e. However, in this case ι : H −→ G is not injective.

2.1 The relation defined on H × H

We consider the relation ∼, defined on H×H, by (a, b) ∼ (c, d) if and only if there is an e such that a+d +e = b+c+e.We
then establish that this is an equivalence relation.

It may be proved as follows:

Reflexivity: There is an e such that a + b + e = b + a + e⇒ (a, b) ∼ (a, b). ∀(a, b) ∈ H

Symmetry: If (a, b) ∼ (c, d), then there is an e such that a + d + e = b + c + e .
Hence, c + b + e = d + a + e⇒ (c, d) ∼ (a, b). ∀(a, b), (c, d) ∈ H

Transitivity: If (a, b) ∼ (c, d) and (c, d) ∼ (e, f ) then by definition, there are g and h such that a + d + g = b + c + g and
c + f + h = d + e + h . ∀(a, b), (c, d), (e, f ) ∈ H

By addition we obtain a + d + g + c + f + h = b + c + g + d + e + h. And by letting i = g + h + c + d, we obtain there is an
i such that a + f + i = b + e + i , that is (a, b) ∼ (e, f ). (We have also made use of the commutativity and associativity of
addition.)

G may now be defined as equivalence classes of the relation ∼. The class represented by (a, b) is denoted by [a, b]. G is a
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set of equivalence classes.

2.2 Addition on H × H

We can define on H × H a component-wise addition, (a, b) + (c, d) := (a + c, b + d).

The commutative and associative laws hold, and the zero element is (0, 0) .

Commutative law: (a, b) + (c, d) := (a + c, b + d) = (c + a, d + b) = (c, d) + (a, b).

Associative law:
((a, b) + (c, d)) + (e, f ) = (a + c, b + d) + (e, f ) = (a + (c + e), b + (d + f )) = (a, b) + (c + e, d + f )) = (a, b) + ((c, d) + (e, f )).

Zero element: (0, 0) + (a, b) = (a, b) + (0, 0) = (a, b).

This addition is compatible with the relation ∼, that is to say, if (a′, b′) ∼ (a, b) and (c′, d′) ∼ (c, d) then (a′ + c′, b′ + d′) ∼
(a + c, b + d).

(a′, b′) ∼ (a, b), (c′, d′) ∼ (c, d)⇒ a′ + b = b′ + a, c′ + d = d′ + c⇒ (a′ + c′) + (b + d) = (b′ + d′) + (a + c)
⇒ (a′ + c′, b′ + d′) ∼ (a + c, b + d).

It is therefore meaningful to introduce in G, an addition G × G −→ G, [a, b] + [c, d] := [a + c, b + d],which is likewise
commutative and associative and which has [0, 0] as zero element.

Commutative law: [a, b] + [c, d] := [a + c, b + d] = [c + a, d + b] = [c, d] + [a, b].

Associative law:
([a, b] + [c, d]) + [e, f ] = [a + c, b + d] + [e, f ] = [a + (c + e), b + (d + f )] = [a + (c + e), b + (d + f )] = [a, b] + ([c, d] + [e, f ]).

Zero element: [0, 0] + [a, b] = [a, b] + [0, 0] = [a, b].

Next we will prove the addition in G is well-defined.

If [a, b] = [a′, b′] and [c, d] = [c′, d′], we should check [a, b] + [c, d] = [a′, b′] + [c′, d′].

Solution: [a, b] = [a′, b′]⇒ there is an e such that a + b′ + e = a′ + b + e.

[c, d] = [c′, d′]⇒there is an f such that c + d′ + f = c′ + d + f .

Then there is a g = e + f such that a + c + b′ + d′ + g = a′ + c′ + b + d + g.
And [a, b] + [c, d] = [a + c, b + d], [a′, b′] + [c′, d′] = [a′ + c′, b′ + d′]. Hence[a, b] + [c, d] = [a′, b′] + [c′, d′].

By passing to equivalence classes we have gained more. Each [a, b] has an inverse, namely [b, a]. We have established
the following.

2.3 Commutative group G

Theorem G forms a commutative group with respect to addition.

The element inverse to α ∈ G is uniquely determined, and is denoted by −α. Subtraction in G is defined by α−β := α+(−β).

Proof: (1)∀[a, b], [c, d] ∈ G, [a, b] + [c, d] ∈ G.

(2)∀[a, b], [c, d] ∈ G, [a, b] + [c, d] = [c, d] + [a, b].

(3)∀[a, b], [c, d], [e, f ] ∈ G, ([a, b] + [c, d]) + [e, f ] = [a, b] + ([c, d] + [e, f ]).

(4)∀[a, b] ∈ G,∃[0, 0] ∈ G, [0, 0] + [a, b] = [a, b] + [0, 0] = [a, b]. And [0, 0] = [0, 0] + [0, 0]′ = [0, 0]′, the zero element
is unique.

(5)∀[a, b] ∈ G,∃[b, a] = −[a, b] ∈ G, [a, b] + (−[a, b]) = (−[a, b]) + [a, b] = [0, 0].

In fact, [a, b]+[b, a] = [a+b, b+a] and a+b+0 = b+a+0. Then there exists an e = 0 such that a+b+0+0 = b+a+0+0.
Hence [a, b] + [b, a] = [0, 0].

Besides, [a, b] + [c, d] = [0, 0]⇒ [b, a] + ([a, b] + [c, d]) = [b, a] + [0, 0]⇒ [b, a] + [a, b] + [c, d] = [b, a]⇒ [c, d] = [b, a].
The inverse of [a, b] is also unique.

2.4 The mapping from H to G

The mapping ι : H −→ G, a −→ [a, 0] is not injective and compatible with addition.

If the cancellation law does not hold in H, that is to say, there are a, b, c ∈ H such that a + c = b + c and a , b.
Then [a, 0] = [b, 0] and a , b, namely, ι(a) = ι(b) and a , b. Hence, ι is not injective.
Besides, ι is compatible with addition, because of ι(a) = [a, 0], ι(b) = [b, 0], ι(a + b) = [a + b, 0] = [a, 0] + [b, 0] ⇒
ι(a + b) = ι(a) + ι(b).
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3. The relation between real numbers and decimals

The relation between real numbers and decimals has been generally pointed out in The principle o f mathematical
analysis. Since the importance of application of Archimedean property of R and the relationship between real num-
bers and decimals, the method of how to choose n1, ..., nk−1 of ”Having chosen n0, n1, ..., nk−1, let nk be the largest in-
teger such that n0 + n1

10 + · · · + nk−1
10k−1 + nk

10k ≤ x”as been given, and the proof of ”Let E be the set of these numbers
n0 + n1

10 + · · · + nk−1
10k−1 + nk

10k (k = 0, 1, 2, · · ·)(5) .Then x = supE.”as been indicated, which Rudin have not mentioned totally.
In the proof of the two questions natural numbers also play an important role.

3.1 The existence of n0.

Theorem 1.20 (a) If x ∈ R, y ∈ R and x > 0 then there is a positive integer n such that nx > y.
Part (a) is usually referred to as the Archimedean property of R.

Let x > 0 be real.

According to the Archimedean property of R, x ∈ R, 1 ∈ R, 1 > 0, then there is a positive integer n such that n · 1 > x.

Hence x ∈ [0, 1) ∪ [1, 2) ∪ · · · ∪ [n − 1, n), then there is n0 ∈ Z+∪0 such that x ∈ [n0, n0 + 1).
And n0 is the largest integer such that n0 ≤ x < n0 + 1 .

3.2 The method of choosing n1, · · ·, nk−1.

0 ≤ x − n0 < 1, 0 ≤ 10(x − n0) < 10, 10(x − n0) ∈ [0, 1) ∪ [1, 2) ∪ · · · ∪ [9, 10) .

Then there exists n1 ∈ Z and 0 ≤ n1 < 10 such that 10(x − n0) ∈ [n1, n1 + 1), and n1 is the largest integer such that
n1 ≤ 10 (x − n0) < n1 + 1, n1

10 ≤ x − n0 <
n1
10 + 1

10 , 0 ≤ x − n0 − n1
10 <

1
10 , 0 ≤ 100(x − n0 − n1

10 ) < 10.

In the similar way, there is a largest integer n2 such that
0 ≤ n2 ≤ 100(x−n0− n1

10 ) < n2 +1, n2
100 ≤ x−n0− n1

10 <
n2

100 + 1
100 , 0 ≤ x−n0− n1

10 − n2
100 <

1
100 , 0 ≤ 1000(x−n0− n1

10 − n2
100 ) < 10.

There is a largest integer n3 such that 0 ≤ n3 ≤ 1000(x − n0 − n1
10 − n2

100 ) < n3 + 1.

Do the same actions till we obtain nk−1 such that 0 ≤ nk−1 ≤ 10k−1(x − n0 − n1
10 − · · · − nk−2

10k−2 ) < nk−1 + 1.

3.3 The proof of x = supE .

Let nk be the largest integer such that 0 ≤ nk ≤ 10k(x − n0 − n1
10 − · · · − nk−1

10k−1 ) < nk + 1.

x − n0 − n1
10 − · · · − nk−1

10k−1 ≥ nk
10k , x ≥ n0 + n1

10 + · · · + nk−1
10k−1 + nk

10k .

Let E be the set of these numbers n0 + n1
10 + · · · + nk−1

10k−1 + nk
10k (k = 0, 1, 2, · · ·)(5)

E =
{
n0 + n1

10 + · · · + nk−1
10k−1 + nk

10k |k = 0, 1, 2, · · ·
}

We have known x is an upper bound of E . Next we will prove x is the smallest upper bound of E.

∀y < x, x − y > 0⇒ 1
x−y > 0.

According to Archimedean property 1
x−y ∈ R, 1 ∈ R, 1 > 0, then there is a positive integer n such that 1 · n > 1

x−y .

We let ak = n0 + n1
10 + · · · + nk−1

10k−1 + nk
10k , k = 0, 1, 2, · · ·.

n(x − y) > 1, nx − ny > 1, nx − 1 > ny⇒ y < x − 1
n (∗)

We have known10k(x − (n0 + n1
10 + · · · + nk−1

10k−1 )) < nk+1 ⇒ x − (n0 + n1
10 + · · · + nk−1

10k−1 + nk
10k ) < + 1

10k ⇒ x − ak <
1

10k (∗∗)
Next we will proof 10k ≥ n by the principle of complete induction to complete the proof. If a certain property is possessed
by the number 0(the commencement of the induction) and if, for every number n which has the property, its successor
also has the property(the induction step), then the property is possessed by all the natural numbers.

Step 1 When n = 0, 10k ≥ 0, it is satisfied.

Step 2 Assume n = k, 10k ≥ k, is satisfied.

Step 3 Then 10k+1 − k + 1 = 10 · 10k − k − 1 = 10k − k + 9 · 10k − 1 > 9 · 1 − 1 = 8 > 0.10k+1 ≥ k + 1.

Hence, the proof of 10k ≥ n is complete.

Then 1
10k ≤ 1

n ⇒ x − ak <
1
n (because of (∗∗) )⇒ x − 1

n < ak ⇒ y < ak(because of (∗ ) ).
Namely, ∀y < x. y is not an upper bound of E .

Hence, x is the smallest upper bound of E. x = supE.

The decimal expansion of x is n0 · n1n2n3 · · · (6) .

Conversely, for any infinite decimal(6) the set of number (5)is bounded above, (0 ≤ n1, n2, ···, nk < 10 and n1, n2, ···, nk ∈ Z)
(n0 + 1)− ak = n0 + 1− (n0 + n1

10 + · · ·+ nk
10k ) = 1− n1

10 − n2
100 − · · · − nk

10k ≥ 1− 9
10 − 9

100 − · · · − 9
10k = 1− 9( 1

10 + 1
100 + · · ·+ 1

10k )
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= 1 − 9 ·
1
10 ·(1− 1

10k )

1− 1
10

= 1 − (1 − 1
10k ) = 1

10k > 0

We have ∀k = 0, 1, 2, · · ·, ak < n0 + 1.

And (6) is the decimal expansion of supE .
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