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Abstract

We consider the M/M/1 queue with single working vacation serving at a slower rate during the start-up period. In order
to save energy and reduce waste, the server works at a slower rate rather than completely stops during a vacation and
start-up period. Using quasi birth and death process and matrix-geometric solution method, we obtain the distribution of
the nember of customers in the system, the average nember of the customers and the average sojourn time of a customer
in the stationary state.
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1. Introduction

Over the past two decades, the vacation queues have been investigated extensively. In a classical vacation queue, a server
may completely stop service or do some additional work during a vacation. The vacation queues have been extended
to computer networks, communications systems, as well as production management, inventory management and other
fields(Doshi B T, 1990).

Recently, a class of semi-vacation policies has been introduced by Servi and Finn. Such a vacation is called a working
vacation (WV). The server works at a slower rate rather than completely stops during a vacation. Servi and Finn(Servi,
L. D., 2002) studied an M/M/1 queue with multiple working vacations, and obtained the of the number of customers
in the system and the of waiting time distribution. Later, Liu, Xu and Tian(2002) gave simple explicit expressions of
distribution for the stationary queue length and waiting time which have intuitionistic probability sense. Kin, Choi and
Chae, Wu and Takagi(2006) generalized the work of to an M/G/1 queue with multiple working vacations(Wu, D., 2006),
Baba investigated a GI/M/1 queue multiple working vacations. Recently, Tian ,Zhao and Wang(2008) study an M/M/1
queue with single working vacation. According to Tian, Zhao and Wang’s research£this paper introduced a start-up period.
In addition, there is a slow rate of service during the start-up period.

In this paper, we study an M/M/1 queue with single working vacation serving at a slower rate in during the start-up period.
Firstly, the system is in a closed state, when a customer arrives, leading to a start-up period. After the start-up period, the
system becomes a normal service state. Until there are no customers in the queue, it changes into the working vacation
state. When the working vacation ends, if there are customers in the queue, the system becomes a normal service state:
if there are no customers in the queue, the system is closed. Until a customer arrives, a new cycle begins. In this model,
when the number of customers in the system is relatively few, we set a lower service rate. If there are no customers
in the system, we close it in order to save energy and reduce waste. Using quasi birth and death process and matrix-
geometric solution method, we obtain the distribution of the member of customers in the system, the average member of
the customers and the average sojourn time of a customer in the stationary state.

The rest of this paper is organized as follows. In Section 2 we describe the quasi birth and death process model of the
system; In Section 3 we obtain the steady- state queue distribution; In Section 4 we obtain the average member of the
customers and the average sojourn time of a customer in the stationary state.

2. Quasi Birth and Death Process

2.1 Model Description

Firstly, the system is in a closed state, when a customer arrives, leading to a start-up period. The start-up period U follows
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an exponential distribution with parameter β and the server serves at a slower rate of µβ. After the start-up period, the
system becomes a normal service state and the server serves at a normal rate of µb. Until there are no customers in
the queue, it changes into the working vacation state. The working vacation time V follows an exponential distribution
with parameter θ and the server serves at a slower rate of µv. When the working vacation ends, if there are customers in
the queue, the server changes service rate from µv to µb and the system becomes a normal service state; if there are no
customers in the queue, the system is closed. Until a customer arrives, a new cycle begins.

We assume that interarrival times, start-up period, service times, and working vacation time are mutually independent. In
addition, the service order is first in first out (FIFO).

2.2 State Transition Rate Matrix

Let Q(t) be the number of customers in the system at time t and let State variables

J(t) =


0 the system is in a working vacation period at time t
1 the system is in a start − up period at time t
2 the system is in a regular busy period at time t

Then {Q(t), J(t)} is a process with the state space

Ω = {(k, j), k ≥ 1, j = 0, 1, 2} ∪ (0, 0) ∪ (0, 1)

Where state (0, 1) denotes that the system is in a close-up state; state (k, 0), k ≥ 0 indicates that the system is in working
vacation state and there are k customers in the queue; state (k, 1), k ≥ 1 indicates that the system is in start-up state and
there are k customers in the queue; state (k, 2), k ≥ 1 indicates that the system is in regular busy period state and there
are k customers in the queue.

According to the lexicographical sequence, the state transition rate matrix can be written as

Q̃ =



A00 A01
B10 A C

B A C
B A C

. . .
. . .

. . .



where

A00 =

[ −(λ + θ) θ
0 −λ

]
A01 =

[
λ 0 0
0 λ 0

]

A =


−(µν + θ + λ) 0 θ

0 −(µβ + β + λ) β
0 0 −(λ + µb)



B10 =


µnv 0
0 µβ
µb 0

 B =


µν 0 0
0 µβ 0
0 0 µb

 C =


λ 0 0
0 λ 0
0 0 λ



The structure of Q̃ indicates that {Q(t), J(t)} is a quasi birth and death process (QBD), see Neuts. (1981).

Theorem 1. If ρ = λ
µb
< 1, the matrix equation

R2B + RA + C = 0 (1)

has the minimal non-negative solution

R =


r 0 θr

λ+(1−r−ρ)µb

0 ε βε
λ+(1−ε−ρ)µb

0 0 ρ

 (2)

Where
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ρ =
λ

µb
r =

λ + θ + µν −
√

(λ + θ + µν)2 − 4λµν
2µν

ε =
λ + β + µβ −

√
(λ + β + µβ)2 − 4λµβ
2µβ

Proof. Because A, B, C are all upper-triangular, we can assume that R has the same structure as

R =


r11 r12 r13
0 r22 r23
0 0 r33



Substituting R2 and R into equation (1), we get

r11 =
λ + θ + µν −

√
(λ + θ + µν)2 − 4λµν
2µν

r22 =
λ + β + µβ −

√
(λ + β + µβ)2 − 4λµβ
2µβ

r12 = 0 r23 =
r22β

λ + (1 − r22 − r33)

r13 =
r11θ

λ + (1 − r11 − r33)
r33 =

λ

µb

To obtain the minimal non-negative solution of (1), taking r11 = r (the other root is greater than 1), taking r22 = ε (the
other root is greater than 1), taking r33 = ρ (the other root is r33 = 1). Using elementary method, we can prove that
0 < r < 1, 0 < ε < 1. Substituting r, ε, ρ into equation, we get r12, r13, r23.

Because r satisfies the following equation
µνr2 − (λ + θ + µν) + λ = 0

equivalently, we have
θ

1 − r
+ µν =

λ

r

Similarly, we can have
β

1 − ε + µβ =
λ

ε

Theorem 2. The QBD process {Q(t), J(t)} is positive recurrent if and only if ρ < 1. Proof. Based on the theorem of
Neuts, the QBD process {Q(t), J(t)} is positive recurrent if and only if the spectral radius S P(R) of the rate matrix R is
less than 1, and set of equations (x0, x1, x2, x3, x4)B[R] = 0 has positive solution, where

B[R] =


A00 A01

B10 RB + A

 =



−(λ + θ) θ λ 0 0

0 λ 0 λ 0

µν 0 − λr 0 λ
r − µν

0 µβ 0 − λ
ε

λ
ε
− µβ

µb 0 0 0 −µb



(3)

B[R] is an irreducible and a periodic generator with finite state. Therefore, (x0, x1, x2, x3, x4)B[R] = 0 has positive
solution. Thus, process {Q(t), J(t)} is positive recurrent if and only if

S P(R) = max(r, ε, ρ) < 1

where 0 < r < 1, 0 < ε < 1, the above relation means that ρ < 1.

3. Steady- state Queue Length Distribution

If ρ < 1, µν < µb, µβ < µb, let (Q, J) be the stationary limit of the QBD process. Let

πk j = P{Q = k, J = j}, (k, j) ∈ Ω

(πk0, πk1, πk2) = πk, k ≥ 1

100 ã www.ccsenet.org



Journal of Mathematics Research February, 2010

Theorem 3. If ρ < 1, µν < µb, µβ < µb, the joint probability distribution of (Q, J) is

πk0 = rkπ00 πk1 =
θ(1 − ε)

β
εk−1π00 (4)

πk2 =
[
(δ + ϕ)

k−1∑

j=0

r jρk−1− j + (γ − δ − ϕ)ρk−1]π00

where
δ =

θr
λ + (1 − r − ρ)µb

, γ =
λ + θ − rµν

µb
, ϕ =

θ(1 − ε)
λ + (1 − ε − ρ)µb

π00 =
(1 − r)(1 − ρ)(1 − ε)

(1 + θ
β
)(1 − r)(1 − ρ)(1 − ε) + θ

ε
(1 − r)(1 − ρ) + r(1 − ε)(1 − ρ) + (δ + φ)(1 − ε)

+ (γ − δ − ϕ)(1 − ε)(1 − r)

Proof. With the matrix-geometric solution method, we have

πk = (πk0, πk1, πk2) = (π10, π11, π12)Rk−1 = 0 (5)

and π0, π1 satisfy the set of equations

[π00 π01 π10 π11 π12]B[R] = 0

Substituting B[R] in (3) into the equation, we get

π01 =
θ(1 − ε)
εβ

π00 π10 = rπ00

π11 = f racθ(1 − ε)βπ00 π12 =
λ + θ − rµν

µb
π00

note that

Rk =



rk 0 θr
λ+(1−r−ρ)µb

k−1∑
j=0

r jρk−1− j

0 εk βε
λ+(1−ε−ρ)µb

k−1∑
j=0

r jρk−1− j

0 0 ρk


, k ≥ 1

Substituting (π10, π11, π12) and Rk−1 into (5), we obtain (4). Finally, π00 can be determined by the normalization condition.

With (4), the probabilities of the server in various state are as follows, respectively

P{the server is in close − up period} = π01 =
θ(1 − ε)
εβ

π00

P{the server is in start − up period} = P{J = 1} =

∞∑

k=1

πk1 =
θ

β
π00

P{the server is in working vacation period} = P{J = 0} =

∞∑

k=1

πk0 =
1

1 − r
π00

P{the server is in regular busy period} = P{J = 2} =

∞∑

k=1

πk2 = [(δ + ϕ)
1

1 − r
1

1 − ρ +
γ − δ − ϕ

1 − ρ ]π00

4. The Average of the Queue Length and the Sojourn Time in Steady State

Theorem 4. If ρ < 1, µν < µb, µβ < µb, the average of the queue length in steady state

E(L) =
[ 1
(1 − r)2 +

θ

1 − ε +
(δ + ϕ)(1 − rρ)
(1 − ρ)2(1 − r)2 +

γ − δ − ϕ
(1 − ρ)2

]
π00 (6)

the average of the sojourn time in steady state

E(W) =
1
λ

[ 1
(1 − r)2 +

θ

1 − ε +
(δ + ϕ)(1 − rρ)
(1 − ρ)2(1 − r)2 +

γ − δ − ϕ
(1 − ρ)2

]
π00 (7)
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Proof. With (4), the probability generating function of Q cab be written as

Q(z) =

∞∑

k=0

(πk0 + πk1 + πk2)zk =
[
1 +

θ(1 − ε)
εβ

+
rz

1 − rz
+ θ(1 − ε)

z
1 − εz

+ (δ + ϕ)
z

1 − ρz
1

1 − rz
+ (γ − δ − ε)

z
1 − ρz

]
π00

Therefore
E(L) = Q′(z)|z = 1 =

[ 1
(1 − r)2 +

θ

1 − ε +
(δ + ϕ)(1 − rρ)
(1 − ρ)2(1 − r)2 +

γ − δ − ϕ
(1 − ρ)2

]
π00

If the PGF of W is W(s), the relationship between the PGF of Q and W is

Q(z) = W(λ̄ + λz)

therefore

E(W) = W ′(s)|s = 1 =
1
λ

Q′
 s − λ̄

λ

|s = 1
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